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Abstract

Extreme scattering events — propagation-produced variations in quasar flux density — have been a puzzle

since their discovery in 1987. In brief, models for them require over-pressure in the interstellar gas that should

cause them to dissipate in about a year. Pulsar observations, particularly scintillation observations, have

long held the promise of elucidating the physical characteristics of the lenses underlying this phenomenon.

In this work, we present direct observational evidence for an isolated and anisotropic lens with a width of

1 mas and an upper bound in electron density of 300 cm−3. The required electron density further reduces

if the lens is inclined along the line of sight. The lens deflected the radio emission of a pulsar B0834+06 by

80 mas at 318MHz, which inevitably causes an extreme scattering event at 2.7 GHz if the lens moves across

the foreground of a quasar.
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Chapter 1

Introduction

1.1 Thesis Motivation

The interstellar medium (ISM) plays a significant role in galactic evolution. Despite recent efforts, some

aspects of the interstellar medium are still poorly understood. In particular, the ISM structure responsible

for observed Extreme Scattering Events (ESE) of quasars remains a mystery (Fiedler et al., 1987). Quasars

are extremely bright active galactic nuclei, where gas is accreting to a super massive black hole. ESEs are

significant fluctuations of the observed flux in quasars due to a foreground plasma lens in the ISM for a

time-span varying from weeks to months (more details in Section 1.3). However, the required free electron

density for such a plasma lens needed to explain the observed flux curve seems to imply a high pressure within

the lens if we assume the lens to be isotropic. In this work, from analysis of a pulsar double lensing event,

we present evidence for an isolated anisotropic plasma lens in the interstellar medium capable of producing

an ESE. This is the first such unambiguous detection of an ESE using the powerful tool of scintillation arc

analysis.

1.2 Interstellar Medium

The ISM is the matter that exist between stars within a galaxy. ISM is composed of gas in various forms.

The ISM in our galaxy contains mostly hydrogen, followed by helium as well as small amounts of carbon,

oxygen, and nitrogen. The ISM is crucial in galactic evolution as it fills the gap between the stellar scale

and the galactic scale. In particular, stars form in the region of a galaxy with dense ISM, and the gaseous

content in the medium determines the star forming rate as well as the lifespan of the galaxy.

We are most interested in the ionized gas, or plasma, in the ISM, as free electrons are the main contributors

to a variety of phenomenon that can be probed through radio astronomy. Plasma can be characterized by

the plasma frequency ωp =
√
nee2/ε0me, where ne, e, and me are the electron volume density, charge of an
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electron, and mass of an electron. The plasma frequency corresponds to the oscillation frequency of electrons

subject to a restoring force inside an electrically neutral plasma. The index of refraction of a plasma can be

written in terms of the plasma frequency, n =
√

1− ω2
p/ω

2 ≈ 1−wp2/(2w2), as ω, the angular frequency of

the electromagnetic wave, is much larger than the plasma frequency. Notice that the index of refraction for

plasma is less than 1. This indicates that plasma lenses are divergent. See, e.g. Pen & Levin (2014); Clegg

et al. (1998).

1.3 Extreme Scattering Events

Extreme scattering events were first discovered 30 years ago through a daily flux monitoring program of

quasars (Fiedler et al., 1987). The ESE manifests as a change in the observed flux of a quasar, usually a

dipping, for a period of several weeks to months. It is now widely agreed that ESEs cannot be explained by

intrinsic variations of the source. Instead, refraction effects from a dense structure in the ISM with a length

scale of a few astronomical units1 can explain both the observed flux curve as well as duration of such events

(Clegg et al., 1998), where the refraction is caused by free electrons in the ISM.

One difficulty remains: the required electron density, ne ≈ 103 cm−3, and temperature, T ≈ 104K, for

such a lens implies a pressure of P = NkT/V ≈ 10−10Pa, which exceeds the pressure in the diffusive ISM

by a factor of 103 (Walker & Wardle, 1998; Goldreich & Sridhar, 2006). Such a high pressure indicates that

the proposed plasma lens would evaporate on the time scale of a year. This is known as the over-pressure

problem.

Several theoretical models have been proposed to address this problem: Romani (1988) argue that the

proposed lenses may only exist in regions with high pressure in the ISM — specifically, old supernova shocks;

Walker & Wardle (1998) propose that the lenses could be the ionized skin of cold, self-gravitating cloud of

gas, where the self-gravitation balances the required pressure; last but not least, Pen & King (2012) propose

highly inclined current sheets, likely caused by magnetic reconnection, where the projected electron density

is dramatically increased when we view the sheet edge-on.

Attempts have been made to directly image these lenses through VLBI2 observations of quasar ESEs (Fey

et al., 1996; Pushkarev et al., 2013). However, due to the finite angular size of quasars, ∼ 10 milliarcseconds

(mas) at 2 GHz, the structure of the ISM lens remains unresolved. The same structure is thought to be

responsible for multiple imaging of pulsars (Cordes & Wolszczan, 1986; Rickett et al., 1997), where, due to

the point source nature of pulsars, the lens can potentially be resolved.

1An astronomical unit (AU) is the mean Earth-Sun distance.
2VLBI, or Very Long Baseline Interferometry, is a technique to conduct simultaneous observation a source with several

telescopes. The recorded baseband data, or the time samples of the complex electric field, from different telescopes are then

cross correlated before forming the spectra. We refer the reader to Condon & Ransom (2016) a basic theory of VLBI.
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1.4 Pulsars and Pulsar Scintillation

Neutron stars are stellar remnants of massive stars (with 10–25 solar mass) formed in supernova explosions.

With a mass of two times that of our sun packed in a diameter of 15 km, they are the densest known stellar

object in the universe (Heger et al., 2003). Pulsars are rapidly spinning and highly magnetized neutron stars

that radiate, primarily in the radio portion of the electromagnetic spectrum. Their radiation beams sweep

across the sky much like a lighthouse: if their beams sweep past the Earth every rotation, we then detect

periodic pulses with a radio telescope (Lorimer & Kramer, 2005).

Because of their extremely compact angular size (∼ 10−16 radians), pulsars scintillate at radio frequency

due to the inhomogeneity of the interstellar medium (ISM), just like stars scintillate due to turbulence in the

atmosphere(Rickett, 1990; Cordes et al., 2006). Pulsar scintillation has been used to study the interstellar

medium (ISM) since the 1970s (Lee, 1976; Rickett, 1977). Due to their incredibly small angular sizes, pulsars

can resolve structures in the ISM at the scale of the solar system (Hill et al., 2005; Simard & Pen, 2018;

Brisken et al., 2010). To explain the observed scintillation effects, some models proposed a volume-filling

turbulent medium (Rickett, 1990). However, the subsequent discovery of scintillation arc (Stinebring et al.,

2001) provided evidence for discrete scattering region along the line of sight that can be well-modeled by a

thin screen (see section 2.2 for details).

A schematic for thin screen scattering of a pulsar is given in Figure 1.1. The inhomogeneity of the

free electron density inside the screen yields a distortion in the wavefronts of the pulsar radiation. This

distortion of the wavefronts then induces spatial intensity modulations far enough from the screen. The

resulting intensity modulation, known as the diffraction pattern, is projected onto a plane at the Earth

perpendicular to the line of sight (LOS). As the system moves, the diffraction pattern sweeps past Earth

with a velocity determined by relative transverse motions of the pulsar, screen material, and Earth (Cordes

& Rickett, 1998). Hence, if a radio telescope points towards that pulsar, it will record changes in the pulsar’s

flux as a function of time and frequency, known as a dynamic spectrum. The rest of thesis will focus on

detailed analysis of such dynamic spectra.

1.5 Coming Attractions

The organization of this thesis is as follows. In Chapter 2, I discuss the observables and lay out the theory

for pulsar scintillation and scintillation arcs. In Chapter 3, I introduce novel analysis techniques for the

study of scintillation arcs. In Chapter 4, I present the observation and analysis for the pulsar B0834+06

double lensing event. I present an overview of my results in Chapter 5 with a discussion of future work.
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Figure 1.1: A schematic of pulsar scintillation (Lorimer & Kramer, 2012).
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Chapter 2

Observables and Interpretations of

Pulsar Scintillation

2.1 Dynamic Spectrum

In this thesis we mainly study strong scattering scenarios, where the pulsar is scattered into several images.

In this regime, the full wave optics picture, which requires the complicated Kirchhoff diffraction integral, can

be reduced to ray optics. (Walker et al., 2004). Furthermore, we assume the pulsar is scattered by a single

screen unless noted otherwise.

In this section we provide a heuristic derivation of the dynamic spectrum when a finite number of rays

are interfering with one another. As defined in section 1.4, the dynamic spectrum is the flux of a pulsar as a

function of frequency and time. Recall that the variation in the observed pulsar flux is caused by the motion

of the diffraction pattern with respect to Earth. In the ray optics limit, the diffraction pattern becomes the

interference of a finite number of rays. For example, if there are only two scattered images of the pulsar

visible on the sky, the diffraction pattern will simply reduce to that of double slit interference. For double

slit interference, in the far-field limit, the spatial wavelength of modulation at a distance dscreen is given by:

Λ ≡ dscreenλ

d
d̂ , (2.1)

where d is the spatial separation between the slits, and d̂ is a unit vector indicating the direction of separation.

In our case, dscreen is the distance between the ISM screen and Earth (see Figure 2.1), typically on a length

scale of 100 parsec (or roughly 2 × 105 AU, the average distance between Earth and the Sun), whereas d,

the spatial distance between two scattered images, is roughly 10 AU. Hence, we may apply the small angle

approximation and further write:

Λ =
dscreenλ

d
d̂ =

λ

∆θ
d̂ , (2.2)

where ∆θ is the observed angular separation between the two images.
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Figure 2.1: A schematic for thin screen scattering. The green ray represents the line-of-sight image of the

pulsar, and the two red rays represent two scattered images of the pulsar.

In short, the interference between every pair of the images contributes a sinusoidal component to the

diffraction pattern with a certain spatial wavelength. Then, as the system moves, a spatial sinusoidal

variation in the intensity translates to a temporal sinusoid in a dynamic spectrum. The temporal frequency

of this sinusoidal variation can be characterized by the following:

ft =
Veff

|Λ| · Λ̂ =
Veff · (θk − θj)

λ
, (2.3)

where θk and θj are the angular positions of the two images; λ is the observing wavelength, and Veff is the

effective velocity of the diffraction pattern with respect to Earth, see e.g. Stinebring et al. (2001); Simard &

Pen (2018). The effective velocity can then be written as:

Veff = Vpsr
1− s
s
− Vscr

s
+ VEarth , (2.4)

where Vpsr, Vscr, and VEarth are respectively the pulsar velocity, screen velocity, and Earth velocity. s is

the fractional screen distance defined by

s = 1− dscreen

dpsr
, (2.5)

where dscreen and dpsr are the distance to the ISM screen and pulsar from Earth. A schematic demonstrating

these quantities is given in Figure 2.1.

It is then logical to ask how such a diffraction pattern changes with frequency. It can be shown that the

intensity of the interference between a pair of images also varies sinusoidally as a function of frequency, with
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period:

fν =
Deff(θ2

j − θ2
k)

2c
, (2.6)

with Deff = dpsr
1− s
s

, (2.7)

and c the speed of light (Stinebring et al., 2001). Therefore, each pair of scattered images creates a 2-d

sinusoid in the dynamic spectrum.

Some important physical interpretations can more readily be extracted from ft and fν if we take θk = 0,

i.e., one of the images is the line-of-sight image. Specifically, ft then represents the relative Doppler frequency

between the scattered image θj and the line-of-sight image, and fν becomes the relative geometric delay of

θj with respect to the line-of-sight image.

fDj = ft(θk = 0) = −Veff · θj
λ

, (2.8)

and τj = fν(θk = 0) =
Deffθ

2
j

2c
. (2.9)

We show a simulation of the dynamic spectrum in Figure 2.2. When there are two images (a scattered

image and the line-of-sight image), the dynamic spectrum is a 2D sinusoid. As the number of images N

increases, the dynamic spectrum appears to be more stochastic, as the number of sinusoidal components

increases as N factorial (Figure 2.3), and the phase of the sinusoids are, in general, uncorrelated. An observed

dynamic spectrum is given in Figure 2.4 for comparison.

2.2 Secondary Spectrum and Scintillation Arcs

The secondary spectrum is defined as the square modulus of the 2D Fourier transform of the dynamic

spectrum. The axes are then given by the conjugate variables of time and frequency, namely relative delay

and Doppler frequency as defined in Eqn 2.6 and 2.3. The interference between a pair of images, which is

a 2D sinusoidal function in the dynamic spectrum, is represented by two delta functions in the secondary

spectrum, symmetric about the origin. Note that the secondary spectrum is symmetric as the dynamic

spectrum is entirely real.

A model of scintillation arcs has been developed in (Stinebring et al., 2001; Cordes et al., 2006; Walker

et al., 2004), which we summarize here. In a single screen geometry, the relative delay (conjugate variable

of frequency) between each image and the line of sight image is proportional to square of their angular

separation when viewed by the observer, whereas the relative Doppler shift (conjugate variable of time)

between the images is proportional to the angular separation. Hence, the thin screen geometry results in a

parabolic arc in the secondary spectrum, which we refer to as the scintillation arc. The scintillation arc is

given by Eqn 2.6 and 2.3, which we repeat here:
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Figure 2.2: Simulation of two scattered images. The top left panel shows the dynamic spectrum, in which

the intensity is a 2D sinusoid. Simulation credit: Dr. Marten van Kerkwijk and Dr. Rik van Lieshout at

CITA.
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Figure 2.3: Simulation of many scattered images. The dynamic spectrum appears to be stochastic. Simula-

tion credit: Dr. Marten van Kerkwijk and Dr. Rik van Lieshout at CITA.
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Figure 2.4: Dynamic and secondary spectrum of B0834+06 on MJD 53665. Observation by Dr. Dan

Stinebring at Arecibo Observatory.

τ = fν =
Deff

2c
(θ2
j − θ

2
k) , (2.10)

fD = ft =
1

λ
(θk − θj) ·Veff . (2.11)

Much observational evidence points towards highly anisotropic scattering, i.e. the scattered images lie along

a straight line, see e.g. (Pen & Levin, 2014; Brisken et al., 2010; Rickett et al., 2021). While the astrophysical

mechanism for producing such highly anisotropic scattering is still unknown, an a simple, illustrative model

was proposed in Pen & Levin (2014). They pointed out that refraction from a corrugated sheet of plasma at

a grazing angle is analogous to the reflection of the sun on the ocean near sunset. In the absence of waves,

exactly one image forms with the angle of incidence equal to the angle of reflection; in the presence of waves,

a linear groups of images form on the wave crests (Figure 2.5). Similarly, refraction by a corrugated sheet

also leads to anisotropic images (Figure 2.6).

Assuming that the scattering is highly anisotropic, and that the angle between the resulting linear image

and the effective velocity is α, it is clear from equation (2.10) and (2.11) that the curvature of the scintillation

arc is then given by

η =
Deffλ

2

2cV 2
α

, where (2.12)

Vα = |Veff | cosα . (2.13)

A simulation of the secondary spectrum for a single pair of scattered images is shown in 2.2: when there

are only two images (a scattered image and the line-of-sight image), the secondary spectrum is zero except
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Figure 2.5: Reflection of the sun at sunset forms a linear image. Photo credit: Michiko Kumai, Digital

Camera Magazine

Figure 2.6: Lensing geometry from a corrugated sheet (adapted from Pen & Levin (2014)). The earth is at

the left, the pulsar at the right. A section of the corrugated scattering sheet is plotted in the middle as the

solid curve. The dashed line shows the unperturbed light path. The dotted line shows the path of an image

produced by a fold singularity of the projected sheet, analogous to a reflected image produced on a wave in

Figure 2.5.
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for two points symmetric about the origin corresponding to the periodicity to the 2D sinusoid in the time

domain (dynamic spectrum). As the number of images increases, we observe that the secondary spectrum

becomes much denser (Figure 2.3), yet its power still concentrates along a parabola. An observed secondary

spectrum of pulsar B0834+06 is given in Figure 2.4 for comparison.

2.3 The origin of inverted arclets

Note that in both simulation and real data (Figure 2.3 and 2.4), the power in the secondary spectrum does

not lie only on a parabola; instead, there is a myriad of inverted parabolas with their apex lying on a forward

parabolic arc. These inverted parabolas are known as inverted arclets. They are formed by one scattered

image interfering with all the rest of the images (Walker & Stinebring, 2005). Fixing θj , we may then rewrite

equations 2.11 and 2.10 as:

τ(θk) = τj −
Deff

2c
(θ2
k) , (2.14)

fD(θk) = fDj +
1

λs
θk ·Veff , (2.15)

where τj and fDj are defined as the relative delay and relative Doppler frequency of θj with respect to the

line-of-sight image in Eqn 2.9 and 2.8.

Note that if the the scattering is linear, meaning θk is constrained to move along a straight line, hence

treated as a one-dimensional numerical parameter, we may view the two equations above as x and y com-

ponents of a curve parametrized by θk in the secondary spectrum. It can then be further simplified:

τ − τj = −η(fD − fDj)2 . (2.16)

This curve is exactly an inverted arclet, i.e. a parabola with curvature −η and its apex on (fDj , τj), where

η is the curvature of the main scintillation arc as defined in 2.12. This arclet is hence a result of the image

θj interfering with all other images in highly anisotropic scattering scenarios.

2.4 Temporal Motion of Arclets

A scattered image of the pulsar is physically associated with a plasma lens embedded in the ISM screen

(Hill et al., 2005). A plasma lens could arise from an over-dense region in a turbulent medium (Rickett,

1990), a fold on a corrugated sheet (Pen & Levin, 2014), or a photo-ionized surface of cold self-gravitating

gas cloud (Walker & Wardle, 1998). Regardless of its origin, such lenses would remain practically stationary

with respect to the ISM screen on a time scale of interest to us, / 100 days.

Assuming a geometry for a lens (linear, or round pebble), we may predict how the associated scattered

image moves with respect to the line-of-sight image as the system moves. (By “the system”, we mean the
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Figure 2.7: Two lens models. Linear lens (Left), round lens (Right)

pulsar - ISM screen - Earth system.) This inferred relative motion then predicts a temporal evolution of some

structure in the secondary spectrum. Specifically, the trajectory of the arclet associated with the scattered

image in the secondary spectrum can be predicted. In this section, we analyze the predicted arclet’s motion

in two lensing models, namely a highly anisotropic (linear) lens or a round pebble lens.

2.4.1 Highly anisotropic lens

We refer the readers to Clegg et al. (1998) for the theoretical details of a plasma lens. By highly anisotropic

lens, we mean that the gradient of its electron density is much larger in one direction than the direction

perpendicular to it. As predicted in Pen & Levin (2014) and Gwinn (2019), these lenses extend linearly in

one direction and exist in a large group where all lenses are parallel (see left panel of Figure 2.7). For the

discussion below, we treat the lenses to be completely linear so that they can only bend light in the direction

perpendicular to their long axis (where it has non-zero gradient in electron density).

In the case where the lenses are linear, the scattered images of the pulsar are also linear and take on

a preferred orientation, like viewing the reflection of a light on the rippling surface of a lake at almost

grazing angle (Pen & Levin, 2014; Liu et al., 2016). In this scenario, the orientation of the images would be

perpendicular to that of the lenses. As the system moves, each scattered image is constrained to move on

the lens responsible for it. An illustration is given in Figure 2.7.

If the pulsar’s line-of-sight image moves at an apparent velocity Vapp with respect to the lens, then the

scattered image moves at a speed sin(α)|Vapp| along the lens, where α is the angle between the orientation

of the image and Vapp. Define this velocity associated with the scattered image to be Vsub (see Figure 2.7).

Note that the apparent velocity is related to the effective velocity, the velocity of the diffractive pattern with

respect to Earth, by the following:

Vapp = sVeff = (1− s)Vpsr −Vscr + sVEarth , (2.17)

18



where s is the fractional screen distance defined in Eqn 2.5. Let the x-direction be defined by Vapp; then,

the relative angular velocity between the subimage and the line-of-sight image is

.
θx =

|(Vapp −Vsub) · x̂|
(1− s)dpsr

=
cos2(α)|Vapp|

(1− s)dpsr
, (2.18)

On the other hand, θx can also be expressed by taking a time derivative in Eqn 2.8:

.
θx =

.
fDλ

|Veff |
. (2.19)

Setting the two equations equal, we can get:

.
fD =

s cos2(α)|Veff |2

λ(1− s)dpsr

=
λ

2c

1

η
, (2.20)

where η is the curvature of the scintillation arc in Eqn 2.12. Recall that fD is the relative Doppler frequency

of a scattered image with respect to the line-of-sight image, hence the x coordinate for the apex of an arclet.

Since we can measure the curvature of the scintillation arc, we can predict the motion of arclets based on

the curvature measurement alone under such model. It remains challenging, however, to measure the curva-

ture of the scintillation arc to the desired precision, given all the rich arclet structure in the spectrum (right

panel of Figure 2.4). In section 3.1, we discuss a powerful tool which yields precise curvature measurement

in the regime of highly anisotropic scattering.

2.4.2 Round pebble lens

In the case where a scattered image arises from a small (∼ 1 AU) round lens fixed in the screen, as predicted

in Walker & Wardle (1998), its motion is constrained to that of the screen. Therefore, the apparent velocity

of the scattered image V′sub = 0 in the screen’s frame. If such an image is separated from the pulsar’s

line-of-sight image in the y direction, it would always exhibit a finite delay in the secondary spectrum. The

minimum geometric delay is determined by the impact parameter α:

τmin =
Deffθ

2
min

2c
=
Deff

(
α

dscreen

)2

2c
=

α2

2cs(1− s)dpsr
. (2.21)

Unless the pebble lens lies exactly on the pulsar’s trajectory, the corresponding image would travel along a

parabola in the secondary spectrum offset from the origin by a finite delay. This contradicts the observed

secondary spectra of pulsar B0834+06, which do not contain significant power at non-zero delays along

fD = 0. See Figure 2.4 for an example. In comparison, in the linear lens scenario, a scattered image always

travels through the line of sight, or the origin in the secondary spectrum, at some time (Figure 2.7).
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Chapter 3

Analysis Techniques

3.1 Theta-Theta Mapping

In the case of highly anisotropic scattering, one can estimate the 1-D brightness function through the

theta-theta mapping, a nonlinear mapping that allows for a factorization of the secondary spectrum (Baker

et al., 2021, submitted; Sprenger et al., 2021; Rickett et al., 2021). The brightness function is the observed

brightness of the pulsar as a function of angle on the sky. When using a single antenna, the brightness function

is not a direct observable. However, under the assumptions of a thin scattering screen and highly anisotropic

images, the observed scintillation pattern in the dynamic spectrum allows for holographic imaging1. The

result of interstellar holography is the 1-D brightness function of the pulsar.

Theta-theta mapping is a non-linear coordinate transform of the secondary spectrum. The two coordi-

nates in a secondary spectrum are the relative Doppler frequency fD and geometric delay τ . To more readily

extract angular dependence of the pulsar’s brightness function, we define the following coordinate mapping

from the sky angle θ+ and θ− into fD and τ :

fD(θ+, θ−) =
Vα
λ

(θ+ − θ−) , (3.1)

and τ(θ+, θ−) =
Deff

2c
(θ2
− − θ2

+) , (3.2)

where Vα = |Veff | cosα , (3.3)

and α is the angle between the effective velocity and the orientation of the image. To better visualize

the mapping, we present the images of straight lines with constant delay and Doppler frequency under the

coordinate transformation in Figure 3.1.

1Traditionally in holography, we collect the two dimensional diffractive pattern from a coherent and monochromatic light

source (laser) to image the aperture; yet in pulsar scintillation, we record a diffractive pattern in one spatial dimension (from the

temporal motion in the system) and one frequency dimension. The unscattered pulsar image serves as the coherent reference

beam for the observation.
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Figure 3.1: Lines with constant delay and Doppler frequency under the theta-theta mapping. We note that

constant delays are mapped to hyperbolas, whereas constant Doppler shifts are mapped to straight lines

parallel to the diagonal.

We may also write θ+ and θ− in terms of fD and τ :

θ± = − λ

2Vα

(
1

η

τ

fD
∓ fD

)
. (3.4)

Note that the definitions of θ± are dependent on η the curvature of the scintillation arc. This η-dependence

allows us to accurately measure the curvature of the scintillation arc, which we will discuss in detail in section

3.2.

The result of the mapping is referred to as the theta-theta spectrum, I(θ+, θ−), and is given below,

including the determinant of the Jacobian for the transformation
∣∣2√ηfD∣∣ for flux preservation:

I(θ+, θ−) ≡ S2(fD, τ) |2√ηfD| , (3.5)

≈ B(θ+)B(θ−) , (3.6)

where S2(fD, τ) is the secondary spectrum and B(θ) is the one-dimensional brightness function. The last

step is only valid if the scattering is highly anisotropic. Note that, inherited from the secondary spectrum,

I(θ+, θ−) is ensured to be Hermitian, i.e. I(θ+, θ−) = I(θ−, θ+). Intuitively, in the regime of 1-D scattering,

the theta-theta spectrum encodes the intensity of the interference from all pairs of scattered images, i.e. θ+

and θ−.

Under such a mapping, an inverted arclet, formed by one scattered image at θj interfering with the rest

(Walker et al., 2004; Walker & Stinebring, 2005; Brisken et al., 2010; Simard & Pen, 2018), is mapped to two
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Figure 3.2: θ-θ spectrum of interstellar scintillation at 325 MHz from B0834+06 on MJD 53004. The

intensity is displayed on a logarithmic (decibel) scale, and angles are express in milliarcseconds. Left obser-

vation; Middle outer product of the 1-D model + mean of noise; Right fractional residual = (observation -

model)/max(observation,model).

mutually orthogonal straight lines: θ+ = θj and θ− = θj . This is made clear by the following calculation.

The exact equation for an inverted arclet is given in Eqn 2.16. We may then substitute Eqn 3.1 and 3.2 into

Eqn 2.16, and get:

Deff

2c
(θ2
− − θ2

+)− τj = −η
[
Vα
λ

(θ+ − θ−)− fDj
]2

(3.7)

Deff

2c
(θ2
− − θ2

+) = −ηV
2
α

λ2
(θ+ − θ−)2 + 2ηfDj

Vα
λ

(θ+ − θ−) (3.8)

θ2
− − θ2

+ = −(θ+ − θ−)2 + 2θj(θ+ − θ−) (3.9)

θ−(θ− − θj) = θ+(θ− − θj) (3.10)

θ− = θ+ , or θ− = θj . (3.11)

Because the theta-theta spectrum is Hermitian, θ− = θj implies θ+ = θj , with θj defined in Eqn 2.8. Note

that the entire diagonal line θ− = θ+ is mapped from the origin in the secondary spectrum due to the

non-linear mapping. Hence, it does not contain any information.

An example of a theta-theta spectrum of B0834+06 is presented in the left panel of Figure 3.2. It defines

I(θ+, θ−) in a square region bounded by ±θmax =
√

2cτnyq/Deff , where τnyq = 320µs is the Nyquist value

in delay.

Considering a square region as in Figure 3.2, we assume that the function I in the square region is

a quadratic form in the coordinates θ±. Hence, to recover its principal axes, we can write an eigenvalue

problem for the matrix defining that quadratic form. We solve for B(θ) as its first eigenvector and show

the corresponding model, the outer product of B(θ) with itself, in the middle panel. We justify the above

estimation for B(θ) in subsection 3.1.1. Notice that the noise floor is no longer uniform in the observed
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theta-theta spectrum (left panel) because of the extra scaling by the Jacobian through the mapping Eqn 3.5.

So, we estimate the noise floor from a region in the secondary spectrum far from any scintillation signature

and remove it from the observed spectrum before solving for the eigenvector. The noise floor is then added

back into the model. We then compute the residual difference between the observed mapping I(θ+, θ−) and

this model. The right panel shows the residual normalized by the maximum of the data and model at each

pixel.

If the scattered image is truly one-dimensional, then Eqn 3.6 implies that the θ − θ spectrum becomes

the outer product of the brightness function with itself. Such a spectrum has only one eigenvector, namely

the brightness function multiplied by a scaling factor. Hence, in the case of linear scattering, this is an exact

extraction of the 1-D brightness function from the θ − θ spectrum.

3.1.1 Justification for the 1-D brightness estimation as the first eigenvector

The estimation of the 1-D brightness function as the first eigenvector of the theta-theta spectrum is equivalent

to a least squares fitting problem directly in the secondary spectrum, first used in Stinebring et al. (2019).

The least square fit is formulated as Sij = BiBj + σij , where Sij is pixel in the secondary spectrum

corresponding to the interference between two scattered images θi and θj , and Bi, i = 1, ..., N are the N

parameters, corresponding to the intensity of θi, we are fitting. The squared residual can be written as

R ≡
∑
i,j

r2
ij =

∑
i,j

(Sij −BiBj)2. (3.12)

Introducing a constant λ such that

Bi =
√
λvi ∀i,

with a normalization constraint on vi:
N∑
i=1

v2
i = 1 .

For the residual to be at a minimum yet still satisfying the normalization constraint, we necessarily need

∂R

∂vk
= 0 , ∀k . (3.13)

Hence, following from Eqn 3.12 and 3.13, we obtain a set of equations, :

∂R

∂vk
=
∑
i,j

2(Sij − λvivj)(−λ(δi,kvj + δj,kvi))

= −4λ
∑
j

(Skj − λvkvj)vj

= −4λ(
∑
j

Skjvj − λvk) = 0,

where we have used the symmetry of Sij in the second step. Or,

Sv = λv
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The above eigenvector equation gives exactly N solutions. It shows us that the solution to the least square

fit is given by an eigenvector of Sij . By the finite dimensional spectral theorem, a Hermitian matrix Sij

can be decomposed as sums of outer products of its normalized eigenvectors weighted by the corresponding

eigenvalues. Hence, the eigenvector with the largest eigenvalue would render the global minimum.

3.2 Curvature Measurement

As noted in section 3.1, the η-dependence in the definition of θ± allows for an accurate measurement of

the curvature using the theta-theta spectrum. The detailed procedure of such curvature measurement is

presented in Baker et al. (2021, submitted) and Sprenger et al. (2021), which we briefly summarize here.

When we use a bad estimate of the curvature η∗ = kη, 1 6= k > 0, in defining θ∗±, the resulting theta-theta

spectrum is subject to a shearing. We can show that:

θ∗+ =
1 + k

2k
θ+ +

1− k
2k

θ− (3.14)

θ∗− =
1− k

2k
θ+ +

1 + k

2k
θ− . (3.15)

Under the above linear transformation, an arclet, instead of being mapped to the horizontal and vertical lines

θ± = θj , are now mapped to tilted lines. Examples of the theta-theta spectra generated with a good (left

panel) and a bad (right panel) curvature estimate are presented in Figure 3.3. It is clear that the theta-theta

spectrum is only well-modeled by an outer product if the curvature estimation is accurate enough.

We may generate a 1-parameter family of theta-theta spectra based on different curvatures used in

evaluating θ±, and we can use the curvature that generated the theta-theta spectra with the largest eigenvalue

as the best curvature estimation (Baker et al., 2021, submitted). The detailed procedure for estimating

curvature, as outlined in Baker et al. (2021, submitted), is summarized below:

1. Fourier transform the dynamic spectrum to generate the secondary spectrum.

2. Determine the grid (θ±, curvature dependent) on which the θ − θ spectra will be generated.

3. Given a curvature, create the theta-theta spectrum through the theta-theta mapping.

4. Calculate the largest eigenvalue for the resulting theta-theta spectrum.

5. Repeat steps 3 and 4 over a range of curvatures.

6. Fit a parabola to the peak of eigenvalue vs curvature.

The above procedure is applied to simulated data for a proof of concept. The result is shown in Figure 3.4.
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Figure 3.3: Examples of θ-θ spectra using good or bad curvature estimation. The first spectrum can be

well-modeled by the outer product of its first eigenvector, whereas the second spectrum cannot be modeled

well by any outer product.

Figure 3.4: Example for the curvature search procedure applied to simulated data. Reprinted with permission

from Baker et al. (2021, submitted). The plots include the data and models for dynamic spectrum, secondary

spectrum, as well as theta-theta spectrum, where all models are generated using the best fit curvature.

The lower right panel demonstrate the resulting eigenvalue as a function of curvature, which peaks at

η = 1.25(2) s3.
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3.3 Phase Retrieval

Scattering by the interstellar medium can be well-characterized as a linear filter, or impulse response function.

Hence, the observed signal is the convolution between the impulse response function of the ISM filter and

the intrinsic pulsar signal (Walker et al., 2008; Walker & Stinebring, 2005; Walker et al., 2013; Pen et al.,

2014). However, because the pulsar is intrinsically a white-noise generator, the observed electric field is an

amplitude-modulated noise. So the signal contains no phase information, at least unless the periodicity of

the signal is exploited through cyclic spectroscopy (Demorest, 2011). In other words, the impulse response

function of ISM is not a direct observable. The observed signal can be written as the following:

E(t) = h(t) ∗ E0(t) , (3.16)

where h(t) is the impulse response function of the ISM screen, and E0(t) is the pulsar intrinsic spectrum.

We then Fourier transform the samples of the electric field during time nT ≤ t < (n + 1)T to form a

spectrum:

Ên(ν) ≡
∫ (n+1)T

nT

[h(t) ∗ E0(t)] e−2πiνtdt

= Hn(ν)Ê0(ν) , (3.17)

where Hn(ν) is the Fourier transform of h(t) on the interval nT ≤ t < (n + 1)T , and Ê0(ν) is the Fourier

transform of the intrinsic pulsar signal, which we assume to be stationary so independent of n. We may

further stack such spectra together, and write:

Ê(n, ν) ≡ Ên(ν) = H(n, ν)Ê0(ν) , (3.18)

where n is now denoting the time axis, following from the definition in Eqn 3.17. Recall that the phase of

E(n, ν) is noise-like, as inherited from E0(t). Therefore, we take the squared modulus of Ê(n, ν) and take its

time-average on a small time scale (≈ 10 s), much less than the characteristic time scale on which H(n, ν)

varies (≈ 5 min). The resulting spectrum is the dynamic spectrum, which can be written as:

I(tk, ν) ≡ 〈|Ê(n, ν)|2〉 =
1

N

(k+1)N∑
n=kN

|H(n, ν)Ê0(ν)|2

≈ |H(tk, ν)|2 · 〈|E(t)|2〉 = |H(tk, ν)|2I0 , (3.19)

where I0 is the average intensity of the pulsar. Note that in deriving the above equation we assume the

pulsar spectrum is flat, i.e. frequency independent, and we make the approximation that the impulse response

function, H(tk, ν), does not change in the time interval we are averaging over. For simplicity, we drop the

subscript k in what follows.
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The above calculation shows that the observed dynamic spectrum is the squared modulus of the impulse

response function up to a scaling by the observed intensity of the pulsar. In other words, the amplitude of

the impulse response function is given by the square root of the observed dynamic spectrum. The task of

estimating the phase of H(t, ν) is known as the phase retrieval problem.

Following from Eqn 3.19, we define the conjugate spectrum as the following:

C(fD, τ) = Î(fD, τ) = I0F{|H(t, ν)|2} = I0 ·ACF(h(fD, τ)) , (3.20)

where h(fD, τ), which we will refer to as the wavefield, is the Fourier transform of impulse response function

H(t, ν), and ACF() denotes the auto-correlation of a signal. In the above derivation, we have used the

Wiener-Khinchin theorem: the power spectrum of a function and the autocorrelation of that same function

are a Fourier transform pair. Note that the secondary spectrum is defined to be the squared modulus of

the conjugate spectrum, so all the mappings and methodologies introduced above regarding the secondary

spectrum also apply to the conjugate spectrum, which is a complex Hermitian array. One distinction between

the conjugate spectrum and the secondary spectrum is that the former carries phase information regarding

the interference for a pair of scattered images, whereas the later only contains amplitude of the resulting

interference.

It is clear that the conjugate spectrum is the auto-correlation of the wavefield, up to a scaling. Intuitively,

in the regime of strong scattering, the wavefield contains only the interference information between the line-

of-sight image with scattered images, which occupy a thin parabola if the scattering is highly anisotropic. It

is the auto-correlation of the wavefield that produces the interference between all pairs of scattered images,

which gives rise to the observed arclets in the secondary spectrum. A simulation justifying the above

statement is given in Figure 3.5.

Although the phase-retrieval problem is in general ill-posed — namely infinitely many solutions exist — a

reasonable estimate can be made in the highly anisotropic scattering scenario using the theta-theta mapping

(Baker et al., 2021, submitted). The steps for the phase retrieval can be outlined as the following:

1. Determine the curvature of the scintillation arc.

2. Divide the dynamic spectrum into overlapping small chunks (This step effectively lowers the resolution

of the conjugate spectra, and hence the theta-theta spectra, which makes the 1-d assumption more

legitimate.)

3. Compute the (complex) theta-theta spectrum for each of the small chunks.

4. Calculate the (complex) eigenvector and eigenvalue of each theta-theta spectrum. Place the eigen-

vector along θ− = 0 in a theta-theta spectrum with zero everywhere else, and map it back to the

conjugate spectrum as an estimate for the wavefield. (This is effectively placing the eigenvector along

the parabola).
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Figure 3.5: A simulation of a wavefield for a highly anisotropic scattering and its corresponding secondary

spectrum. Each dot in the wavefield correspond to a scattered image by Eqn 2.8 and 2.9. The secondary

spectrum is the auto-correlation of the wavefield, which gives rise to the arclets. Note that the apexes of the

arclets correspond exactly to the scattered images in the wavefield.
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Figure 3.6: The amplitude and phase of the models for two overlapping chunks of a dynamic spectrum of

B0834+06 on MJD 53665. The phase of the models, if the models were perfect, differs by a constant φ.

The red dashed lines indicate the overlapping regions between the two models. The first and second rows

show the amplitude and phase of the two models respectively. Though it seems that the phase from the two

models disagree by a large amount in the middle left and middle right panel, the agreement between the

phase is improved after correcting by the mean of the angle difference mod 2π.

5. Fourier transform the estimated wavefields into the time domain. We will obtain an estimation of the

complex electric field for each small chunk of the data.

6. The phase of the models for two overlapping chunks differs up to a constant φ. We determine the

relative phase rotation through the overlapping regions and correct for this rotation by multiplying

e−iφ to the model for the second chunks. See Figure 3.6 for an example.

7. Finally, we connect the models for different chunks together with their phase differences corrected.

And, we replace the amplitude of the model with the square root of the amplitude of the dynamic

spectrum. The resulting model is presented as an estimation of the impulse response function.

The above procedure essentially deconvolves the conjugate spectrum with the best model assuming the
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Figure 3.7: The estimated wavefield using the theta-theta method and its corresponding secondary spectrum.

scattering is linear. This method may also apply to double screen scattering, given that the power from the

second screen is well separated from that of the dominating screen in the secondary spectrum (Baker et al.,

2021, submitted). An example of an estimated wavefield from the above procedure is presented in Figure 3.7.

3.4 Sky Mapping

The wavefield contains information regarding the interference of the electric field from all scattered images

with the line-of-sight image alone, which means that, assuming a single screen, we can reconstruct the image

of the pulsar with two-fold degeneracy based on Eqn 2.8 and 2.9. Let positive x be the direction of the

effective velocity, and y be perpendicular to it. We can write the angular position of a scattered image with

respect to the line-of-sight image to be (θx, θy). This implies that:

fDj = −Veffθx
λ

(3.21)

and τj =
Deff(θ2

x + θ2
y)

2c
. (3.22)

Note that a constant fDj constrains the θx component for a scattered image onto a line perpendicular to

the angular velocity, whereas a constant τ constrains a scattered image to lie on a circle centered on the

line-of-sight image with radius 2cτj/Deff . Hence, given the Doppler frequency and the delay corresponding

to a scattered image, the image is constrained onto the intersection(s) between the line and the circle (see

Figure 3.8).
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Figure 3.8: Lines with constant delay and Doppler frequency under the Sky mapping. Different from the

theta-theta mapping (Figure 3.1), constant delays are mapped to circles, whereas constant Doppler shifts

are mapped to straight lines parallel to the y axis.

Solving for θx and θy from the above equations further yields

θx = −λfDj
Veff

, (3.23)

and θy = ±
√

2cτj
Deff

− θ2
x , (3.24)

where α is given by α = arctan{θy/θx}. We can then map the wavefield through a coordinate transform

from (fD, τ) to (θx, θy):

I(θx, θy) ≡ h(fD(θx, θy), τ(θx, θy))

∣∣∣∣VeffDeffθy
cλ

∣∣∣∣ , (3.25)

where the last term is the determinant of the Jacobian for the transformation, included for flux preservation.

A result of such mapping is presented in Figure 3.9. Note that to calculate the above sky image, we need

both the effective velocity of the scintillation pattern and the effective screen distance, as defined in Eqn 2.4

and 2.7 respectively.
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Figure 3.9: The estimated wavefield (left) and the resulting image of the pulsar using the mapping defined

in Eqn 3.25 (right). Observe that the image is symmetric about the x axis, corresponding to the two-fold

degeneracy in determining the angular position of a scattered image from the Doppler frequency and delay

relative to the line-of-sight image. The screen distance and effective velocity used in the mapping is reported

in Brisken et al. (2010) based on VLBI observations.
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Chapter 4

Report of a spectacular double-lensing

event of PSR B0834+06

4.1 Observation Summary

We report on an archived 7-epoch observation of the pulsar PSR B0834+06, observed at the Arecibo Ob-

servatory from 2005 October to December with weekly cadence. We obtained dynamic spectra of duration

45 minutes using the 327 MHz receiver with spectral resolution of approximately 0.38 kHz/channel centered

at 318.5 MHz. The 2048 frequency channels yields a total bandwidth of 0.78 MHz. We used an integration

time of 10s, so there are 270 time bins per dynamic spectrum. The frequency and time resolution yield

Nyquist rates of 1.3 ms in delay and 50 mHz in Doppler frequency, which sufficiently contain all scintillation

signatures. Scintillation arcs were consistently found in all secondary spectra with rich arclet structures,

which implies a highly anisotropic scattering scenario (Walker et al., 2004).

We present the the seven dynamic spectra and their corresponding secondary spectrum in Figures 4.1–

4.7. Note in particular the feature at approximately 1200 µs and −40 mHz in the secondary spectrum on

MJD 53665. We refer to it as the 1 ms feature. The feature has drifted down in delay over time: on MJD

53712, its delay decreases to 700 µs. The motion of this feature in the secondary spectrum is a result of the

relative motion between the pulsar, lens, and observer during a course of approximately 50 days.

In this chapter, we will present evidence that the 1 ms feature arises from doubly refracted rays by a

dominant scattering screen, which also gives rise to the main scintillation arcs, and an isolated, elongated

lens lying between the screen and the pulsar. The isolated lens has an aspect ratio of & 8.5 and remains

essentially stationary. Through the deflection angle by this isolated lens, we estimate the lower bound for the

integrated column electron density within the lens, assuming it is perpendicular to the line-of-sight. Such a

lens can potentially cause an Extreme Scattering Event. This is the central result of the thesis.
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MJD 53665

Figure 4.1: Dynamic and secondary spectrum of B0834+06 on MJD 53665, or 2005 October 22nd.

MJD 53673

Figure 4.2: Dynamic and secondary spectrum of B0834+06 on MJD 53673. The 1 ms feature is not visible

during this epoch; we do not yet have a satisfactory explanation for this absence.
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MJD 53681

Figure 4.3: Dynamic and secondary spectrum of B0834+06 on MJD 53681.

MJD 53688

Figure 4.4: Dynamic and secondary spectrum of B0834+06 on MJD 53688.
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MJD 53696

Figure 4.5: Dynamic and secondary spectrum of B0834+06 on MJD 53696.

MJD 53703

Figure 4.6: Dynamic and secondary spectrum of B0834+06 on MJD 53703.
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MJD 53712

Figure 4.7: Dynamic and secondary spectrum of B0834+06 on MJD 53712.

4.2 Summary of Previous Work

Coincidentally, an VLBI observation of the same source was conducted on 2005 November 12, during our

seven observation epochs (Brisken et al., 2010; Liu et al., 2016; Baker et al., 2021, submitted; Simard et al.,

2019). They confirm that, overall, the scattered image of the pulsar is highly anisotropic. The 1 ms feature

lies slightly inward of the main parabolic arc in the secondary spectrum and has a distinct VLBI signature.

Hence, in Brisken et al. (2010) they conclude that the 1 ms feature is associated with a second lens, lying

almost parallel with the pulsar images scattered by the dominant screen. For simplicity, we hereby refer to

the dominant screen as screen 1 and the isolated lens, giving rise to the 1 ms feature, as screen 2. It was

later proposed that the 1 ms feature actually arises from double lensing by screen 1 and screen 2 in Liu et al.

(2016).

Through the single epoch VLBI observation, the effective distances (Eqn 2.7) for both scatterers and the

effective velocity (Eqn 2.4) are accurately measured. We use the parameters reported in Liu et al. (2016)

and Brisken et al. (2010) in our following analysis. The parameters for the two screens are summarized in

Table 4.1.

The reconstructed image of B0834+06 from Brisken et al. (2010) is shown in Figure 4.8. The x and y axis

are the relative right ascension (α or east-west) and relative declination (δ or north-south). The line-of-sight

image is at (0, 0), and each red dot represents the apex of an arclet. The two groups of linear images,

well-separated from the main image, are candidates for the sky location associated to the 1 ms feature. They

later conclude that the 1 ms feature corresponds to the lower right group of images. The velocity of the

pulsar is almost due north, indicated by the red arrow.

37



Table 4.1: Screen parameters reported in Brisken et al. (2010) and Liu et al. (2016). The first five quantities

are directly measured through VLBI; the pulsar distance (Dpsr) and the pulsar angular velocity in the east

and north directions, (µα and µδ), are estimated by model fitting; the rest are calculated based on the above

pulsar velocity of and distance. The uncertainties do not contain the uncertainties in the pulsar distance and

velocity. D1eff and D2eff are the effective distance to screen 1 and screen 2 respectively, and D1 and D2 are

the physical distance between the screens and the observer. All parallel signs means the component of the

vectors projected to the orientation of the linear images, whereas perpendicular signs means the component

perpendicular to it.

Parameters Values

D1eff 1044± 22 pc

D2eff 1252± 49 pc

Veff‖ 305± 3 km/s

Veff⊥ −145± 9 km/s

‖ Scattering axis −25.2± 0.5 deg east of north

⊥ Scattering axis −115.2± 0.5 deg east of north

Dpsr 620± 60 pc

µα 2.16± 0.19 mas/yr

µδ 51.64± 0.13 mas/yr

D1 389± 5 pc

D2 415± 11 pc

Vscr‖ −16± 10 km/s

α 27± 2 deg.

However, our analysis has shown that the reconstructed sky image (Figure 4.8) in Brisken et al. (2010)

is subject to a sign flip. (We have been in touch with Dr. Brisken about this, and he agrees that our

analysis is valid.) As in Figure 4.8, when the pulsar moves, both groups of images corresponding to the

1 ms feature move away from the pulsar, which indicates that the 1 ms feature increases in delay with time.

This contradicts our 7 epoch observations, as presented in Figure 4.1-4.7. Also, as the 1 ms feature has

negative Doppler frequency, we know that V eff · θ must be positive from Eqn 2.8, or the angular separation

between the scattered image and the pulsar image and the effective velocity must be on the same side of the

line-of-sight image. Some more careful analysis regarding the curvature shows that both of the axes should

be flipped in Fig 4.8, except for the pulsar velocity.

In the following sections, we test the above geometry by studying the temporal evolution of the 1 ms

feature using the novel theta-theta methods introduced in Chapter 3.
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Figure 4.8: Map of the astrometric positions of the scattered radiation: Figure 2 in Brisken et al. (2010).

We note that all the images should be flipped about the origin.

4.3 Evolution of the Double Lensing Event

4.3.1 Secondary spectra and curvature measurement

To better see the evolution of the features across the seven secondary spectra, we plot them side by side in

Figure 4.9. For each secondary spectrum, we estimate the curvature for the bottom part of the scintillation

arc (≤ 500µs) using the theta-theta mapping as described in section 3.2. Parabolas with the measured

curvatures are overplotted in the secondary spectra. It is clear that the 1 ms feature consistently lies slightly

inside the best fit parabolas, which, combined with the VLBI result, indicates the existence of a second

scattering screen.

The measured curvature versus observation date for a year-long observation campaign is presented in

Figure 4.10. The seven observations that we are analyzing here are highlighted in orange. Note that there

are several measurements of the curvature for any single day as we observed the pulsar at multiple frequencies

simultaneously.

Based on the pulsar and screen parameters in Table 4.1 and the known Earth motion, we can also predict

the temporal variation based on Eqn 2.12, which repeated here:

η =
Deffλ

2

2cV 2
eff‖

. (4.1)

The result is overplotted with the measured curvature as the black curve in Figure 4.10. Overall, we
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Figure 4.9: Temporal evolution of the secondary spectra. Pay special attention to the motion of the 1 ms

feature. A parabola is plotted with the best fit curvature using the method described in section 3.2. It is

clear, with the parabola plotted, that the 1 ms feature does not lie on the main scintillation arc.

find that the model yields a curvature that is about 2 sigma away from the measured values. To correct

for the inconsistency, we conducted a single-parameter fit of the screen velocity, Vscr‖ as in Table 4.1, which

is the worst-constrained parameter. The best fit screen velocity is −19.7(5) km/s, and the resulting model

is plotted as the blue curve in Figure 4.10. The two red curves indicate the uncertainties in the measured

screen velocity. We find a χ2
r of 3.1 for the best fit model; this is due to the unreliable error bars for some

outliers.

4.3.2 Theta-theta spectra and 1-D brightness distribution

We then calculate the theta-theta spectra for all seven observations based on the curvature measurement

(Figure 4.11).

Note that the power in the theta-theta spectra does not occupy the entire square region. This is because

the Nyquist rate in delay and Doppler frequency are mapped to hyperbolas and straight lines, respectively,

by the theta-theta transform. Note that the 1 ms feature is now tilted and curved in all the theta-theta

spectra, whereas the other features remain horizontal and vertical. This further indicates that the feature

does not lie along the main scintillation arc.

We further calculate the eigenvector, or best fit 1-D brightness function, from each observation. The

resulting brightness functions are plotted in Figure 4.12. The intensity for the brightness functions is pre-
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Figure 4.10: Curvature evolution during the 7 epochs and for 50 epochs prior to that date. (Observations

from Stinebring et al., private communication.)

sented using a log scale, and the maximum for each brightness function are aligned with the observation

date. We find that the peaks, or scattered images, move at an almost constant velocity as the pulsar moves.

The 1 ms feature is manifested as the peak at around −20 mas.

4.3.3 Phase retrieval and wavefields

We then estimate the wavefield for each observation based on the phase retrieval technique introduced in

section 3.3. Although the pulsar is scattered by two screens, the phase retrieval based on the theta-theta

mapping still yields reasonable results for the following reasons:

1. The scattering is dominated by screen 1.

2. The signature from screen 2 is well-separated1 from that of screen 1 in the secondary spectrum.

3. The scattered image by screen 1 is known to be essentially linear (Figure 4.8).

The resulting wavefield spectra are presented in Figure 4.13. Recall that all cross interference between

two scattered images disappears in the wavefield; only signatures from scattered images interfering directly

with the line-of-sight image are left, which correspond to the apexes of arclets.

1We only model the bottom portion of the scintillation arc (τ ≤ 500µs) in the phase retrieval.

41



Figure 4.11: Temporal evolution (in the theta-theta spectrum) of the 1 ms feature reported in (Brisken et al.,

2010). The 1 ms feature manifests as the tilted linear structure at around θ± = −25mas.

Figure 4.12: 1d brightness evolution.

4.3.4 Sky images

Recall, from section 4.3.4, that the wavefield can be mapped to a sky image with a two-fold degeneracy,

namely symmetry about the effective velocity vector. Note that the only assumption for such mapping
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Figure 4.13: Temporal evolution of the wavefield.

Figure 4.14: Comparison between rays scattered by one or both screens. The pulsar is on the left and the

observer is on the right. Note the large difference in transverse and longitudinal scales.

is single screen scattering; specifically, the scattered images do not need to be linear for such mapping to

produce an accurate result.

However, one complication arises when applying such mapping to the seven observations: the rays from

the 1 ms feature are scattered by two screens and hence strictly violate the assumption. However, since

the distance between the two screens (25 pc) is small compared to the distance between Earth and the

pulsar (620 pc), the sky mapping remains reasonably accurate for the 1 ms feature. To demonstrate this, we

compare a ray only scattered by screen 1 and a ray scatted by both screens with the same length in Figure

43



4.14. The resulting angular difference between the rays’ intersection with screen 1 is about 1 mas when the

corresponding scattered image is separated from the line-of-sight image by 32 mas. Note that in the plot,

the scale for the x axis is magnified by a factor of 105.

Assuming all scattering occurs at the distance of screen 1, we present the sky images inferred from the

wavefield in Figure 4.15. Recall that the θx axis in the sky images corresponds to the direction of the effective

velocity. As the system evolves, the 1 ms feature gradually decreases in θx.

Figure 4.15: Evolution of the sky images inferred from the wavefield. The image is symmetric about the θx

axis.

Note that the 1 ms feature is mapped to a straight line. This indicates a high aspect ratio for the lens

on screen 2 causing the 1 ms feature. However, we note that the images seem to be blurred into arc-like

structures centering the origin. This blurring is caused by the pixel shape in the delay axis. Namely a

constant delay constrains the image to a circle. To rule out that the highly anisotropic images at the 1 ms

feature is caused by some mapping artifacts, we also identify bright images from the wavefield directly by

eye and perform discrete mappings. An example of the identified bright images is given in Figure 4.16. The

discrete imaging of the 1 ms feature from all epoch is plotted in Figure 4.17. The left panel assumes that

the pulsar is always at the origin for all the epochs, whereas the right panel moves the pulsar by the known

effective motion. We see that, after correcting for the pulsar’s apparent location, the discrete images of the

1 ms feature from different dates line up perfectly. We further estimate a lower bound for the aspect ratio

of the lens by comparing the standard deviation of images location along the lens and those across the lens.

The lower bound for the aspect ratio is about 8.5(8): the length of the lens divided by the width of the lens.
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Figure 4.16: Evolution of the sky images inferred from the wavefield. The image is symmetric about the θx

axis.

Figure 4.17: The discrete image of the 1 ms feature by identifying bright pixels (images) in the wavefield.

The left panel assumes that the pulsar is always at the origin for all the epochs, whereas the right panel

shifts the pulsar by the known effective motion.

4.4 Scattering by Multiple Linear Lenses

In a model independent way, we have shown that the 1 ms feature comes from double lensing by essentially

a linear lens at screen 2 and a set of linear lenses at screen 1. To further explore the scattering geometry,

we need to introduce some theory regarding lensing by two linear lenses.

One key property of refraction by a linear lens is that the lens only deflects the ray in a perpendicular

direction. To better visualize this, we present the geometry of a refracted ray by a linear lens in Figure 4.18.

The linear lens is extended along the x axis. The incident ray is in orange and the refracted ray is in red. We
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draw the projection of this geometry onto the plane y = 0 (left) and x = 0 (right). Note that the direction

of the ray does not change in the x direction, but the ray is deflected with an angle α in the y direction.

This is because the lens has uniform electron density along the x axis, which implies a constant index of

refraction. A change in the index of refraction is required to deflect a ray, so there must be a gradient in

the free electron density in the plasma lens. Such a gradient is present in the y direction but not in the x

direction due to the elongation of the lens.

Figure 4.18: Refracted ray by a linear lens. The lens is extended along x axis, namely z = y = 0. Left:

projection onto the plane y = 0, the direction of propagation for the ray does not change in the x direction.

Right: projection onto x = 0, the ray is deflected by an angle α in y direction.

When linear lenses are present on multiple screens that are perpendicular to the line of sight, a ray

refracted by a set of specified lenses connecting the pulsar to the observer can be solved as a linear algebra

problem. We refer the readers to van Kerkwijk 2021 (external link) for a detailed derivation in the context

of this problem. We show a simulation result below for a scattering geometry analogous to the data set in

Figure 4.19. The 1 ms feature arises naturally in such a geometry, and it manifests as an offset parabola

in the wavefield. The bottom of this offset parabola corresponds to the singly scattered ray by the lens on

screen 2, as it is the minimum in delay. The corresponding image of this singly scattered ray moves along

a parabola centered at the origin with a predicted velocity by the argument in section 2.4.1. We will show

that the temporal evolution of the observed spectra follows this prediction.

4.5 Reconstructing Scattering Geometry

Recall from section 2.4.1 that an image produced by an linear lens (or the apex of an arclet) moves in the

secondary spectrum along a parabola with speed:

.
fD =

λ

2c

1

η
, (4.2)
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Figure 4.19: The proposed scattering geometry (left), the resulting wavefield (upper right), and the secondary

spectrum (lower right). The parameters used for the lenses are comparable with those observed. In the left

plot, the pulsar is at the top and the observer is at the bottom. Lenses on screen 1 are represented in red,

those on screen 2 in orange. The rays are drawn in dashed lines. We see two bundles of rays. Those on

the left are singly scattered rays by screen 1, whereas those on the right are doubly scattered rays by both

screens, which gives rise to the 1 ms feature in the wavefield and secondary spectrum.

where η is the curvature of the parabola. The above prediction only applies to singly scattered images. On

MJD 53712, the bottom of the offset parabola in the 1 ms feature becomes visible. Recall from the last

section that the bottom of the offset parabola corresponds to the singly scattered image by the lens on screen

2. Therefore, the bottom of this offset parabola is constrained to move along another parabola through the

origin. We fit the coordinate of the offset parabola by eye and evaluate the curvature. We show the resulting

fit in Figure 4.20. The blue dot is the best fit, with the two red dots indicating uncertainty in the Doppler

frequency. Uncertainty in the delay is negligible compared with that in the Doppler frequency. The blue and

red curves are parabolas, centered at the origin, passing through the blue and red dots respectively. The

curvature of the parabola is measured to be 0.91(7) s3.

Assuming that the curvature does not vary significantly over the 7 weeks of observations, we may use

Eqn 4.2 to extrapolate the position for the bottom of the offset parabola, or the singly scattered image by

screen 2, to previous observation dates. The results are shown in Figure 4.21, where we overplot parabolas

with a fixed curvature centered at the extrapolated positions for all 7 epochs. Note that all the overplotted

parabolas and dots are based only on the coordinates for the blue dot measured by eye in Figure 4.20. The

resulting extrapolation is an excellent fit to the data throughout the 7 weeks.
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Figure 4.20: Identifying the bottom of the 1 ms feature by eye on MJD 53712.

We do not see the bottom of the lens, or singly scattered rays, in previous observations as the lens

terminated before the singly scattered image can be produced. In other words, the observations are showing

one end of a highly elongated lens that is causing the 1 ms feature. As the pulsar gradually approaches this

lens, the singly scattered ray becomes visible in the last two epochs.

We may also extrapolate forward to find the time when the bottom of this offset parabola is at the origin.

That date is identified to be MJD 53903, 191 days after the last observation. We know that on that date,

the pulsar was directly behind this lens. Given that the lens is linear, we may identify the orientation of

the lens by drawing a straight line between the sky location of the singly scattered image on MJD 53712

and the pulsar location on MJD 53903. The resulting geometry is given in Figure 4.22. We note that the

measured images on the 1 ms feature (orange dots) lies slightly outwards from the inferred lens (blue line).

This is expected since we assumed that all the images are singly scattered at the location of screen 1 when

obtaining the discrete images in section 4.3.4. Recall that this assumption yields reasonable results as the

two screens are very close compared to the distance between the pulsar and the observer.
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Figure 4.21: The predicted location for the offset parabola at each observation, all based on a measurement

of the bottom of the offset parabola on MJD 53712 (see Figure 4.20).

4.6 Interpretation

In summary, we present strong evidence that the 1 ms feature in the seven observations are caused by an

isolated and highly anisotropic lens that is moving slowly with respect to Earth (/ 20 km/s). Based on the

distance to the lens (415 pc), distance to the pulsar (620 pc), and the highest delay associated with the lens

(1.25 ms), we estimate the lower bound for its deflection angle to be 83 mas at 318.5 MHz. Given typical

interstellar electron densities, this is an enormous scattering angle. The angular width of the lens is found to

be 1 mas. In order to be responsible for an ESE at a certain frequency, the deflection angle must be larger

than the apparent angular width of the lens. For a plasma lens, the deflection angle is proportional to inverse

frequency squared. The above parameters yield a lower bound of 2.6 GHz for the maximum frequency that

the lens can cause an ESE. This is sufficient to explaining the majority of the observed ESEs over 2 GHz.

Through the deflection angle, we estimate the plasma frequency to be 162(20)MHz, with the assumption

that the lens takes on the shape of a prism and is perpendicular to the line of sight. We further infer the

electron density to be 324(40) cm−3. The inferred electron density may dramatically decrease if the plasma

lens is inclined along the line of sight.

The width of the lens is found to be 0.5 AU. Combined with the relative velocity between the lens and

the Earth, the lower bound for the time scale of a resulting ESE is found to be 44 days comparable with the

50 days time scale reported in Fiedler et al. (1987). Such a lens, when passing through the foreground of a

quasar, inevitably causes an ESE.
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Figure 4.22: Inferred scattering geometry. The blue line indicates the orientation of the 1 ms lens on screen 2

obtained by drawing a straight line between the sky location of the singly scattered image on MJD 53712 and

the pulsar location on MJD 53903. The orange dots are the measured discrete images on the 1 ms feature

presented in Figure 4.17 after a coordinate transformation. The red dashed line indicates the termination

point for the 1 ms lens. The singly scattered image by that lens disappear when the pulsar is below the

intersection between the red dashed line and the pulsar trajectory.
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Chapter 5

Conclusion

5.1 Summary of Results and Discussion

We reported the discovery of an exceptionally strong, isolated, and highly anisotropic plasma lens in the

interstellar medium through a double lensing event of pulsar B0834+06 observed at the Arecibo Observatory.

By analyzing the scintillation pattern, we reconstructed the holographic image of the pulsar refracted by

the lens. Through temporal evolution over seven epochs, we confirmed that the lens is moving slowly with

respect to Earth. Based on all the inferred parameters, this a lens can unambiguously cause a quasar extreme

scattering event.

One difficulty remains. While the inferred electron density of the lens is small (∼ 300 cm−3) compared

with previously proposed models (103 ∼ 105 cm−3), the overpressure problem remains. But we note that

the above estimate comes with the assumption that the lens is perpendicular to the line of sight; the inferred

electron density would decrease dramatically if the lens is at a grazing angle.

5.2 Future Work

This work demonstrates the power of using pulsar as a precision probe of the interstellar medium. Some

promising future work includes:

1. We can solve for the distance to a pulsar if such a lensing event occurs for a pulsar in a binary system.

2. We may apply the phase-retrieval technique to better estimate the delay of the pulsar signals due to

interstellar propagation. This is crucial for low-frequency gravitational wave detection based on pulsar

timing.

3. We can apply the theta-theta mapping to a large archive of secondary spectra created by Prof. Dan

Stinebring.
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4. Such lensing events can potentially be used to probe the pulsar magnetosphere (Pen et al., 2013;

Marshall & Clark, 1984).

5. We will propose observations of the pulsar B0834+06 with the FAST telescope in China. With state-of-

the-art sensitivity and wide bandwidth, FAST will reveal more interesting structures in the interstellar

medium.
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