Professor Mike Moore interacting with students in his lab.

MOORE Research Group

Plants are constrained by the fact that they must grow rooted in a particular soil. Nearly all plant species have special preferences for certain kinds of soils, but we know surprisingly little about how soil preferences have contributed to the diversification of plant life on Earth. Much of Professor Moore's biology research involves using DNA sequence data to reconstruct the evolutionary history of a unique group of desert plants that grow only on the unusual mineral gypsum, which is difficult for most plants to survive on. Consequently his work involves a mix of techniques, including field, lab, and computational sudies. A STRONG Scholar in the Moore lab will explore the previously unknown evolutionary history of these gypsum plants through generating DNA sequence data in the lab, followed by sophisticated computational analyses of the resulting sequences to reconstruct patterns of diversification.

Chemistry and Biochemistry

Portrait of Professor William Parsons

PARSONS Research Group

The Parsons lab uses chemistry and biochemistry to study the molecular mechanisms by which enzymes are involved in physiological processes like metabolism and cell death. Students in his lab synthesize new chemical structures which they then employ as probes to study the functions of proteins in different biological settings. Current work focuses on proteins implicated in pathways underlying diseases like type II diabetes and Parkinson’s disease. A STRONG Scholar will make and purify new chemical compounds that, in collaboration with a continuing student in the lab, will then be tested for their ability to inhibit potential disease targets.

Environmental Studies

John Petersen. Photo Credit: Brannon Rockwell-Charland '14


The Environmental Dashboard Research Lab is led by Professors Cindy Frantz, John Petersen, and Rumi Shammin. Their interdisciplinary environmental studies and psychology research is centered on developing and testing novel forms of socio-technical feedback designed to promote pro-environmental behavior change in the community. A STRONG Scholar will work to further develop and assess the impact of the "Community Voices" and community events calendar components of the Environmental Dashboard. This may involve conducting interviews, conducting surveys, engaging in testing or assisting in the development of new software. The Scholar will take part in research meetings along with other student research fellows. They will gain exposure to various aspects of research design, management, and implementation.


Portrait of Professor Zeb Page

PAGE Research Group

Students working with Professor Zeb Page use metamorphic rocks as probes into regions below mountain ranges and deep in subduction zones to understand deep earth processes that are impossible to observe directly. A fundamental part of this work involves the imaging and chemical analysis of minerals using Oberlin’s scanning electron microscope (SEM/EDS). This summer, a STRONG Scholar will work closely with Professor Page and continuing students to improve the accuracy and precision of chemical analysis by SEM, by designing new analytical protocols and experiments to test them.


Portrait of Professor Chris Marx.

MARX Research Group

This summer project will explore some of the mathematical origins of music. One of the earliest pieces of evidence for the existence of irrational numbers is Pythagoras’s tuning problem. The ancient Greek philosopher Pythagoras is credited with discovering that, when trying to tune a stringed instrument in successive fifths, one can never reach the octave perfectly. This imperfection puzzled and intrigued musicians for nearly two thousand years, leading to various suggestions of how to tune instruments. Mathematically, the problem can be understood through properties of irrational circle rotations. STRONG Scholars working with Professor Marx will be learning tools from advanced calculus, which will allow them to mathematically capture, and rigorously prove, the main features of Pythagoras's tuning problem. In addition to developing the skills to write a correct and meaningful mathematical proof, students will also learn how to use LaTeX, the main typesetting program used for writing research papers in mathematics and the theoretical sciences. 


Tracie Paine and Sam Perez

PAINE Research Group

Adverse childhood experiences increase the risk of developing a number of different health conditions in adulthood. In particular, early adverse experiences predispose individuals to a number of psychiatric conditions, including substance abuse. In the Paine lab, we will be using a rodent model of adverse childhood experiences to look at how these experiences shape the brain and behavior. A STRONG Scholar working on the project will learn to analyze brain tissue via Western blot and immunohistochemistry.

Associate Professor of Neuroscience Pat Simen

SIMEN Research Group

Humans and non-human animals alike make simple perceptual decisions all day long: e.g. is this berry ripe enough to pick? There is a well-supported mathematical model of the process by which our brains make these simple decisions — the drift-diffusion model (DDM). The Simen Lab investigates new applications and modifications of this model to try to explain how we incorporate rewards into our decisions. We simulate these models on computers and analyze their predictions mathematically. Then we test whether the predictions hold, using behavioral measures (eyetracking and response times) and electroencephalography. 


Professor Stephen Fitzgerald talks with some students in his lab.

FITZGERALD Research Group

Professor FitzGerald’s physics research uses infrared spectroscopy to look at trapped hydrogen molecules for possible use in fuel cells, batteries to power cars, laptops, and other electronic devices. The research focuses on behavior that is explained by the use of quantum mechanics that is understandable by beginning physics students. A STRONG Scholar will work closely with Professor FitzGerald on designing new pieces of equipment, obtaining spectra, and analyzing the data.

Professor Yumi Ijiri interacting with students in her lab.

IJIRI Research Group

Professor Ijiri’s physics research is centered on understanding unusual magnetic materials, in particular, magnetic nanoparticles which are now of interest for both biomedical and data storage applications. In order to determine magnetic structure within and between the particles, her lab uses a variety of experimental methods, both here at Oberlin and at other institutions such as the National Institute of Standards and Technology, Carnegie Mellon University, and Case Western University. A STRONG Scholar will work in the lab helping with one technique, designing and testing a new liquid sample cell for some x-ray scattering measurements.

Jason Stalnaker

STALNAKER Research Group

Approximately 80% of the matter in the known universe is made of something that is completely different than the matter that makes up our everyday world. What this so-called dark matter is remains an open question. Professor Stalnaker’s physics lab is working on an experiment to search for dark matter using a network of atomic magnetometers. These atomic magnetometers use lasers to prepare atoms in a particular state where they are sensitive to certain types of dark matter. By comparing the data of magnetometers stationed throughout the earth one can search for cosmic dark matter as the earth moves through the galaxy. A STRONG Scholar will work closely with Professor Stalnaker and an advanced undergraduate student to characterize and upgrade a magnetometer station located at Oberlin College. The Scholar’s role will include optical setup, data collection, and analysis.


Portrait of Professor Travis Wilson

WILSON Research Group

The Wilson Lab studies child and adolescent development in school settings. A STRONG Scholar who works in the Wilson Lab may choose between 1 of 2 projects. The first project involves a collaboration with a large urban school district in the Great Lakes region of the United States. Developmental changes in peer relationships (e.g., friendship networks, peer groups) and academic motivation among low-income elementary school children are examined. The second project involves a collaboration with a large urban school district in the Southwest region of the United States. Roughly 45% of the district’s high school graduates complete a baccalaureate degree within 4-6 years. The project’s aim is to identify key social and academic factors that predict college persistence and attrition among the district’s alumni. Both projects involve large-scale statistical analysis, literature review, and academic writing. Project 2 also includes qualitative analysis of interviews. The STRONG Scholar, working alongside Dr. Wilson and 3 upper-class Psychology students, will learn how to use statistical software (SPSS), navigate electronic library resources, and craft a proposal for a research presentation at a scientific conference.

Photographs by Brannon Rockwell-Charland '14, Jennifer Manna, Sela Miller '15, Matthew Lester, Kevin G. Reeves, Zoe Madonna, Tanya Rosen-Jones '97