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Abstract

We use the extended finite element method to conduct fracture simulations of

glacially loaded bedrock, with the aim of better understanding the erosive process

of quarrying. In quarrying, cavity formation over bedrock obstacles creates devia-

toric stresses that drive fractures to propagate and isolate bedrock blocks, which are

then carried away by the overriding ice. Existing literature assumes straight-line,

bed-normal fracture growth as an adequate approximate solution to an idealized

model problem, which we show to be highly inaccurate via numerical solutions to

the same problem. We show that bedrock ledges create high concentrations of stress

at their boundaries, which drives curved fracture propagation at much higher rates

than previously predicted.
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Chapter 1

Introduction

The influence of glaciers in shaping landscapes is well-known to specialists and travelers

alike – both the rough, extreme topography of places like western Norway and the smooth,

rolling topography of the American midwest mark the pronounced erosive impact of ice

sheets and glaciers. The scientific study of glaciers is only about a century old, and quanti-

tative study of the processes driving erosion, which occur in difficult-to-reach places buried

under kilometers of ice, is only emerging in recent decades. The pronounced results of

subglacial erosion are widely known, but scientists still lack a detailed understanding of

these erosive processes.

Evidence, such as glaciated bedrock and glacial outwash (the debris in meltwater at the

foot of glaciers), indicates that two main processes are responsible for subglacial erosion

– abrasion, wherein hard debris frozen into the ice is dragged over the bedrock, creating

remarkably smooth rocks with “glacial polish” as well as striations and chattermarks; and

quarrying, wherein the pressure exerted by the ice causes fractures to propagate through

bedrock obstacles, eventually isolating (or “plucking”) bedrock blocks (rock fragments in

figure 1.1), which are then frozen into in the ice flow to be taken along with the glacier,

inevitably causing abrasion on the way down.
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Figure 1.1: Heavily quarried bedrock in front of Castleguard glacier in Switzerland, showing

sharp step ledges in natural bedrock, with a classic stepped bed geometry. Note that

this bedrock is exposed from recent glacier retreat, and thus also shows heavy plucking

(quarrying) of the step ledges in the photo, with loose, glacially-extracted rock fragments

covering the area. Red boxed region shows a series of steps akin to our model problem.

Photo courtesy of Jacob Woodard and Luke Zoet.

In this study, we go through the necessary background in the physics of solids and

fractures, as well as the methods required for the simulation of fracture, in order to present

the most detailed small-scale model of subglacial quarrying to date. These simulations

are undertaken in order to improve estimates of quarrying rates and understanding of sub-

glacial processes, since a recent study [1] revealed significant shortcomings in the traditional

approach to the problem [2].
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Chapter 2

Theory

2.1 Solid Mechanics, Continuum Mechanics

For most purposes in classroom mechanics, solid objects are reduced to some simplified

set of coordinates – center of mass and rotational angle, with some moment of inertia, or

approximated as a simple point source, etc. – but when looking to study the deformation

or failure of an arbitrary solid, a continuum approach must be taken.

2.1.1 Stress

This continuum approach uses a tensor formulation to describe all forces acting on an

infinitesimal of our solid dm. Restricting our attention to two-dimensional problems, we

use the Cauchy stress tensor

σ =

σxx τxy

τxy σyy

 (2.1)

to describe the state of forces for a point in our solid, where a force per unit area (called

a traction) ~F which acts on a plane with unit normal vector n̂ is given as

~F = σn̂ =

σxx τxy

τxy σyy

nx
ny

 =

σxxnx + τxyny

τxynx + σyyny

 . (2.2)

Note that even though ~F in equation (2.2) acts against a specified plane, ~F is still a vector

quantity. This is because a traction can act normal to the plane (normal stress), or it can
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act parallel to the plane (shear stress). In the case where n̂ lies along our axes, the resulting

shear and normal stresses are depicted in figure (2.1b). The stress tensor is symmetric (see

[3] for a proof), so τxy = τyx. For an arbitrary n̂, the traction is depicted in figure (2.1a),

where ~F · n̂ and ||~F × n̂|| are the normal and shear components along n̂, respectively.

Figure 2.1: (a) fictitious n̂ within a solid and the resulting traction. (b) normal and shear

tractions in terms of the stress tensor at a point dm.

While we only have a single n̂ along the boundary of our solid, and thus only a single

traction vector at each point along our boundary, within the solid, our stress tensor σ

describes a continuum of tractions which act for all possible n̂. This continuum of tractions

means that only σ can describe the balance of forces within our solid.

2.1.2 Displacement and Strain

In response to the tractions within a solid, our points dmi at positions ~xi undergo certain

displacements to new positions ~x∗i , where we define the displacement as ~u(~xi) = ~x∗i − ~xi.
In order to distinguish deformation (nonuniform displacement) from rigid motion (uniform

displacement), we introduce a relative quantity related to displacement called strain ε,

which is clearest to describe in one dimension.

If we have a bar of length L, the strain can be described as the fractional increase in

4



Figure 2.2: 1d bar of original length L and deformed length L∗

the length of the bar – looking at figure (2.2), we can describe this as

ε =
L∗ − L
L

=
[(x+ ∆x+ u(x+ ∆x))− (u(x) + x)]− [(x+ ∆x)− x]

(x+ ∆x)− x

=
u(x+ ∆x)− u(x)

∆x
=

∆u

∆x
(2.3)

Taking the limit as L→ 0, we find ε = du/dx. Much like stress, strain in two dimensions

is described is described by a symmetric tensor of the form

ε =

εxx εxy

εxy εyy

 =

 ∂u
∂x

1
2

(
∂u
∂y + ∂v

∂x

)
1
2

(
∂u
∂y + ∂v

∂x

)
∂v
∂y

 =
1

2

(
∇~u+ (∇~u)T

)
, (2.4)

where ~u · x̂ = u and ~u · ŷ = v, and where we define the gradient of a vector to be a tensor:

∇~u =

∂u
∂x

∂u
∂y

∂v
∂x

∂v
∂y

 . (2.5)

Note that the strain-displacement relation described in equation (2.4) is only valid for

small, infinitesimal deformations [3].

2.1.3 Stress-Strain Relations

The stress tensor σ and the strain tensor ε are the continuum generalizations of force

and displacement, respectively. To complete a picture of solid mechanics, however, we are
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required to stipulate some relationship between stress and strain. The relationship chosen

depends on the phenomena one would like to include in the model as well as the degree

of (in-)homogeneity of the solid in question. These relationships are called a ‘constitutive

law’ or ‘material model’. A constitutive law is said to be linear elastic if the stresses are

a linear combination of the strains, where in general this linear combination is given by a

fourth-order tensor called the “stiffness tensor”:

σ = C : ε or σij =
∑
k,l

Cijklεkl. (2.6)

Equation (2.6) is referred to as the continuum formulation of Hooke’s law (F = kx). Instead

of having a single spring constant k, in general C has 21 independent elastic moduli [4].

For our solid, we assume it is isotropic – that is, the stiffness of the material is direction

independent. This reduces C to only two independent elastic moduli [4], which allows us

to rewrite equation (2.6) in vector notation as

σ = λtr(ε)I+2µε or

σxx σxy

σxy σyy

 = λ

εxx + εyy 0

0 εxx + εyy

+2µ

εxx εxy

εxy εyy

 , (2.7)

where λ and µ are two material stiffness parameters called the first Lamé parameter and the

shear modulus, respectively. Thus our displacement-strain and strain-stress relationships

mean that we can obtain σ from ∇~u, and vice-versa, by substituting equation (2.4) into

(2.7).

While we have defined equation (2.7) in terms of λ and µ, many other elastic moduli are

in use, such as Young’s modulus E, bulk modulus K, or Poisson’s ratio ν. Any two of these

parameters are sufficient to describe an isotropic solid’s stiffness, and for the remainder of

our study we will use the more popular Young’s Modulus E and Poisson’s ratio ν 1 instead

of λ and µ, which are related to each other by [4]

E :=
µ(3λ+ 2µ)

λ+ µ
, ν :=

λ

2(λ+ µ)
. (2.8)

1Young’s Modulus is defined simply as stress over strain, which is linear below a material’s yield stress,

and Poisson’s ratio is a measure of the extent to which a solid spreads out in response to uniaxial compres-

sion.
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As a final note, we must stipulate some relationship between our two dimensional

problem and the three-dimensional reality. The two most common relationships are plane

stress, which assumes negligible out-of-plane stresses in a thin solid, such as a loaded plate;

and plane strain, which assumes that the out-of-plane dimension of our solid is much larger

than our x or y dimensions. Since our problem is a ledge on a wide glacial bed, we will

continue with plane strain but note when a quantity would differ for plane stress.

2.2 Linear Elastic Fracture Mechanics (LEFM)

While it may seem counterintuitive to approach fracture – which involves permanent (i.e.

plastic) deformation in the form of crack growth – from the standpoint of linear elasticity,

the approach has a number of advantages, not least including the use of a fairly simple

and well-studied material model for our calculations. In many solids, and especially in

rocks, during most fracture processes we can assume that nearly all of the solid under-

goes infinitesimal elastic strain, except in the immediate vicinity of the crack tip. This

assumption is called small-scale yielding [5], and it allows us to avoid directly including

the complex multiscale process of fracture extension in our model. Instead, we calculate

fracture mechanical parameters from our linear elastic solution, which allow us to then

make predictions about fracture paths and propagation rates.

The most important fracture mechanical parameters are called stress-intensity factors

(SIFs), for which straightforward models have been developed to relate the SIFs to frac-

ture behavior. The stress intensity factors indicate the magnitude of the stress singularity

around the crack tip, and are widely used to predict and assess crack behavior in experi-

mental, theoretical, and numerical studies of fracture.

2.2.1 Modes of Fracture

Stress fields in linear elastic solids exhibit a superposition principle similar to waves, where if

a complex problem can be reduced to a simpler set of loading conditions where the solutions

are known, then the complex solution to the stress field is simply a linear combination of

the simpler forms [6, pp. 85-6]. In the case of fracture, this allows for the identification of

a set of fundamental loading conditions (or “modes” of fracture), from which any situation
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can be derived. These are opening mode (mode-I), in-plane shearing mode or sliding mode

(mode-II), and out-of-plane shearing mode (mode-III) (Figure 2.3) [5]. In the case of a two

dimensional problem, we limit ourselves to modes I and II, since mode-III fracture would

propagate out of our model domain.

Figure 2.3: three fundamental modes of fracture. In 2D, only the first two modes are

used. 2

Typically, fracture mechanics problems begin by identifying the fracturing mode, which

is determined by the orientation of the boundary tractions on the solid (ie loading condi-

tions). Each fracturing mode has its own stress-intensity factor, called KI ,KII , and KIII ,

respectively. Mode-I fracture is the most widely studied, with analytic solutions relating

the mode-I SIF to the loading stress and crack length for a range of geometries and loading

conditions, which generally takes the form of

KI = Y σ
√
πa, (2.9)

where a is the crack length, σ is the far-field tensile stress, and Y is a correction factor

which depends on the specimen geometry [5]. Equation (2.9) is an elegant result applicable

2Figure adapted from https://commons.wikimedia.org/wiki/File:Fracture modes v2.svg
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to a wide range of mode-I problems, but for our study we need numerical methods to solve

for general mixed-mode fracture.

2.2.2 Fracture Propagation Direction

Mode-I fractures propagate in a straight-line path, whereas our other modes and mixed-

mode problems tend to propagate at an angle from the initial fracture orientation [5]. This

phenomenon makes sense in light of the stresses actually required for fracture propagation

– in order for the crack to extend, stresses must exist at the crack tip to pull the crack

faces apart, where mode-I loading conditions apply this greatest tensile stress along the

direction of initial fracture. Extending this reasoning to fracture generally, we can predict

propagation path in the direction of the greatest tensile stress at the crack tip, which is

formalized at the Maximum Tangential Stress (MTS) criterion for fracture propagation [7].

Fortunately, for an isotropic elastic solid, the displacement field around the crack tip

is known exactly for a given combination of KI and KII . The first-order x-displacement

u and the y-displacement v in polar coordinates around the crack tip (which are exact as

r → 0) are given as [8]

uI =
KI

4µ

√
r

2π

[
(2κ− 1) cos

(
θ

2

)
− cos

(
3θ

2

)]
(2.10)

uII =
KII

4µ

√
r

2π

[
(2κ+ 3) sin

(
θ

2

)
− sin

(
3θ

2

)]
(2.11)

vI =
KI

4µ

√
r

2π

[
(2κ+ 1) sin

(
θ

2

)
− sin

(
3θ

2

)]
(2.12)

vII = −KII

4µ

√
r

2π

[
(2κ− 3) cos

(
θ

2

)
− cos

(
3θ

2

)]
(2.13)

u = uI + uII+O(r2), v = vI + vII +O(r2), (2.14)

where subscripts I and II designate our mode-I and mode-II components respectively, κ

is a material parameter equal to 3 − 4ν for plane strain where ν is Poisson’s ratio, and µ

is the shear modulus.

The tensile stress in a given direction is described by the σθθ component of the stress

tensor in polar coordinates, so we must convert equation (2.14) from displacement to
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strain (eq. (2.4)), strain to stress (eq. (2.7)), and cartesian to polar coordinates. After

these transformations, we obtain

σθθ =
1√
2πr

cos
θ

2

[
KI

2
(1 + cos θ)− 3KII

2
sin θ

]
. (2.15)

The direction of maximum tensile stress, θc, occurs when σθθ is maximized, meaning

∂σθθ
∂θ

∣∣∣∣
θ=θc

= 0,
∂2σθθ
∂θ2

∣∣∣∣∣
θ=θc

< 0. (2.16)

Neglecting r dependence, this evaluates to

KI sin θc −KII(3 cos θc − 1) = 0, (2.17)

KI cos
θc
2

(1− cos θc) +KII sin
θc
2

(9 cos θc + 5) < 0. (2.18)

The roots of (2.17) are

θc = 2 tan−1

1

4

 KI

KII
±

√(
KI

KII

)2

+ 8


 . (2.19)

Equation (2.19) has been shown to agree well with observations, with θc = 0 for pure mode-

I, and θc = 70.5◦ for pure mode-II. Thus, in two dimensions, predictions can be made for

the crack propagation path under arbitrary loading conditions once KI and KII are known.

Dynamically, the MTS criterion tells us that as mixed-mode fractures propagate, mode-

I comes to predominate over the course of propagation. Evaluation techniques for our

mixed-mode stress-intensity factors will be discussed in the numerical methods section of

our study (section 3.2).

If we have slow, subcritical growth, then we treat propagation as a succession of static

equilibrium states, where we can propagate the crack forwards outside the model, without

an explicit time dependence.

It is worth noting that the maximum tangential stress criterion is the most popular in

use, due to its simplicity and its reliability, but other criteria have also been proposed, with

varying degrees of complexity [5]. For the purposes of our study, we will only be using the

MTS criterion.
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2.2.3 Fracture Propagation Rates

Fracture propagation is generally grouped into the categories of stationary (no propaga-

tion), subcritical (stable propagation), and critical (unstable propagation or failure). Since

the defining study on the topic [9], the approach is usually applied as follows:

Vc =


0, KI < 0.3KIc,

A(KI)
m, 0.3KIc < KI < KIc,

Vs ≈
√
E/ρ, KI > KIc,

(2.20)

where Vc is our crack propagation velocity, KIc is a material parameter called the mode-I

critical fracture toughness, E is the Young’s Modulus of the material, ρ is the density of the

material, and A and m are empirical parameters which are generally less well constrained

than E or KIc. Our ranges correspond to a stationary crack (KI < 0.3KIc), a subcritically

propagating crack (KI < KIc), and a critically propagating crack (KI > KIc). The form

of equation (2.20) is a simple expression called “Charles’ Law” used to approximate exper-

imental results for subcritical crack growth, and describes a highly nonlinear relationship

between KI and Vs, often with m = 50 or greater [10].

The subcritical growth threshold of 0.3KIc is also a rough estimate proposed by [9],

with some uncertainty but little experimental data on the precise threshold, due to the

difficulty of creating small SIFs in the lab. Subcritical propagation in rocks is roughly on

the order of a few millimeters to centimeters per day, whereas critical fracture often travels

at hundreds of meters per second, which is effectively instantaneous for our purposes.

The reader will note that equation (2.20) expresses Vc only as a function of KI , which

indicates the extent to which mode-II fracture velocity research is emerging only recently,

and this author has not been able to find any research in the literature on subcritical rock

fracture velocities for mixed-mode loading. For mode-II, some researchers have evaluated

KIIc as a separate material parameter from KIc [11],[12],[13] and have calculated Charles’

law parameters for pure mode-II loading (Vc2 = A2(KII)
m2) [10]. Some numerical fracture

studies in other materials [14] assume Vc(KI ,KII) = Vc1(KI)+Vc2(KII), but to date no rock

experiments have been carried out to verify this assumption. While mixed-mode subcritical

fracture research is basically non-existent, more robust research exists for determining the

critical failure threshold in engineering materials (e.g. concrete instead of rock) for mixed-

11



mode conditions [7]. Structural engineers will often use the simple threshold of

Knorm =
√
K2
I +K2

II < KIc, (2.21)

which is noted to be somewhat conservative compared to other more complex criteria [7].

Due to the limitations of the linear elastic macroscopic paradigm, this author predicts

that future studies of subcritical crack growth rates will be directed towards paradigms

which encompass more of the microphysical basis for rock fracture. For the purposes of

our study, we will simply assume that mode-I growth rates place a lower limit on mixed-

mode results.
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Chapter 3

Methods

In our fracture mechanics simulations, our main objective is to solve for the stress-intensity

factors of our crack. In order to do this, we must first solve for the stress state inside our

solid. We detail the governing equation for our isotropic linear elastic material, which we

solve using a modified form of the finite element method specifically developed for fracture.

We can then evaluate the stress-intensity factors via post-processing of our solutions, from

which we can draw conclusions about fracture propagation directions and rates.

3.1 Finite Element Method

3.1.1 Governing Equation

In order to solve for the equilibrium stress state in our solid, we rewrite Newton’s second

law [3, pp. 117-8] in N/m3 as

~∇σ + ρ~F = ρ
∂2~u

∂t2
, (3.1)

where ~F are body forces which are distributed throughout our solid, such as gravity. We

solve for stress equilibrium, so ∂2~u
∂t2

= 0, and we also do not consider body forces in our

model. Substituting our displacement-strain relation (eq. (2.4)) and our stress-strain

relation (eq. (2.7)) into our equation of motion (eq. (3.1)), we obtain

(λ+ µ)~∇(~∇ · ~u) + µ∇2~u+ ρ~F = ρ
∂2~u

∂t2
, (3.2)

13



which gives us one coupled second-order partial differential equation for each of our spatial

components, with the displacement as our sole field variable to solve. This system of PDEs,

called the vector Laplace equation, is elliptic as long as λ/µ > −2, which is true by the

definition of λ and µ for solids. This means that we can expect a solution for equation (3.2)

once we set conditions for either ~u or ∇~u on all boundaries of our domain. For our study,

we use the finite element method (FEM) as our numerical technique to solve equation (3.2).

3.1.2 Finite Element Method for Solid Mechanics

The standard finite element method involves a discretization of our solution domain into

a geometrically contiguous mesh of simplices (figure (3.1)), which are line segments in one

dimension, triangles in two dimensions, and tetrahedra in three dimensions. Each simplex

is called an element, and the corners of an element are called nodes. The solution to our

field variable u 1 is calculated on each node, but when evaluating our field variable outside

the nodal points, some smooth interpolation must be done. This is accomplished in one

dimension, for example, using the Lagrange interpolating polynomials. For our simplified

presentation of FE, we describe the solution space between nodes with linear interpolation

functions φi.
2 Each node, positioned at xi, has a corresponding interpolation function φi.

Each interpolation function is defined equal to 1 on its node, and 0 on all other nodes.

This can be stated as

φi(xj) =

1 i = j

0 i 6= j
. (3.3)

FEM solves for the value of our field variable u at each node i, which we call ui. Using

our interpolation functions, an arbitrary point x in our solution domain is thus

u(x) =
∑
i

uiφi(x). (3.4)

1Whereas we previously reserved x for tensors and ~x for vectors, we use x to mean a vector until we

begin referring to tensors again in section 3.2.
2Elements with linear interpolation functions are called first-order elements, and elements with additional

polynomial interpolation functions are called higher-order elements.
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Each coefficient ui is called a degree of freedom (DOF) of our solution. One important

property of our interpolation functions φi is that they obey partition of unity, meaning∑
i

φi(x) = 1 (3.5)

for all x. If this property was not satisfied, our solution could not resolve a constant value

for u and thus would be sensitive to translations of our domain or alterations of our mesh.

Note that we have just described the most basic form of FEM with first-order La-

grangian elements, where additional features include the use of special interpolation func-

tions [15], the definition of additional nodes inside each element, meshing with non-triangular

elements [16], etc. For our study, we use a modified form of FEM which adds fracture-

specific basis functions to the solution space in order to improve accuracy.

Figure 3.1: Example free triangular mesh used for our quarrying problem. Each triangle

is an element, and each vertex is a node. Fracture location indicated by red line, with

the finest mesh located around the crack tip, growing coarse by the ends of our model

domain. Ellipses indicate 3 meter regions of our domain which are omitted to preserve

display clarity around the crack tip.
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3.1.3 Extended FEM for Fracture Mechanics

The standard finite element described in the previous section has difficulties solving for the

displacement field around crack tips, owing to the discontinuous and nonlinear solutions

which are expected analytically (eqs (2.10–2.13)); a typical solution is shown in the lower

row of figure (3.2). Since these patterns are ultimately dependent on θ rather than r, some

element will always contain a discontinuity, and thus mesh refinement has a limited effect

on improving the likelihood of converging on a solution.

Today, the most popular method of dealing with this problem is a modification to

standard FEM proposed by [17], which they named the eXtended Finite Element Method

(XFEM). It involves the addition of special functions to the DOFs of crack-adjacent or

crack-containing elements to better enable the solver to reproduce the discontinuous be-

havior expected from the analytic solution for near-tip displacements (equation (2.14)).

These special basis enrichment functions fall into two types: (1) near-tip asymptotic func-

tion enrichment to handle the crack-tip discontinuity, and (2) Heaviside or jump function

enrichment to include fractures directly in the displacement field solutions to avoid remesh-

ing.

3.1.3.1 Asymptotic Enrichment

To handle the crack-tip displacement field, we introduce four functions FL(r, θ) defined in a

polar coordinate system with the crack tip at the origin (figure (3.3)). Our four asymptotic

functions are

F1 =
√
r sin

θ

2
(3.6)

F2 =
√
r cos

θ

2
(3.7)

F3 =
√
r sin

θ

2
sin θ (3.8)

F4 =
√
r cos

θ

2
sin θ, (3.9)

which are plotted in the top row of figure (3.2) – note that only F1 is discontinuous where

we define θ ∈ [−π, π]. With some trigonometry, it can be shown that the set {FL} spans the

expected analytic solution space (eqs (2.10–2.13)), but it is visually plausible from figure

(3.2) alone that FL could reproduce the necessary behavior for our example solution.
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Figure 3.2: Near-crack displacement fields for our basis enrichment functions Fl (equations

(3.6–3.9)) plotted above analytic displacement fields (equations (2.10–2.13)) evaluated for

our model parameters (see table) and KI,II = 1×106 MPa/
√

m for comparison. Note that

the discontinuity in vII and uI arise from θ rather than r dependence, making our sharp

gradients and discontinuities size-independent.

We add these basis functions to any node which contains the crack tip in the interior

of one of its elements, depicted by the crossed boxes in figure (3.4). In these nodes, our

modified basis is

u(x) =
∑
i

uiφi +
∑
i

4∑
L=1

aiLFLφi, (3.10)

where we our interpolation functions preserve partition of unity (eq (3.5)) in the crack-

tip containing element, but fail in elements which contain non-enriched nodes. This is

one weakness of the initial presentation of XFEM [17], which has been addressed via the

addition of blending functions in certain implementations [7]. Additionally, authors vary

in the extent around the crack tip which gets enrichment of the form of equation (3.10)

[18].
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3.1.3.2 Step Function Enrichment

In traditional FEM, fractures much be prescribed as a void within the model geometry,

which requires meshing to the crack boundary of a predetermined shape and width. During

crack growth simulations, the solid must then be remeshed for each solution step, where

remeshing can be a computationally expensive task. In XFEM, cracks are included in the

displacement field solution instead of the model geometry, which makes fracture placement

independent of the mesh and eliminates the need for remeshing (figure (3.4)).

In XFEM, cracks are described as sharp discontinuities in the displacement field within

the elements along the fracture location (circled nodes in figure (3.4)), where the fracture

discontinuity enrichment function is [17]

H(x) =

1 x ≥ 0

−1 x < 0
. (3.11)

In order to to specify the orientation of our jump, and thus our fracture, we introduce a

function f(x) which is negative when x is below the crack, and positive when x is above.

In the XFEM literature, f(x) is called a level-set function. If we have a straight-line crack

oriented along the x-axis, we simply have f(x) = x · ŷ. For an arbitrarily curved crack Γc,

we instead have

f(x) = min
x̄∈Γc

‖x− x̄‖ · sign(n+ · (x− x̄)), (3.12)

where x̄ is the closest point on Γc to x, and n+ is a vector normal to Γc at x̄. In these

nodes, our basis is

u(x) =
∑
i

uiφi +
∑
i

biH(f(x))φi. (3.13)

Together equation (3.13) describes the body of our crack, and F1 (figure (3.2)) terminates

it. We can thus represent the basis in our entire solid as

u(x) =
∑
i

uiφi +
∑
i∈ΩF

4∑
L=1

aiLFLφi +
∑
i∈ΩH

biH(f(x))φi, (3.14)

where ΩH is the region of step-function enrichment, and ΩF is the area of crack-tip en-

richment, represented by the circled and boxed nodes of figure (3.4), respectively. Our
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additional degrees of freedom are aiL and bi, which have no physical meaning compared

to our standard DOFs ui.

Due to its continuity with standard FEM, this scheme for fracture representation has

been adopted by most major structural analysis packages (ANSYS, ABAQUS, COMSOL),

and has become the most popular method of fracture representation in the field of numerical

fracture mechanics [19].

Figure 3.3: Definition of crack-tip local coordinate frame, where x is called the crack-

tip extension vector, and Γ is an example crack-tip integration contour for our J-integral

(section 3.2).

3.2 Stress-Intensity Factor Evaluation

Once we have obtained numerical solutions for the displacement field in our solid, we need

some means to evaluate the stress-intensity factors of our crack. While we could directly

extrapolate KI ,KII from our near-tip displacements [8], our solution is more accurate

outside the near-tip region, especially when not using crack-tip enrichment. In the late

1960s, Rice [20] and Cherapanov [21] independently discovered a path-independent integral

which is directly related to KI , thus allowing for SIF evaluation based on our tip-distal

solutions for stress and displacement. Rice named this quantity the J-integral, which has
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Figure 3.4: Example node enrichment scheme. Figure reprinted from [18].

a number of uses in fracture mechanics.3

The classical J-integral is given as

J1 =

∫
Γ

(
Wn̂ · x̂− ~T · ∂~u

∂x

)
ds, (3.15)

where

W = the strain energy density, defined as 1
2(σ : ε) = 1

2(σxxεxx + 2σxyεxy + σyyεyy),

Γ = contour around the crack-tip,

n̂ = outward unit normal vector to Γ,

~T = traction along Γ in the n̂ direction (defined as ~T = σn̂),

~u = displacement,

x̂ = crack-tip extension vector,

ds = path element along Γ.

A typical integration curve with labeled quantities is shown in figure (3.3). For pure

mode-I loading, we simply have

KI =
√
J1E∗, (3.16)

3Griffiths showed that the J-integral can be understood as the strain-energy release rate – i.e. the energy

released per unit length of crack growth, which is used widely in the energy balance (thermodynamic)

analysis of cracks [7].
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where E∗ is the effective Young’s Modulus, defined as

E∗ =


E, plane stress,

E
1− ν2 , plane strain,

(3.17)

where ν is Poisson’s ratio. In general, however, J1 depends on both KI and KII . In order

to obtain both stress intensity factors, we need an another quantity. In 1975, Hellen [22]

introduced a new path integral J2 which is defined as

J2 =

∫
Γ

(
Wn̂ · ŷ − ~T · ∂~u

∂y

)
ds, (3.18)

where we have exchanged the crack-tip extension direction x for the crack-tip normal

direction y, but all other variables remain the same. The relations between J1, J2 and

mode-I and mode-II stress intensity factors KI ,KII are

J1 =
K2
I +K2

II

E∗
, J2 =

−2KIKII

E∗
; (3.19)

KI =
1

2

√
E∗(J1 − J2) +

√
E∗(J1 + J2), KII =

1

2

√
E∗(J1 − J2)−

√
E∗(J1 + J2).

(3.20)

Note that equation (3.20) reduces to (3.16) when KII = 0. Studies have shown that

the evaluation of J2 in path integral form (eq. (3.18)) yields less reliable results than

calculating J1 using equation (3.15). Most researchers improve this situation by converting

these into domain integrals, or by devising other evaluation techniques (cit. IIM, ASD,

DEM). In this study, we use COMSOL5.6’s built-in SIF evaluation technique, which avoids

direct evaluation of J2 by estimating the mode mixing ratio β = KI/KII from the near-tip

displacements. Equation (3.19) can then be rearranged to give KI and KII from J1 and β.
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Chapter 4

Experiment

In this study, we conduct mixed-mode fracture simulations to investigate some basic as-

sumptions of the existing literature on quarrying. After a brief discussion of this literature

and the problem, we describe our results, which show that the fracture mechanics used in

existing quarrying literature has a number of shortcomings.

4.1 Quarrying Problem

In 1996, Hallet proposed an idealized 2D model [2] to study quarrying in a stepped bed.

This simplified bed geometry is believed to create the conditions which most strongly favor

quarrying, thus providing a framework from which researchers can draw basic theoretical

insights about this process.

For quarrying to occur, two conditions must be satisfied: (1) bed obstacles must be

shaped so that propagating fractures can actually isolate bedrock blocks, and (2) boundary

tractions must induce strong deviatoric, rather than hydrostatic,1 compressive stresses in

order to cause fracture propagation.

Underneath a glacier, we have purely compressive loading due to the weight of the ice

and flowing meltwater. The weight of the ice applies a uniaxial normal load (σI) to our

rock, while a layer of pressurized meltwater makes any shear traction due to drag negligible

1Hydrostatic stress is applied equally to the boundaries of a volume, and is given as σH = tr(σ)/2 for

2D. Deviatoric stress is simply σ − σHI, which can have both normal and shear components.
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Figure 4.1: Idealized stepped bed geometry, believed to provide the most favorable condi-

tions for quarrying. Ice moving at horizontal velocity u with a normal stress σn applied in

the area of ice-bed contact. This bed shape is relatively uncommon with glaciers, but it

has been observed in the field (see figure (1.1)).

for our purposes. Additionally, the meltwater applies a uniform hydrostatic compressive

stress σW , which actually drives crack closure (hydrostatic compression would squeeze

cracks shut). Our loading is thus an effective pressure [2],[23],[24] given by

σn = σI − σW . (4.1)

As ice slides past a ledge, it takes a certain amount of time for the ice to sag down-

wards. Since the glacier is moving at a certain velocity, this ice creep creates cavities which

concentrate the weight of the glacier on a fraction of the step. This deviatoric stress then

drives quarrying on ledge corners.

In his analysis of the problem, Hallet uses an analytic solution for the boundary stresses

induced by the loading in figure (4.1). The situation corresponds to a quarter-plane (i.e.

a plane bounded on two sides) with a uniformly distributed normal load. The solution

shows an induced tensile stress 2σn/3 in the area just up-glacier of ice-bed contact, where

Hallet assumes a fracture will be initiated, since crack propagation is driven by tensile

stress (section 2.2.2). Unfortunately, Hallet assumes that this tensile stress creates mode-I

fracture, but by comparison to figure (2.3), we can see that this loading situation more

resembles mode-II fracture. Hallet then assumes that the stress state inside the step

corresponds to a crack under a uniform tensile load (mode-I), which allows him to use the

standard result of equation (2.9), with a tensile stress of 2σn/3 and a geometry correction
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factor Y of 2/π. This gives

KI =
2

π

2σn
3

√
πa, (4.2)

where a is our crack length. He then parameterizes the quarrying rate according to the

ledge proportions, ice velocity, and the ice-bed contact area. Previous work [1] has shown

that (4.2) corresponds poorly to the numerical results for KI as a function of a for mode-

I fracture, demonstrating that the internal stress state in the step cannot be neglected.

In this study we show that this fracture problem presented by Hallet is a fundamentally

mixed-mode problem, requiring numerical modeling to predict both crack growth direction

and growth rates.

4.2 Model Design

Figure 4.2: Model domain with coloration to indicate fracture location and boundary

conditions. Free boundaries are dashed cyan, normal load is the purple line at the step

ledge, displacement is set to zero on the outer blue lines, and our fracture location is

indicated by the vertical red line. Vertical boxes with ellipses indicate 3 meter regions of

our step removed for figure readability.

For our experiment, we use all the methods described above in the FEM package

COMSOL to conduct mixed-mode simulations of fracture for Hallet’s quarrying model.
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We model a single step ledge 1 meter in height, with a distributed normal load of 2 MPa

applied to 1 meter of our ledge, treating the rest of the outer surfaces of the ledge as a free

boundary, as shown in figure (4.2). We then extend our ledge for 5 meters on both sides of

our loading region in order to avoid artificially imposed boundary effects. We include 1.5

meters of solid below the loaded portion, after which we set our displacement to zero on

the lower and outer boundaries, which represents the extent after which the displacements

in our rock mass effectively go to zero. After Hallet, we place a fracture at the edge of

ice-bed contact. We use a free triangular mesh for our solid, with small elements around

our fracture which grow to large elements in the outer portions of our step, as shown in

figure (3.1).

We use the extended finite element method to solve for infinitesimal strains in a linear

elastic material with a single edge crack (sections 3.1 and 3.1.3), using material parameters

for Westerley granite (see table). We evaluate the J-integral around our crack and estimate

the mode-mixing ratio β from our crack-tip displacement, from which we can infer our stress

intensity factors KI and KII (section 3.2). We then evaluate the maximum tangential

stress criterion from our stress intensity factors in order to determine fracture propagation

direction (section 2.2.2).
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Chapter 5

Results

Our model predicts that fractures curves towards the step ledge, which is in agreement

with the limited experimental data, and that the total magnitude of our SIFs is greater

than previously assumed.

5.1 Influence of fracture orientation on propagation

A previous study of the same problem [1] showed that the mode-I SIF for bed-normal

fracture actually decreases with crack length, rather than the
√
a increase predicted in

equation (4.2). Our rotation angle, along with a typical solution for the stress field, is

shown in figure (5.1), which shows a concentration of stress near the step ledge. Since

the MTS criterion tells us that fractures propagate towards concentrations of stress, we

examine the effect of angling our fractures.

Keeping the fracture at the edge of ice-bed contact, we calculate KI and KII for a range

of fracture lengths a and angles θ for a straight-line crack. Note that our simulations are not

dynamical – we simply calculate the SIFs for a pre-defined crack length and orientation.

The results are shown in figure (5.2), where we have plotted the existing prediction by

Hallet as a dashed line.

Our results show that for a bed-normal crack (θ = 0), mode-II fracture dominates over

mode-I, whereas previous literature has assumed the mode-II component to be negligible.

This confirms our hypothesis of curved cracks, since mode-II fractures propagate at about
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Figure 5.1: Typical solution for the stress field for a rotated straight-line crack. The white,

tilted right line is our fracture with length a = 0.5 m and tilt θ = 30◦.

a 70◦ angle (section 2.2.2). This poses a problem for assessing crack growth, however, since

no literature exists on the mode-II or mixed-mode subcritical growth threshold in rocks.

For our angled fractures, which we expect to be more realistic, we see exponential crack

growth, as well as an order of magnitude increase in the mode-I SIF for θ = 30◦ compared

to θ = 0. This suggests a greater likelihood of critical failure as our fracture propagates

through the step, which is conservatively estimated to occur when (K2
I + K2

II)
1/2 > KIc

(equation (2.21)), which we also plot below. Due to this dramatic dependence of KI and

KII on the orientation of our fracture, we must numerically evaluate the propagation angle

instead of simply stipulating it in our model.

5.2 Pseudo-vector field for crack propagation

In order to assess whether highly angled cracks are physically likely, we evaluate the Max-

imum Tangential Stress (MTS) criterion for propagation direction over an ensemble of

straight-line fractures. The MTS criterion, equation (2.19), gives us a physical propaga-
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Figure 5.2: Stress intensity factors for rotated straight-line cracks. Results shown for cracks

centered at the edge of 2 MPa ice-loading, evaluated for two contours, indicated by ‘o’ and

‘x’ markers. We also plot Knorm (eq. (2.21)) to see the mixed-mode failure threshold,

which is estimated to occur when Knorm > KIc (dot-dashed line).

tion angle θc in terms of KI and KII , which we obtain as described above. Since we

are unable to simulate arbitrary crack propagation in our model, we evaluate the physical

propagation angle θc for a range of straight-line fractures which begin at the edge of ice-bed

contact and terminate at different points throughout our step. We plot our results in figure

(5.3) below, where each arrow represents the MTS criterion evaluated for one simulation

of a straight-line crack beginning at the origin and terminating at the arrow base.

Our results show a near-uniform angling of cracks towards the step ledge, with θc ≈
70◦ for our strongly mode-II fractures along x = 0. This suggests that, for an isotropic

linear elastic material with uniform strength, bed-normal propagation is highly unlikely,

which means that we predict less quarried mass per step than the standard assumption of

rectangular quarried masses. This curving trend is so strong that as our fractures approach

the step ledge, they propagate bed-parallel, even curving upwards just at the edge of the
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Figure 5.3: Propagation direction evaluated for straight-line cracks centered at the origin.

Arrows are colored by Knorm, with the scale clipped at the critical fracture toughness. Our

plot area has the loading surface along 0 < x < 1, y = 0, and our unloaded step edge along

−1 < y < 0, x = 1, where our evaluation method prohibits us from examining fractures

with x > −0.2.

step.

This upward curve, however, seems physically unlikely, and may arise due to the fact

that our J-integral contour extends beyond the boundary of our solid at these points, and

the clipping of the circular contour may make our results less reliable. Additionally, our

results for θc assume quasistatic, subcritical propagation, but it can be seen from our arrow

coloration that our fractures likely reach critical failure by x = 0.3. As noted above, our

Knorm criterion is somewhat conservative, but for x > 0.7, Knorm is between 6 and 28

times KIc, which certainly indicates critical failure, during which path prediction is more

difficult.

These results suggest a surprising predominance of critical fracture in quarrying, since

we have chosen model parameters which may underestimate SIFs compared to mean con-

ditions under hard-bedded glaciers. We choose material parameters for Westerly granite,
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which has a relatively high critical fracture toughness of 1.79 MPa·m1/2 and applied a

mid-range loading pressure of 2 MPa. Our σn = 2 MPa would correspond to a 220 m ice

thickness with half of the ice in contact with the bedrock step (σI = 2ρgh) and a water

pressure of 2 MPa, but faster-moving and thicker glaciers can have σn approach 6 MPa [2].

Additionally, we have not included horizontal bedding planes in our material, which

would be expected for a stepped bed, and it has been shown that KIc is lower for bedding-

plane parallel fractures than bedding-plane normal fractures [9]. Since our results sug-

gest that bed-normal fractures curve to become bed-parallel, we may be overestimating

KIc for our material. Both points suggest that our results may actually underestimate

the prevalence of critical fracture in a typical subglacial scenario, which may imply that

transient fluctuations in subglacial pressures, rather than crack growth rates, are the rate-

limiting process for quarrying, which runs counter to the assumption in the current litera-

ture [2],[23],[24].

However, before such conclusions are drawn, the drawbacks of our idealized model

must be addressed. If we are to interpret figure (5.3) as a kind of crack propagation vector

field, we must establish that our physically evaluated propagation angle θc is relatively

independent of both the crack path and the crack-tip orientation. In order to take figure

(5.3) as indicative of the growth tendency for an arbitrary crack, we must investigate how

θc varies with crack curvature. This will establish the uncertainty in our data points drawn

from straight-line fractures.

5.3 Consideration of curved cracks

The main issue with the prior result (figure (5.3)) is that our conclusions assume that

our propagation angles do not depend on the fracture path – if the crack tip is oriented

differently, or if the fracture path is curved or kinked rather than straight, by drawing

conclusions from figure (5.3), we tacitly assume that this history has no effect on our

propagation angle θc.

In order to investigate the effect of crack-tip orientation on θc, we define a set of

progressively curved cracks which begin at the origin and end at (0.25,−0.4) (red circle in

fig. (5.3)). We repeat our MTS θc evaluation (eq. (2.19)) for a set of curves ranging from

highly unrealistic (cyan curve) to aligning with the growth arrows in the previous figure
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(pink curve). Our fracture shapes with the evaluated propagation directions are shown in

the left subplot, colored by curvature (see legend). Since it is difficult to discern between

arrows, in the right subplot we show propagation angle with respect to curvature, where

we convert θc from the crack-tip local coordinates to our global coordinates. Note that,

as above (see figure (5.1)), we have defined θ = 0 to be bed-normal and θ = 90◦ to be

bed-parallel.
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Figure 5.4: Effect of crack curvature on propagation angle θc. The traces in the left subplot

show a set of curved cracks with shared endpoints, with figure (5.3) underlain. Cracks are

colored by curvature, with the evaluated propagation directions indicated by arrows of

matching color. In the right subplot, the propagation angles in the global coordinate frame

are shown by markers with the same coloration, which goes from an unrealistic curvature

(1/Xc = −0.5) to straight (1/Xc = 0) to a realistic curvature (1/Xc = 0.5).

Our results for curvature effect indicate a spread in θc of about 20◦ for our full set

of cracks. However, the cyan curves are highly unlikely based on figure (5.3), with only

our pink curve aligning with our rough vector field. For this more realistic curve, we see

about a 13◦ enhancement of the bed-parallel trend we observed in the previous section.

This is the main result we intended to verify, and even for our crack angled straight down

(1/Xc = −0.5), the propagation angle still points towards the step ledge. If the spread
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observed at this point can be generalized to the entire ledge, we predict that free crack

propagation simulations would show bed-normal fractures curving to become bed-parallel,

and in the meantime progressing partway downwards through the ledge.
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Chapter 6

Discussion

Through XFEM simulations of an idealized model for subglacial quarrying, we have arrived

at two new insights about this process – (1) a partially-loaded quarter-plane exhibits mixed-

mode fracture with a strong mode-II component, and as such has curved, rather than

straight-line, fracture propagation; and (2) critical fracture may be widespread in subglacial

conditions, and as such fracture propagation may not the rate-limiting factor in quarrying.

Crack curvature implies the average quarried mass per step would be less than previ-

ously predicted, since the existing literature assumes rectangular blocks. Curved cracks

simplify the dynamical situation somewhat, since a secondary fracture process is not longer

required to remove rectangular blocks from the bed. Experimental data on quarrying is

sparse, but our prediction of crack curvature agrees with the study by Cohen et al. [25],

where a rectangular bedrock block was placed underneath Engabreen glacier and the ob-

served fracture curved towards the step ledge. Work is currently underway to reproduce

Cohen’s experiment in our model, from which we may be able to draw insights about the

understudied area of mixed-mode subcritical fracture.

Additionally, it must be emphasized that our conclusions are drawn from a single point

within the model’s parameter space, and we have not investigated whether our predictions

hold for all step shapes, effective pressures, and ice-bed contact ratios. However, a fracture

at the edge of ice-bed contact corresponds to the textbook loading scenario for mode-II

fracture, and as such we believe bed-normal fracture will not be observed at that location

for any range of model parameters.
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This mode-II component may vanish, however, for a fracture placed in the center of

a step with greater ice-bed contact. The effect of the step ledge may be reduced, which

could correspond to a uniaxial compressive load in an infinite plane, which fractures in

mode-I/mode-III and propagates normal to the bed via local buckling. For this reason,

fracture placement would also be a useful parameter to investigate in order to determine

different paths and rates which could have an effect on the overall dynamics of the process,

though in this scenario only fractures along the ice-bed interface are significant.

In past research on subglacial erosion, it is generally assumed that rock fractures prop-

agate along planes of weakness or joints, which are anisotropic phenomena that we have

not included in our model. Future work also ought to investigate the effects of jointing

and strength heterogeneity in the quarrying problem, which may influence both fracture

propagation rates and paths.

Finally, most hard-bedded glaciers do not flow over a staircase-shaped bed with hard

ledges, and generally have a complex topography of differently-shaped obstacles. Critical

fracture may be predominate in beds with sharp ledges, but subcritical fracture may be

widespread in more common bed types, thus reaffirming the importance of assessing mixed-

mode subcritical fracture.

Overall, our simulations of the idealized quarrying problem have shown that even this

simplified model exhibits unexpected and complex behavior, underscoring the multiple

scales of complexity which exist in earth system processes. Further, the subglacial system

is a deeply complex coupling of water, ice, and rock processes, in which there is always the

question of the sensitivity of conclusions to our uncertainty about the complexities involved

in the subglacial bedrock shape and state. If a revised expression for quarrying rate is to

be presented, there must be some way in which the idealized system averages out some of

the specificities of any existing case.
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