
Rational Generating Functions and Lattice Point

Sets

by

Kevin M. Woods

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Mathematics)

in The University of Michigan
2004

Doctoral Committee:

Professor Alexander Barvinok, Chair
Professor Richard Canary
Professor Sergey Fomin
Professor John Stembridge
Assistant Professor Satyanarayana Lokam

ACKNOWLEDGEMENTS

My thanks to the many people whose thoughts have contributed to this thesis

and to my mathematical development, including Imre Bárány, Jesus De Loera, Ravi

Kannan, Bernd Sturmfels, and Rekha Thomas. In particular, my collaborations with

Tyrrell McAllister and Herb Scarf have been tremendously invaluable.

Many thanks to my doctoral committee, especially John Stembridge for his careful

reading of this thesis. I am grateful to my fellow graduate students with whom I

have grown as a mathematician, including Greg Blekherman, Long Dao, Tom Fiore,

Bart Kastermans, and Han Peters.

I am forever indebted to the many people who have encouraged me in all of my

pursuits, as a child, as an undergraduate at Wake Forest University, and as a graduate

student. Foremost of these are my wife, Angela Roles, and parents, John and Carol

Woods. Most of all, I am deeply grateful to my advisor, Alexander Barvinok, for his

guidance and insight.

ii

PREFACE

We will be interested in subsets of Zk that may be very large and may seem to have

quite complicated structure. A motivating example will be the set S of nonnegative

integer combinations of given positive coprime integers a1, a2, . . . , ad. For example,

if d = 2, a1 = 3 and a2 = 7, we have

S = {0, 3, 6, 7, 9, 10, 12, 13, 14, . . .},

and there is obviously some structure here (e.g., all sufficiently large integers are in

the set), though it is hard to say exactly what that structure is. We will give one

answer: the set can be encoded as a rational generating function (and a short one,

at that).

More generally, the sets we will be interested in are projections of the set of

integer points in a polytope. We will show that these sets can all be encoded as

short rational generating functions. In addition, we can manipulate these functions

to give us information about the set. For example, for the set S above, we can

determine the number of integers not in S and the largest integer not in S. We will

attack these questions from an algorithmic perspective: how can we answer them

quickly?

In Chapter I, we define the relevant concepts (generating functions, polynomial

time algorithms, etc.), state the Projection Theorem (Theorem 1.1.15), discuss pre-

viously known tools for finding and manipulating generating functions, and give

iii

background information on the neighborhood complex (which will become impor-

tant in Chapter IV). In Chapter II, we will prove the Projection Theorem (The-

orem 1.1.15). In Chapter III, we examine several applications of Theorem 1.1.15,

namely the Frobenius problem, Hilbert series for monomial ideals, neighbors and

the neighborhood complex, Hilbert bases of cones, and aspects of algebraic integer

programming. In Chapter IV, we examine the connection between generating func-

tions and the neighborhood complex, and we consider possibilities for improving the

algorithm for Theorem 1.1.15. In Chapter V, we examine the relation of these gener-

ating functions to logic, and in particular, we will define and discuss the Presburger

arithmetic.

This dissertation is organized into chapters and each chapter into sections. Within

a section, subheadings delineate important concepts. Subheadings, theorems, figures,

etc., will all be numbered together within each section. For example, in Chapter 3,

Section 2, Theorem 3.2.5 might follow Figure 3.2.4.

iv

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . ii

PREFACE . iii

LIST OF FIGURES . vii

CHAPTER

I. Introduction and Background . 1

1.1 Introduction . 1
1.2 Rational Generating Functions . 10
1.3 Neighbors and the Neighborhood Complex 21

II. The Projection Theorem . 30

2.1 Outline . 30
2.2 Lattice Width and Flatness Directions . 36
2.3 Partitioning . 41
2.4 Proof of Theorem 1.1.15 . 46

III. Applications . 49

3.1 The Frobenius Problem . 49
3.2 Hilbert Series for Monomial Ideals . 52
3.3 Neighbors and Neighborhood Complexes . 55
3.4 Hilbert Bases . 57
3.5 Algebraic Integer Programming . 61

IV. The Neighborhood Complex and Generating Functions 72

4.1 Introduction and Example . 73
4.2 The General Case . 78
4.3 The Euler Characteristic . 80
4.4 Proof of Theorem 4.2.1 . 84
4.5 Examples . 86
4.6 The Non-generic Case . 92

V. Presburger Arithmetic . 94

5.1 Presburger Arithmetic and Rational Generating Functions 95
5.2 Complexity and Presburger Arithmetic . 99
5.3 Complexity, Presburger Arithmetic, and Rational Generating Functions . . . 103

v

BIBLIOGRAPHY . 109

vi

LIST OF FIGURES

Figure

1.1.9 Example 1.1.8, triangle with vertices (0, 0), (N, 0), and (N,N) 7

1.1.10 Example 1.1.13, P is a triangle and T (x, y) = x . 7

1.1.11 Example 1.1.14 with N = 3, P is the parallelogram with vertices (0,± 1
4) and

(6, 3± 1
4), and T (x, y) = x . 8

1.2.4 Example of cone(P, v) . 12

1.2.5 A unimodular cone, K . 13

1.2.6 Triangulation of K into (a) unimodular cones and (b) signed unimodular cones . . 14

1.3.2 In Example 1.3.3, edges of C(A) include (a)
{
(0, 0), (0, 1)

}
and (b)

{
(0, 0), (1, 0)

}
. 22

1.3.8 Example 1.3.7, the neighborhood complex when d = 2, n = 3 24

2.1.1 Example 2.1.2, T (x, y) = (x + y, x− y), (a) Q = P ∩ Z2 and (b) S = T (Q) 31

2.1.4 Example 2.1.3, T (x, y) = x, (a) Ŝ and T (Ŝ) and (b) S′ and T (S′) 32

2.1.6 Example 2.1.5, for σ = 2 and π(x, y) = x, (a) Ŝ and π(Ŝ), (b) a gap that doesn’t
appear in Ŝ, (c) Ŝ \ (Ŝ + 1), and (d) S′ = Ŝ \ (Ŝ + 1) \ (Ŝ + 2) and π(S′) 34

2.1.8 Example 2.1.7, P = conv
{
(5, 0,±5), (5,±5, 0)

}
, T (x, y, z) = x 36

2.2.1 Convex B such that B ∩ Z2 = ∅ . 37

2.2.5 Illustration of Lemma 2.2.4 with c = (0, 1) . 39

3.4.1 Example 3.4.2, Hilbert basis of cone K generated by (N, 1) and (1, N) 58

3.4.3 Q, such that Q ∩ Z2 = Z ∩ Z2 \ {0} . 59

3.5.1 N for Example 3.5.2 . 62

3.5.7 An example of (a) Qu and (b) Qτ̄
u . 68

4.1.2 Neighborhood complex, C, for T (x, y) = 2x + 5y 74

4.1.3 The complexes Ca . 75

vii

4.1.5 Bijection between integer points in Q and edges in the Ca 76

4.1.6 Example 4.1.7, T (x, y, z) = 3x + 4y + 5z, (a) C, (b) C15, (c) C20, (d) C25 77

4.3.4 Example 4.3.6, P1, with X = {−2,−1, 0, 1, 2} . 82

4.5.1 Q{0} = P and Q{0,1} in Example 4.5.2 . 86

4.5.5 C̄ for k = 1, d = 3 in Example 4.5.7 . 89

viii

CHAPTER I

Introduction and Background

1.1 Introduction

We would like to answer questions about certain interesting subsets of Zk, for

some k. Let us start with an example.

Let a1, a2, . . . , ad be positive coprime integers, and let

S = {λ1a1 + λ2a2 + · · ·+ λdad : λi ∈ Z≥0 for all i}

be the set of all nonnegative integer combinations of a1, a2, . . . , ad. In other words,

S is the additive semigroup (with zero) generated by a1, a2, . . . , ad. It is easy to see

that all sufficiently large integers are in S. Sylvester and Frobenius asked several

questions about this set. How many positive integers are not in S? What is the

largest integer not in S? The answer to the latter question is called the Frobenius

number.

Example 1.1.1. Let d = 2, and a1 = 3, a2 = 7. Then

S = {0, 3, 6, 7, 9, 10, 12, 13, 14, . . .} ,

the number of positive integers not in S is 6, and the Frobenius number is 11.

We’d also like to say something about the structure of the set S.

1

2

We will examine these questions from an algorithmic viewpoint. In particular we

will show that there is a quick algorithm which, given a1, a2, . . . , ad, answers these

questions (we will shortly define “quick” precisely). For the particular question of

finding the Frobenius number, a quick algorithm has already been found [Kan92],

but for other questions no quick algorithm was previously known.

1.1.2 Generating functions

Our tool will be generating functions. For any subset S ⊂ Z≥0, we can define the

generating function

f(S; x) =
∑
s∈S

xs.

This power series converges for x with |x| < 1, so we can talk about this function

with impunity. We would like to find a short formula for f(S; x).

In Example 1.1.1, we have f(S; x) = 1 + x3 + x6 + x7 + · · · . Of course this is far

from a “short” formula: it is infinite! An obvious way to improve on this would be

to write

f(S; x) = 1 + x3 + x6 + x7 + x9 + x10 +
x12

1− x
.

We can do much better than this, however.

Indeed, for coprime a1 and a2, let S be the additive semigroup generated by a1

and a2, and let us examine f(S; x)(1− xa1). We have

f(S; x)(1− xa1) = f(S; x)− xa1f(S; x)

=
∑
s∈S

xs −
∑
s∈S

xs+a1

=
∑
s∈S

xs −
∑

s−a1∈S

xs

3

=
∑
s∈S,

s−a1 /∈S

xs

= 1 + xa2 + x2a2 + · · ·+ x(a1−1)a2

=
1− xa1a2

1− xa1
.

Therefore f(S; x) = 1−xa1a2

(1−xa1)(1−xa2)
. In Example 1.1.1, we get

f(S; x) =
1− x21

(1− x3)(1− x7)
.

This result demonstrates nicely the main goal of this dissertation: to show that large

and seemingly complicated sets can often be encoded by short rational functions.

Example 1.1.3. For d = 3 we also get a nice formula, that there exist positive

integers p1, p2, . . . , p5 (which are quickly computable from a1, a2, a3) such that

f(S; x) =
1− xp1 − xp2 − xp3 + xp4 + xp5

(1− xa1)(1− xa2)(1− xa3)
.

This fact was proved by G. Denham [Den03] using algebraic results of J. Herzog

[Her70]. It can also be seen geometrically (see Example 4.5.7 or [SW03]).

For d = 4 and higher, one would hope that we could find a similar formula,

a rational function with a (small) number of monomials in the numerator and

with denominator
∏

i(1 − xai). There are examples (see [SW86]), however, where

writing f(S; x) in this form would require
√

t monomials in the numerator, where

t = min{a1, a2, a3, a4}. This is “too many.”

1.1.4 Quick algorithms

Let us be more precise. We define the input size of an algorithm to be the number

of bits needed to encode the input into binary (as if we were going to give it to a

4

computer as data). In particular, the input size of an integer a is approximately

1 + log2|a| (the number of digits needed to write a in binary), and the input size of

a1, a2, . . . , ad is approximately
∑

i(1 + log2 ai).

We would like to find a “quick” algorithm which takes a1, a2, . . . , ad as input,

and outputs f(S; x) in some nice form. An algorithm is called polynomial time if

the number of steps it takes is bounded by a certain polynomial in the input size.

Proving that an algorithm is polynomial time is generally regarded as proving that it

is “quick,” at least theoretically. See [Pap94] for general background on algorithms

and computational complexity.

In general, this problem of finding a quick algorithm to compute f(S; x) is hope-

less. In fact, the easier problem of finding the largest integer not in S is itself NP-hard

[RA96] (which means, basically, that there is very little hope that a polynomial time

algorithm exists, see [Pap94] for a definition and more details). Rather than de-

spair, we look at a subproblem and try to find a quick algorithm for that. A natural

subproblem to examine is that of finding f(S; x) for a given fixed d, where d is the

number of generators of S. In Section 3.1, we will prove the following theorem which

states that, for fixed d, there is a quick algorithm that finds f(S; x), and furthermore,

we can use f(S; x) to quickly answer questions about S. We should conceptualize

“for fixed d” to mean that, for small d, the algorithm is “quick,” but as d increases,

the algorithm rapidly slows down. This theorem originally appeared in [BW03].

Theorem 1.1.5. Let d be fixed. Then there exists a constant s = s(d) and a poly-

nomial time algorithm which, given a1, a2, . . . , ad, computes f(S; x) in the form

f(S; x) =
∑
i∈I

αi
xpi

(1− xbi1) · · · (1− xbis)
,

where αi ∈ Q, pi ∈ Z, and bij ∈ Z \ {0}.

5

Furthermore, there is a polynomial time algorithm that computes the number of

integers not in S and computes the largest integer not in S.

In particular, the number |I| of fractions in the sum must be bounded by a polyno-

mial in the input size,
∑

i(1+log2 ai) (otherwise, the algorithm could not even output

f(S; x) in polynomial time). This is much better than the t = min{a1, a2, a3, a4} frac-

tions that might be required if we force all the denominators to be
∏

i(1− xai), as t

is exponential in the input size. This theorem shows that these complicated sets can

be encoded by short rational functions.

Theorem 1.1.5 will follow from a general theorem which says that we may quickly

find generating functions for certain sets of integer points. In particular, the sets we

will be interested in are projections of the set of integer points in a polytope (some

examples will follow shortly).

Let S ⊂ Zk be a set of integer points, and define the generating function

f(S;x) =
∑

s=(s1,...,sk)∈S

xs1
1 xs2

2 · · · xsk
k =

∑
s∈S

xs.

We must be careful that this generating function converges absolutely on some neigh-

borhood in Ck. For the most part, S will be a finite set, so this is not a problem, as

f(S;x) will be a Laurent polynomial. Our goal will be to quickly write f(S;x) as a

short rational generating function, as in Theorem 1.1.5.

1.1.6 Integer points in polyhedra

Let us first consider S, where S is the set of integer points in a polyhedron. Let

c1, c2, . . . , cn ∈ Zd be integer vectors and let b1, b2, . . . , bn ∈ Z be integers. Then we

6

can define a rational polyhedron, P , by

P =
{
x ∈ Rd : 〈ci, x〉 ≤ bi for all i

}
,

where 〈·, ·〉 is the standard inner product on Rd. We will be inputting P into an

algorithm, so we must define its input size (the number of bits needed to encode P),

which is roughly

nd +
∑

i

log2|bi|+
∑
i,j

log2|cij|,

where ci = (ci1, ci2, . . . , cid). In [BP99] it is proved that for fixed d, if P is a rational

polyhedron not containing straight lines and S = P ∩ Zd, then we can calculate

f(S;x) quickly as a short rational function.

Example 1.1.7. If P = [0, N], then S = P ∩ Z = {0, 1, 2, . . . , N}, and

f(S; x) = 1 + x + x2 + · · ·+ xN =
1− xN+1

1− x
.

Example 1.1.8. For a more complicated example, let P ⊂ R2 be the triangle with

vertices (0, 0), (N, 0), and (N, N) (See Figure 1.1.9). Then

f(P ∩ Z2; x, y) = 1 + (x + xy) + (x2 + x2y + x2y2) + · · ·+ (xN + xNy + · · ·+ xNyN)

=
1− y

1− y
+

x− xy2

1− y
+

x2 − x2y3

1− y
+ · · ·+ xN − xNyN+1

1− y

=
1 + x + x2 + · · ·+ xN

1− y
− y + xy2 + x2y3 + · · ·+ xNyN+1

1− y

=
1− xN+1

(1− x)(1− y)
− y − xN+1yN+2

(1− xy)(1− y)
.

Again f(S;x) can be written as a short rational generating function.

See Theorem 1.2.3 for a more precise statement of the general theorem and a

sketch of a proof.

7

P

x

y

Figure 1.1.9: Example 1.1.8, triangle with vertices (0, 0), (N, 0), and (N, N)

y

x

T

S

P

Figure 1.1.10: Example 1.1.13, P is a triangle and T (x, y) = x

8

x

y

P

T

S

Figure 1.1.11: Example 1.1.14 with N = 3, P is the parallelogram with vertices (0,± 1
4) and (6, 3±

1
4), and T (x, y) = x

1.1.12 Projections

Here we would like to find the generating function for the projection of the set

of integer points in a rational polytope (that is, a bounded polyhedron). Let T :

Rd → Rk be a linear transformation such that T (Zd) ⊂ Zk. We will examine the set

S = T (P ∩ Zd).

Example 1.1.13. Let P be the triangle pictured in Figure 1.1.10, and let T : R2 → R

be defined by T (x, y) = x. Then S = T (P ∩Z2) = {0, 1, 3}, and f(S; x) = 1+x+x3.

Example 1.1.14. For a more complicated example, let P ⊂ R2 be the parallelogram

with vertices (0,±1
4
) and (2N,N ± 1

4
), and let T : R2 → R be defined by T (x, y) = x

(See Figure 1.1.11, where N = 3). Then

f(S; x) = 1 + x2 + x4 + · · ·+ x2N =
1− x2N+2

1− x2
.

Again, in this case, f(S;x) can be written as a short rational generating function.

9

In general, we can define the input size of T as

kd +
∑
i,j

log2|tij|,

where (tij) is the matrix of integers representing T . In Chapter II, we will prove

the following theorem, which says that we can always calculate f(S;x) as a short

rational function, where S = T (P ∩ Zd). This theorem also originally appeared in

[BW03].

Theorem 1.1.15. Let d be fixed. Then there exists a constant s = s(d) and a

polynomial time algorithm which, given a rational polytope P ⊂ Rd and a linear

transformation T : Rd → Rk such that T (Zd) ⊂ Zk, computes f(S;x) in the form

f(S;x) =
∑
i∈I

αi
xpi

(1− xbi1) · · · (1− xbis)
,

where S = T (P ∩ Zd), αi ∈ Q, pi ∈ Z, and bij ∈ Z \ {0}.

As in Theorem 1.1.5, the number |I| of fractions in the sum must be bounded

by a polynomial in the input size. In Section 3.1, we will prove that Theorem 1.1.5

follows from Theorem 1.1.15. To give a flavor of the proof, note that the Frobenius

set S can be written as T (P ∩ Zd), where P is the (unbounded) polyhedron

P =
{
(λ1, λ2, . . . , λd) ∈ Rd : λi ≥ 0 for all i

}

and T : Rd → R is defined by

T (λ1, λ2, . . . , λd) = λ1a1 + λ2a2 + · · ·+ λdad.

We cannot directly apply Theorem 1.1.15, as P is not bounded, but in Section 3.1

we will show how to apply it indirectly.

10

In Section 1.2, we will give the needed background on rational generating func-

tions. In Section 1.3, we examine the concept of neighbors and the neighborhood

complex associated to a matrix. This concept will not be needed for a proof of

Theorem 1.1.15, but it will be central to Chapter IV.

In Chapter II, we will prove Theorem 1.1.15. In Chapter III, we examine several

applications of Theorem 1.1.15, including the Frobenius problem. In Chapter IV, we

examine the connection between generating functions and the neighborhood complex,

and we consider possibilities for improving the algorithm from Theorem 1.1.15. In

Chapter V, we examine the relation of these generating functions to logic, and in

particular, we will define and discuss the Presburger arithmetic.

1.2 Rational Generating Functions

In this section, we discuss several useful results related to generating functions of

the type

(1.2.1) f(x) =
∑
i∈I

αi
xpi

(1− xai1)(1− xai2) · · · (1− xaiki)
,

where x ∈ Cd, αi ∈ Q, pi, aij ∈ Zd, and aij 6= 0 for all i, j. In general, we will assume

that d is fixed and that there is a fixed upper bound, k, on the ki. Theorem 1.2.3

will give us a nice collection of sets (the integer points in polyhedra) for which we

can find a short rational generating function. A complete proof is given in [BP99].

The remaining theorems in this chapter give us operations which we can perform

on generating functions. Most of these results were sketched in [BP99] and proved

completely in [BW03].

11

1.2.2 Integer points in polyhedra, revisited

Suppose that P ⊂ Rd is a rational polyhedron, let S = P ∩ Zd, and let

f(S;x) =
∑
a∈S

xa.

If P contains no straight lines, then f(S;x) converges on a neighborhood U ⊂ Cd.

If P did contain straight lines, f(S;x) as defined would not converge on any neigh-

borhood in Cd (unless P ∩ Zd = ∅), and it is convenient to define f(S;x) ≡ 0.

The following result states that, for fixed d, f(S;x) can be found quickly as a short

rational function.

Theorem 1.2.3. (Theorem 4.4 of [BP99]) Fix d. Then there exists a polynomial

time algorithm which, for any given rational polyhedron P ⊂ Rd, computes f(P ∩

Zd;x) in the form

f(P ∩ Zd;x) =
∑
i∈I

εi
xpi

(1− xai1)(1− xai2) · · · (1− xaid)
,

where εi ∈ {−1, +1}, pi, aij ∈ Zd, and aij 6= 0 for all i, j. In fact, for each i,

ai1, ai2, . . . , aid is a basis of Zd.

Sketch of Proof: The general idea is to express f(P ∩ Zd;x) in terms of generating

functions for simpler sets, until the sets are simple enough to find the generating

function directly. Given a vertex v of P , let cone(P, v) be the supporting or tangent

cone to P at v. This is the smallest cone with vertex v which contains P (see

Figure 1.2.4). To be precise, if P =
{
x ∈ Rd : 〈ai, x〉 ≤ bi for all i ∈ I

}
, for some

ai ∈ Rd, bi ∈ R, and I a finite index set, then let Iv = {i ∈ I : 〈ai, v〉 = bi}, and

define

cone(P, v) =
{
x ∈ Rd : 〈ai, x〉 ≤ bi for i ∈ Iv

}
.

12

v

P

cone(P,v)

Figure 1.2.4: Example of cone(P, v)

Then Brion’s Theorem ([Bri88], or see Section VIII.4 of [Bar02]) states that

f(P ∩ Zd;x) =
∑

v a vertex of P

f
(
cone(P, v) ∩ Zd;x

)
.

Now we have reduced to the case of finding the generating function for a cone.

We may triangulate a given cone(P, v) into simplicial cones in polynomial time, and

then compute the generating function of each piece of the triangulation separately,

so we only need to be able to find the generating function for cones K which are

simplicial.

One particular type of simplicial cone for which it is easy to find the generating

function is a unimodular cone, that is, a cone

K =
{
x ∈ Rd : 〈ai, x〉 ≤ bi for i = 1, 2, . . . , d

}

such that the ai ∈ Zd form a basis for Zd, and such that bi ∈ Q. Indeed, if

u1, u2, . . . , ud is the negative dual basis of Zd so that 〈ui, aj〉 = −δij, then

f(K ∩ Zd;x) = xv

d∏
i=1

1

1− xui
,

13

x

y K

Figure 1.2.5: A unimodular cone, K

where v = −∑bbicui (see Lemma 4.1 of [BP99]). For example, if K is the unimodular

cone K pictured in Figure 1.2.5, then v = (−1, 0), u1 = (2, 1), and u2 = (1, 1), and

so

f(K ∩ Zd; x, y) = x−1(1 + x2y + x2y4 + · · ·)(1 + xy + x2y2 + · · ·)

=
x−1

(1− x2y)(1− xy)
.

It is too much to hope that a simplicial cone could be divided into a polynomial

number of unimodular cones, however. For example, if K = co{u1, u2} ⊂ R2 is the

cone generated by the vectors u1 = (1, 0) and u2 = (1, n) (see Figure 1.2.6(a)), then

a triangulation into unimodular cones would need n of them, the cone generated by

(1, i− 1) and (1, i) for each 1 ≤ i ≤ n. This is exponential in the input size O(log n).

The key step in Barvinok’s proof is showing that K can be represented as a short

signed sum of unimodular cones. To be more precise, if A ⊂ Rd, define the indicator

14

x

y

u1

u2

K

x

y

u1

u2

K

w

(a) (b)

Figure 1.2.6: Triangulation of K into (a) unimodular cones and (b) signed unimodular cones

function [A] : Rd → R by

[A](x) =

1 if x ∈ A

0 if x /∈ A

.

Then there exists polynomially many unimodular cones K1, K2, . . . , Kn such that

[K] =
n∑

i=1

±[Ki].

For instance, in our example, if w = (0, 1), then

[K] = [co{w, u1}]− [co{w, u2}] + [co{u2}]

(see Figure 1.2.6(b)). The proof follows. ¤

The algorithm that we sketched has been implemented successfully, using the

program LattE [DLHTY04].

1.2.7 Specialization (monomial substitution)

Now that we have a nice collection of generating functions that we can find, we

would like to be able to manipulate them and to use them to answer questions

15

about the set. For example, if S is a finite set, and we have computed f(S;x), then

we would like to be able to compute |S|. This can be accomplished by specializing

f(S;x) at (x1, x2, . . . , xd) = (1, 1, . . . , 1). This is not as easy, however, as substituting

(1, 1, . . . , 1) for x, because (1, 1, . . . , 1) may be a pole of some of the fractions in the

rational generating function as given. For example, if S = {0, 1, 2, . . . , N}, then

f(S; x) =
1

1− x
− xN+1

1− x
,

and 1 is a pole of the fractions.

Nevertheless, (1, 1, . . . , 1) is a regular point of f(S;x), which is actually a poly-

nomial (since S is finite), and so this specialization should be well-defined. This was

first done in [Bar94] to count the number of integer points in a polyhedron.

More generally, let f(x), with x ∈ Cd, be a rational function in the form (1.2.1),

and let l1, l2, . . . , ld ∈ Zn be integer vectors. These vectors define the monomial map

φ : Cn → Cd given by

z = (z1, z2, . . . , zn) 7→ (zl1 , zl2 , . . . , zld).

If the image of φ does not lie entirely in the poles of f(x), we can define the function

g : Cn → C by

g(z) = f
(
φ(z)

)
,

which is regular at almost every point in Cn. Then g(z) is f(x) specialized at xi = zli .

In particular, if li = 0 for all i, then g(z) is f(1, 1, . . . , 1). We have the following

theorem, which states that, given f(x) as a short rational generating function, we

can find g(z) quickly.

Theorem 1.2.8. (Theorem 2.6 of [BW03]) Let us fix k, an upper bound on the ki

in (1.2.1). Then there exists a polynomial time algorithm, which, given f(x) in the

16

form (1.2.1) and a monomial map φ : Cn → Cd such that the image of φ does not

lie entirely in the poles of f(x), computes g(z) = f
(
φ(z)

)
in the form

g(z) =
∑

i∈I′
βi

zqi

(1− zbi1)(1− zbi2) · · · (1− zbis)
,

where s ≤ k, βi ∈ Q, qi, bij ∈ Zn, and bij 6= 0 for all i, j.

Sketch of proof: Again, we cannot simply substitute φ(z) in for x, because φ(z),

for generic z, might be a pole of some of the fractions in the sum and yet be a

regular point of f(x). To solve this problem, we first change variables. Let es =

(es1 , es2 , . . . , esl) where s = (s1, s2, . . . , sl), and define F : Cd → C and G : Cn → C

so that

F (s) = f(es) and G(t) = g(et).

In particular,

F (s) =
∑
i∈I

αi
exp〈s, pi〉(

1− exp〈s, ai1〉
)(

1− exp〈s, ai2〉
) · · · (1− exp〈s, aiki

〉) .

Let Φ : Cn → Cd be defined by Φ(t) =
(〈t, l1〉, 〈t, l2〉, . . . , 〈t, ld〉

)
so that

G(t) = F
(
Φ(t)

)
.

Let L ⊂ Cd be the subspace which is the image of Cn under the linear map Φ. If

we could rewrite F (s) as

F (s) =
∑

i∈I′
βi

exp〈s, qi〉(
1− exp〈s, bi1〉

)(
1− exp〈s, bi2〉

) · · · (1− exp〈s, biki
〉)

in such a way that L was not orthogonal to any of the bij, then we would be allowed to

simply substitute Φ(t) for s to compute G(t) = F
(
Φ(t)

)
(and then we could retrieve

g(z)).

We do that as follows. Choose v ∈ Rd such that 〈v, aij〉 6= 0 for all i, j. Fix a

regular point s ∈ L of F (s). We consider the function F (s + τv) as a function of

17

τ ∈ C. We have that F (s+ τv) is analytic in a neighborhood of τ = 0, and we would

like to compute the constant term (in τ), which is exactly F (s). We do this for each

fraction in the sum.

Take a particular fraction in the sum,

h(τ) =
exp〈s + τv, p〉(

1− exp〈s + τv, a1〉
)(

1− exp〈s + τv, a2〉
) · · · (1− exp〈s + τv, ak〉

) ,

where p, ai ∈ Zd. Assume, without loss of generality, that a1, a2, . . . , al are orthogonal

to L for some l with 0 ≤ l ≤ k (these are the ai we must do something about), and

al+1, al+2, . . . , ak are not orthogonal to L. In particular, 〈s, ai〉 = 0 for 1 ≤ i ≤ l.

Then

τ lh(τ) = exp〈s, p〉 exp {τ〈v, p〉}
l∏

i=1

τ

1− exp {τ〈v, ai〉}

×
k∏

i=l+1

1

1− exp〈s + τv, ai〉 .

Our goal, then, is to compute the coefficient of τ l in the right hand side, which we

can do by carefully writing the two products as power series expansions. The proof

follows. ¤

1.2.9 Boolean combinations

Now we turn to another operation that we can perform on short rational gener-

ating functions. Let S1, S2, . . . , Sm ∈ Zd be finite sets. We say that S is a Boolean

combination of S1, S2, . . . , Sm if it can be obtained from the Si by taking intersec-

tions, unions, and set subtractions. Suppose we already know the rational generating

functions f(Si;x) for each i. The following theorem states that we can find (quickly)

the generating function for the Boolean combination S, using only the generating

functions f(Si;x) (and no other information about these sets Si). Note that it is very

18

important that we fix m, the number of sets we are taking a Boolean combination

of.

Theorem 1.2.10. (Corollary 3.7 of [BW03]) Let us fix m and k (an upper bound on

the number of binomials in the denominator of any fraction of any f(Si;x)). Then

there exists an s = s(k,m) and a polynomial time algorithm, which, for any finite sets

S1, S2, . . . , Sm ⊂ Zd given by their generating functions f(Si;x) in the form (1.2.1)

and any set S ⊂ Zd defined as a Boolean combination of S1, S2, . . . , Sm, computes

f(S;x) in the form

f(S;x) =
∑

i∈I′
γi

xui

(1− xvi1)(1− xvi2) · · · (1− xvis)
,

where γi ∈ Q, ui, vij ∈ Zd, and vij 6= 0 for all i, j.

Sketch of proof: We first discuss a binary operation on Laurent power series called

the Hadamard product. Let g1(x) and g2(x) be Laurent power series given by

g1(x) =
∑

m∈Zd

αmxm and g2(x) =
∑

m∈Zd

βmxm.

Then the Hadamard product g = g1 ? g2 is defined to be the power series

g(x) =
∑

m∈Zd

αmβmxm.

Note that if S1, S2 ⊂ Zd and

g1(x) =
∑
m∈S1

xm and g2(x) =
∑
m∈S2

xm,

then

(g1 ? g2)(x) =
∑

m∈S1∩S2

xm.

Therefore to compute the generating function for the intersection of two sets, we

must compute the appropriate Hadamard product. Once we show we can compute

19

f(S1∩S2;x) in polynomial time, then we use the facts that f(S1∪S2;x) = f(S1;x)+

f(S2;x)−f(S1∩S2;x) and f(S1\S2;x) = f(S1;x)−f(S1∩S2;x) to finish the proof.

Note that we must be careful when talking about infinite Laurent power series

expansions (and about Hadamard products) of rational functions. For example 1
1−x

has two possible expansions as a Laurent power series,

1 + x + x2 + x3 + · · · or − x−1 − x−2 − x−3 − · · · ,

and these expansions converge on different neighborhoods in C (on ‖x‖ < 1 and

‖x‖ > 1, respectively). We must carefully expand f(Si;x) as Laurent power series

which converge on a particular neighborhood, which we do as follows.

Suppose we have two finite sets S1 and S2, and we are given f(S1;x) and f(S2;x)

as short rational generating functions

f(S1;x) =
∑
i∈I1

αi
xpi

(1− xai1) · · · (1− xaik)
and

f(S2;x) =
∑
i∈I2

βi
xqi

(1− xbi1) · · · (1− xbik)
.

Let us choose a vector l such that 〈l, aij〉, 〈l, bij〉 6= 0. If 〈l, aij〉 > 0 (and similarly for

the bij), we may apply the identity

xp

1− xa
= − xp−a

1− x−a
,

so that, without loss of generality 〈l, aij〉, 〈l, bij〉 < 0 for all i, j. Then, if we expand

f(S1;x) as a Laurent series convergent on a neighborhood of (el1 , el2 , . . . , eld) (and

similarly for f(S2;x)), we get

∑
i∈I1

αi

∑

λ1,...,λk∈Z≥0

xpi+λ1ai1+λ2ai2+···+λkaik .

20

This Laurent power series expansion is exactly
∑

m∈S1
xm.

Since the Hadamard product is bilinear,

f(S1 ∩ S2;x) =
∑

i∈I1,j∈I2

αiβj

(
xpi

(1− xai1) · · · (1− xaik)
?

xqj

(1− xbj1) · · · (1− xbjk)

)
.

The proof follows by the following lemma. ¤

Lemma 1.2.11. Fix k (the maximum number of binomials in the denominators of

the rational functions). Then there exists a polynomial time algorithm which, given

l ∈ Zd and functions

g1(x) =
xp

(1− xa1) · · · (1− xak)
and

g2(x) =
xq

(1− xb1) · · · (1− xbk)

such that 〈l, ai〉, 〈l, bi〉 < 0, computes g = g1 ? g2 (where the Laurent power series are

convergent on a neighborhood of (el1 , el2 , . . . , eld)).

Sketch of proof: Let P ⊂ R2k be a rational polyhedron defined by

P =
{
(ξ1, . . . , ξ2k) ∈ R2k : p + ξ1a1 + · · ·+ ξkak =

q + ξk+1b1 + · · ·+ ξ2kbk and ξi ≥ 0 for all i
}
.

Then examining g1 and g2 as Laurent power series will yield that g1(x) ? g2(x) is

xpf(P ∩ Z2k; z), specialized at z1 = xa1 , . . . , zk = xak , zk+1 = 1, . . . , z2k = 1.

We use Theorems 1.2.3 and 1.2.8 to compute this. ¤

Note that if g and h are each a sum of N fractions with k binomials in the

denominator, then g ? h will be written as the sum of N2 Hadamard products of

fractions like the g1 and g2 in the statement of Lemma 1.2.11, and after taking the

21

Hadamard product, each fraction may now have 2k binomials in the denominator.

These considerations make it vital that only a fixed number of boolean operations

be performed in order to compute the generating function in polynomial time.

1.3 Neighbors and the Neighborhood Complex

Let A be an n× d matrix, and let ai be the ith row of A. We will shortly define

a simplicial complex C = C(A) whose vertices are Zd. By a simplicial complex,

we mean that C is a collection of finite subsets of Zd, and that if s ∈ C, then all

subsets of s are also in C. This complex will contain infinitely many simplices s,

and it will not, in general, be geometrically realizable in Rd. This complex is called

the neighborhood complex of A (it is also sometimes called the complex of maximal

lattice-free bodies or the Scarf complex).

The neighborhood complex is closely related to the family of integer programs

IPA given by

(1.3.1) IPA(b) = min〈an, x〉 such that 〈ai, x〉 ≤ bi for 1 ≤ i ≤ n− 1, and x ∈ Zd,

as b = (b1, b2, . . . , bn−1) varies in Rn−1. Theorem 1.1.15 will allow us to compute

the generating function for the neighborhood complex (we will define this generating

function precisely in Section 3.3). We introduce the complex here, because C(A) will

also be essential in formulating a different way to find generating functions for lattice

point sets (see Chapter IV). We will not need anything in this section, however, for

the proof of Theorem 1.1.15. For an excellent introduction to the neighborhood

complex, see [Sca97].

Given b′ ∈ Rn, define the polyhedron

Kb′ =
{
x ∈ Rd : Ax ≤ b′

}
.

22

x

y

Kb'

x

y

Kb'

(a) (b)

Figure 1.3.2: In Example 1.3.3, edges of C(A) include (a)
{
(0, 0), (0, 1)

}
and (b)

{
(0, 0), (1, 0)

}

Note that this definition includes 〈an, x〉 ≤ b′n as a constraint, whereas in (1.3.1),

〈an, x〉 is the objective function. We will assume that Kb′ is bounded: this corre-

sponds (excepting some degenerate cases) to the minimum existing in the integer

programs IPA(b) in (1.3.1). We say that s = {h0, h1, . . . , hk} ⊂ Zd is a simplex of

C = C(A) if and only if there exists a b′ such that Kb′ contains h0, h1, . . . , hk but Kb′

contains no integer points in its interior. Then C is a simplicial complex (the same

Kb′ which works for s works for all subsets of s), and C is invariant under translation

by Zd.

Example 1.3.3. Let

A =

[
2 1

−1 −2
−1 1

]
.

Then Figure 1.3.2 shows that
{
(0, 0), (0, 1)

}
and

{
(0, 0), (1, 0)

}
are edges of C(A).

This definition only works well if A is generic in the following sense: if b′ is such

that Kb′ contains no integer points in its interior, then no facet of Kb′ contains more

than one integer point. The matrix A often fails to be generic when it is a small

integer matrix, so it is important that we determine what definition of C to use in

23

the non-generic case, which we will do later in this section. For now, we assume that

A is generic.

1.3.4 Test sets

For x, y ∈ Zd, we say that x is a neighbor of y if {x, y} is an edge of C. Define

N to be the set of neighbors of the origin. Then y + N is the set of neighbors of y.

The set N forms a test set for the family of integer programs IPA(b), as the following

proposition makes explicit.

Proposition 1.3.5. (Theorem 3 of [Sca97]) Suppose, for a given b, that y is a feasible

solution to the integer program IPA(b) in (1.3.1), that is, y satisfies the constraints

〈ai, y〉 ≤ bi, for 1 ≤ i ≤ n− 1. Then y is an optimal solution to IPA(b) if and only

if there is no neighbor x of y such that both x is feasible and 〈x, an〉 < 〈y, an〉.

That is, to decide whether a feasible solution y is optimal, we only have to test

the set of points y + N to see if any of them are feasible and closer to optimal.

Because of the importance of neighbors to integer programming, much effort has

been made to find some sort of structure in the set N and the complex C. For small

dimensions, such structure has been found, and we will give some examples.

Example 1.3.6. When d = 1, C consists of vertices {i}, for i ∈ Z, and edges

{i, i + 1}.

Example 1.3.7. When d = 2, n = 3, there exist h1, h2 ∈ Z2 such that the neighbor-

hood complex consists of vertices {x}, for x ∈ Z2; edges {x, x+h1}, {x, x+h2}, and

{x, x+h1 +h2}; and triangles {x, x+h1, x+h1 +h2} and {x, x+h2, x+h1 +h2} (see

Figure 1.3.8). Notice that these triangles exactly tile Z2 (see, for example, [Sca97]).

24

x

y

h1

h2

h1 h2+

Figure 1.3.8: Example 1.3.7, the neighborhood complex when d = 2, n = 3

This is not true in higher dimensions, but C will still have a nice topology, as we will

shortly discuss.

Example 1.3.9. When d = 2, n > 3, there may be exponentially many (in the input

size of A) neighbors. Nevertheless, H. Scarf proved that the neighbors of the origin

all lie on polynomially many intervals. In fact, Scarf used this [Sca81] to provide

the first polynomial time algorithm for integer programming in two dimensions (H.

Lenstra later discovered [Len83] a polynomial algorithm for any fixed d, using differ-

ent methods). The neighborhood complex is 3-dimensional and its simplices of all

dimensions can also be parametrized to lie on polynomially many intervals.

Example 1.3.10. When d = 3, n = 4, D. Shallcross [Sha92] showed that the neigh-

bors of the origin have a nice form: they are the integer points in a union of 2-

dimensional polyhedra.

For bigger d and n, however, little is known, though L. Lovász conjectured [Lov89]

that the neighbors are the union of polynomially many intersections of lower dimen-

25

sional polyhedra with sublattices of Zd. In Proposition 3.3.1, we will show that the

set of neighbors does have some structure, namely, it can be encoded as a short

rational generating function using Theorem 1.1.15.

Even if the exact structure of the neighborhood complex is not known in higher

dimensions, at least the topology is nice. We have the following theorem.

Theorem 1.3.11. (Theorem 2 of [BSS98]) C(A) is contractible.

In fact, if we include some “ideal” simplices (which we will not discuss here),

then C is homeomorphic to Rn−1 (see [BSS98]). This theorem will come in handy in

Chapter IV.

Another nice property of the neighborhood complex is that, if we fix d but let n

be arbitrarily large, the dimension of the complex C is not too big. This has been

discovered independently several times: by J.-P. Doignon [Doi73], D. Bell [Bel77],

and H. Scarf [Sca77].

Proposition 1.3.12. If s = {h0, h1, . . . , hk} is a simplex in C, then k ≤ 2d − 1.

Proof. Let Kb′ , for some b′ ∈ Rn, be a polytope containing s but with no interior

integer points. Then, because A is assumed generic, each facet of Kb′ contains at

most one point from s. Suppose k ≥ 2d, that is, |s| ≥ 2d + 1. Then s contains two

distinct points, hi and hj, such that hi
l ≡ hj

l (mod 2), for all l. But then (hi + hj)/2

is an integer point in the interior of Kb′ , which is a contradiction.

If h is a neighbor of the origin, then Proposition 1.3.14 below will give a bound

on the coordinates of h. To prove it, we need the following lemma.

Lemma 1.3.13. (Part 1 of Theorem 1 from [CGST86]) Let A be an integral n× d

matrix, let b and w be vectors such that Ax ≤ b has an integral solution and max{wx :

26

Ax ≤ b} exists, and let ∆(A) be the largest absolute value of the determinant of any

square submatrix of A. Then for each optimal solution x̄ to

max{wx : Ax ≤ b}

there exists an optimal solution z∗ to

max{wx : Ax ≤ b, x integral}

such that ‖x̄− z∗‖∞ ≤ d∆(A).

Proposition 1.3.14. Let A be a generic n × d matrix, and let ∆(A) be the largest

absolute value of the determinant of any square submatrix of A. If h is a neighbor

of the origin in C(A), then ‖h‖∞ ≤ d∆(A).

Proof. Let Kb be a polytope which contains only 0 and h, with both 0 and h on its

boundary, and let i be an index such that 〈ai, h〉 = bi. Let b′ ∈ Zn be such that

b′j = bj for j 6= i, and b′i = bi − ε,

for some small ε > 0. Then the only integer point in Kb′ is 0. Let

x̄ = h− ε
ai

‖ai‖2
.

Then 0 is the only optimal solution to the integer programming problem

max
{〈ai, x〉 : Ax ≤ b′, x integral

}
,

whereas x̄ is an optimal solution to the linear relaxation

max
{〈ai, x〉 : Ax ≤ b′

}
.

Then by Lemma 1.3.13, ‖x̄‖∞ ≤ d∆(A). Taking ε → 0, the proof follows.

27

1.3.15 Non-genericity

Finally, we turn to the case where A is not generic (that is, there exists a b′

such that Kb′ contains no integer points in its interior but it contains more than one

integer point on some facet). Assume that A is integral, which is the case we will

be concerned about anyway. Suppose Kb′ is a polytope with no integer points in its

interior, and suppose some facet, 〈ai, x〉 = b′i, of Kb′ contains two or more integer

points, h1, h2, . . . , hm, for some m ≥ 2. To resolve the non-genericity, we want to

choose one of the hj to be in the simplex s. One way to resolve this is to use a

lexicographical rule, which H. Scarf does in [Sca81]. He includes the hj for which the

following sequence is lexicographically minimal:

(
〈a1, h

j〉, 〈a2, h
j〉, . . . , 〈an, hj〉

)
.

Here we use a slightly different approach developed in [SW03], which is to perturb

things so that these “ties” don’t occur. This approach is basically equivalent, but

it is geometric so that useful facts such as Theorem 1.3.11 are still easy to prove.

Rather than perturb x ∈ Zd we perturb Ax ∈ Zn. We call φ : Zn → Rn a proper

perturbation if the following 3 conditions hold (where [a]i means the ith coordinate

of a):

1. If c 6= d, then [ϕ(c)]i 6= [ϕ(d)]i for all i,

2. If [ϕ(c)]i < [ϕ(d)]i for some i, then ci ≤ di, and

3. If [ϕ(c)]i < [ϕ(d)]i for some i, then [ϕ(c + e)]i < [ϕ(d + e)]i for all e ∈ Zn.

The first condition ensures that we will be in the generic case, the second ensures

that the perturbation only “breaks ties” and doesn’t change the natural ordering,

28

and the third condition will be needed to prove that the neighborhood complex is

invariant under translation by Zd.

To prove that proper perturbations exist, we will construct an example of one.

Example 1.3.16. This example corresponds to the lexicographical tie-breaking rule

used in [Sca81]. Given an integer i, let fi : Z→ R be a function such that

1. fi is strictly increasing,

2. fi(0) = 0 (and hence fi(x) < 0 if x < 0), and

3. if |x| > 0 (hence |x| ≥ 1), then 1
22i ≤ |fi(x)| < 1

22i−1 .

Now define ϕ : Zn → Rn by

ϕ(x) = x + (x1f1(x1) + x2f2(x2) + · · ·+ xnfn(xn)) · 1,

where 1 is the n-vector of ones. One can check that ϕ is a proper perturbation.

Given a proper perturbation ϕ, we can now define the neighborhood complex, C,

on the vertices Zd, by saying s = {h0, h1, . . . , hk} is in C if and only if for no x ∈ Zd

is

ϕ(Ax) < max
(
ϕ(Ah0), ϕ(Ah1), . . . , ϕ(Ahk)

)
,

where the maximum is taken coordinate-wise (that is, [max(x, y)]i = max(xi, yi)).

Note that if ϕ is the identity, then this is the definition of C in the generic case,

because if b′ is taken to be

b′ = max
(
Ah0, Ah0, . . . , Ahk

)
,

then Kb′ is the smallest of all Kb containing s, and the condition that for no x ∈ Zd

is Ax < b′ is exactly the condition that Kb′ contains no integer points in its interior.

29

The complex C may be different for different ϕ, but many properties (including

all of the theorems and propositions in this section) hold regardless of the choice of

ϕ. The following lemma shows that C is invariant under translation by Zd.

Lemma 1.3.17. If ϕ is a proper perturbation, then the neighborhood complex C, as

defined above, is invariant under translation by Zd.

Proof. Given z ∈ Zd, we have the following chain of implications:

s = {h0, h1, . . . , hk} ∈ C

⇒ for no x ∈ Zd is ϕ(Ax) < max
(
ϕ(Ah0), ϕ(Ah1), . . . , ϕ(Ahk)

)

⇒ given x ∈ Zd, ∃i such that ∀j [ϕ(Ax)]i ≥ [ϕ(Ahj)]i

⇒ given x ∈ Zd, ∃i such that ∀j [ϕ(Ax + Az)]i ≥ [ϕ(Ahj + Az)]i

(by Property 3 of proper perturbations)

⇒ for no x ∈ Zd is ϕ
(
A(x + z)

)
< max

(
ϕ
(
A(h0 + z)

)
, ϕ

(
A(h1 + z)

)
, . . . , ϕ

(
A(hk + z)

))

⇒ s + z ∈ C.

CHAPTER II

The Projection Theorem

In this chapter, we will prove Theorem 1.1.15. In Section 2.1, we give an outline

of the proof and examine some special cases. In Section 2.2, we discuss some needed

“flatness” results from the geometry of numbers. In Section 2.3, we examine an idea

from parametric integer programming, developed by R. Kannan, L. Lovász, and H.

Scarf in [KLS90] and [Kan92]. Finally, in Section 2.4, we combine these results to

prove Theorem 1.1.15. The proof of Theorem 1.1.15 originally appeared in [BW03].

2.1 Outline

Suppose we are given a rational polytope P ⊂ Rd and a linear transformation

T : Rd → Rk, such that T (Zd) ⊂ Zk. We would like to find f(S;x) in polynomial

time (for fixed d), where S = T (P ∩Zd). The proof will by induction on dim(ker(T)).

In this section we will prove the simplest two cases, where dim(ker(T)) is 0 or 1, and

then we will outline the general proof.

Suppose that dim(ker(T)) = 0, so T is injective. The first step is to find

f(P ∩ Zd;y), which we can do in polynomial time using Theorem 1.2.3. Now let

e1, e2, . . . , ed be the standard basis of Zd, and let fi = T (ei), for each i. Then we

obtain f(S;x) from f(P ∩ Zd;y) by applying the monomial substitution yi = xfi ,

using Theorem 1.2.8.

30

31

y

x

Q
P

y

x

T(Q)

(a) (b)

Figure 2.1.1: Example 2.1.2, T (x, y) = (x + y, x− y), (a) Q = P ∩ Z2 and (b) S = T (Q)

Example 2.1.2. Suppose P ⊂ R2 is the square pictured in Figure 2.1.1(a), let

Q = P ∩ Z2, and let T : R2 → R2 be defined by T (x, y) = (x + y, x − y). Then

S = T (Q) is pictured in Figure 2.1.1(b), f(Q; x, y) = 1 + x + xy + y, and

f(S; u, v) = f(Q; uv, uv−1) = 1 + uv + u2 + uv−1.

Now suppose that dim(ker(T)) = 1. In Section 2.3, we will show that, without

loss of generality, we may assume that T (x1, x2, . . . , xd) = (x1, x2, . . . , xd−1). Let

Ŝ = P ∩ Zd. As before, we first find f(Ŝ;x, xd) using Theorem 1.2.3, where x =

(x1, x2, . . . , xd−1).

Example 2.1.3. Let P be as pictured in Figure 2.1.4(a), and let T (x, y) = x. Then

f(Ŝ; x, y) = 1 + y + y2 + x + xy + x2y.

In general, if we were to apply the monomial substitution xd = 1, xi = xi for

1 ≤ i ≤ d − 1, that is, if we were to specialize at xd = 1, we would not quite get

the generating function f(S;x) that we want: the coefficient of xa would be the

32

T

T(S)

S

y

x

T

T(S')

S'

y

x

(a) (b)

Figure 2.1.4: Example 2.1.3, T (x, y) = x, (a) Ŝ and T (Ŝ) and (b) S′ and T (S′)

cardinality of the preimage T−1(a) ⊂ Ŝ. In Example 2.1.3, we would have

f(Ŝ; x, 1) = 3 + 2x + x2.

For this monomial substitution idea to work, we would need the map T |Ŝ to be

one-to-one.

To fix this, notice that the preimage T−1(a) ⊂ Ŝ of any a ∈ S is an interval

of points {(a, b0), (a, b0 + 1), . . . , (a, b1)}, for some b0, b1 ∈ Z. Let S ′ be the set

Ŝ \ (
Ŝ +(0, 0, . . . , 0, 1)

)
(see Figure 2.1.4(b)). Then the preimage of any a ∈ S under

the map T |S′ : S ′ → S is simply the point (a, b0), and so the map T |S′ is one-to-one

(and onto S). To obtain f(S ′;x, xd), we use Theorem 1.2.10 together with the fact

f(Ŝ +(0, 0, . . . , 0, 1);x, xd) = xdf(Ŝ;x, xd). Now we compute f(S;x) by specializing

f(S ′;x, xd) at xd = 1, using Theorem 1.2.8. In Example 2.1.3,

f(S ′; x, y) = 1 + x + x2y and f(S; x) = f(S ′; x, 1) = 1 + x + x2.

In the general case, where dim(ker(T)) > 1, we will proceed inductively on

33

dim(ker(T)). First we will choose (very carefully) a direction w ∈ ker(T) \ {0}.

Then let T̂ : Rd → Rk ⊕ R be the linear transformation

T̂ (x) = (T (x), 〈w, x〉),

and let π : Rk ⊕ R→ Rk be the projection

π(x, ξ) = x.

Then T = π◦T̂ . Furthermore, dim(ker(T̂)) = dim(ker(T))−1. Let Ŝ = T̂ (P∩Zd), so

that π(Ŝ) = S. By the induction hypothesis, we may find f(Ŝ;x, xk+1) in polynomial

time.

Ŝ will not be as nice as it was in the case where dim(ker(T)) = 1, where Ŝ was

the set of integer points in a polytope.

Example 2.1.5. Suppose Ŝ is as in Figure 2.1.6(a), with π(x, y) = x. Then Ŝ is not

the set of integer points in a polytope.

In general, then, the preimage π−1(a) ⊂ Ŝ, for a ∈ S, will not be an interval

of points {(a, b0), (a, b0 + 1), . . . , (a, b1)} as it was before. We will prove, however,

that (for the appropriate choice of w) the preimage will be similar to an interval in

that it will not have large “gaps.” To be concrete, there exists a constant σ = σ(d)

depending only on d, such that if (a, b0) and (a, b1) are in Ŝ and b1−b0 > σ, then there

is a b with b0 < b < b1 such that (a, b) ∈ Ŝ. In Example 2.1.5 (see Figure 2.1.6(a)),

σ = 2 works, because gaps as large as in Figure 2.1.6(b) (where b1 − b0 = 3 > 2) do

not occur.

Then, generalizing what we did in the dim(ker(T)) = 1 case, define Ŝ + i to be

Ŝ + (0, 0, . . . , 0, i), and let

S ′ = Ŝ \
σ⋃

i=1

(
Ŝ + i

)
.

34

S+(0,2)

S

π(S)

π

S+(0,2)

π(S)

b1

b0

(a) (b)

S

S+(0,1)

S'

π(S')

S

S+(0,1)

S+(0,2)

S'

π(S')

π

(c) (d)

Figure 2.1.6: Example 2.1.5, for σ = 2 and π(x, y) = x, (a) Ŝ and π(Ŝ), (b) a gap that doesn’t
appear in Ŝ, (c) Ŝ \ (Ŝ + 1), and (d) S′ = Ŝ \ (Ŝ + 1) \ (Ŝ + 2) and π(S′)

35

In Example 2.1.5 (with σ = 2), Figure 2.1.6(c) shows Ŝ \(Ŝ + 1), and Figure 2.1.6(d)

shows S ′ = Ŝ \ (Ŝ + 1) \ (Ŝ + 2). Note that, in this case, the map π : S ′ → S is

one-to-one. This is true in general, because for any a ∈ S, there is exactly one point

(a, b0) in S ′, given by b0 = min{b : (a, b) ∈ Ŝ}. We may find f(S ′;x, xk+1) using

Theorem 1.2.10 (since σ is fixed, for fixed d), and then we specialize at xk+1 = 1,

using Theorem 1.2.8, to compute f(S;x).

There is one more complication. It is not possible to choose the same w for every

point a ∈ S, and expect the preimage to not have large gaps. We will have to do the

following. We will partition T (P) ⊂ Rk into pieces Q′
1, Q

′
2, . . . , Q

′
n in a particular

way. Each piece Q′
i will be the relative interior of a polytope Qi (these Qi will not

all be full dimensional), and n will be bounded by a polynomial in the input. Each

Q′
i will have an associated wi which will be used, as before, to define the linear

transformation

T̂i : Qi → Rk ⊕ R, with T̂i(x) = (T (x), 〈wi, x〉).

We will use the process outlined above to calculate f(Q′
i∩S;x), for each i, and then

we have

f(S;x) =
n∑

i=1

f(Q′
i ∩ S;x).

The Qi will be calculated based on the shapes of the preimages T−1(a) ⊂ P .

Example 2.1.7. If P ⊂ Rd is the convex hull of (−5, 0,±5) and (5,±5, 0) and

T (x, y, z) = x (see Figure 2.1.8), then the preimages T−1(x) ⊂ P are rectangles. For

−5 ≤ x < 0, these rectangles are thinnest in the y-direction, and for 0 < x ≤ 5,

these rectangles are thinnest in the z-direction. A possible partition of T (P) into

Q′
i, where Q′

i are relative interiors of polytopes, would be

Q′
1 = (−5, 0), Q′

2 = (0, 5), Q′
3 = {−5}, Q′

4 = {0}, Q′
5 = {5},

36

x

y

z

(-5,0,5)

(-5,0,-5)

(5,-5,0)

(5,5,0)

-5 5

T

P

Figure 2.1.8: Example 2.1.7, P = conv
{
(5, 0,±5), (5,±5, 0)

}
, T (x, y, z) = x

and we could have w1 = w3 = w4 = (0, 1, 0) and w2 = w5 = (0, 0, 1).

In general, wi should be a direction in which T−1(a) ⊂ P is “flat,” for a ∈ Qi.

We will go through the specifics of how to partition T (P), in general, in Section 2.3.

2.2 Lattice Width and Flatness Directions

In this section, we develop the geometric theory which tells us that, if w (see

outline of proof, Section 2.1) is chosen so that it is a “flat” direction of T−1(a) ⊂ P ,

for a given a ∈ Rk, then π−1(a) ⊂ Ŝ will have small gaps, as desired. Section 2.3 will

then tell us how to find these directions.

Let Λ ⊂ Rd be a d-dimensional lattice, and let Λ∗ be the dual lattice

Λ∗ = {c ∈ Rd : 〈c, λ〉 ∈ Z for all λ ∈ Λ},

where 〈·, ·〉 is the standard inner product on Rd. We will be mainly concerned with

the case Λ = Λ∗ = Zd.

Let B be a convex body (that is, a convex, compact set). If B were centrally

37

(a) (b)

Figure 2.2.1: Convex B such that B ∩ Z2 = ∅

symmetric, and if B contained no nonzero lattice points, then Minkowski’s Theorem

(see Section VII.3 of [Bar02], for example) would give a bound

vol B ≤ 2d det Λ,

where det Λ is the cardinality of Zd/Λ.

2.2.2 Flatness

We will be concerned with convex bodies that are not necessarily centrally sym-

metric. In this case, B could contain no lattice points and yet have arbitrarily large

volume, as in Figure 2.2.1. Notice that, for this to happen, B must be flat like a

pancake.

Let us be more precise. Given a convex body B ⊂ Rd and a vector c ∈ Λ∗ \ {0},

define the width of B along c to be

width(B, c) = max
x∈B

〈c, x〉 −min
x∈B

〈c, x〉.

38

Then define the lattice width of B to be

width(B) = min
c∈Λ∗\{0}

width(B, c).

We have the following theorem which says that if a convex body contains no lattice

points, it must be “flat” in some direction.

Theorem 2.2.3. (The Flatness Theorem) There exists a constant ω(d) which de-

pends only on d such that, if B is a convex body and B∩Λ = ∅, then width(B) ≤ ω(d).

For an elementary proof, see Section VI.8 of [Bar02]. The best known value for

ω is O(d
3
2) (see [BLPS99]), though it is conjectured to be O(d). Our constant σ(d)

(see outline of proof, Section 2.1) will be d2ω(d)e.

For any α ∈ R≥0 and any b ∈ Rd, it is clear that

width(αB + b, c) = α · width(B, c),

and so

width(αB + b) = α · width(B).

The following technical lemma will help us (see Figure 2.2.5 for an illustration

with c = (0, 1)).

Lemma 2.2.4. Let B ⊂ Rd be a convex body, let c ∈ Rd \ {0}, and let

γmin = min
x∈B

〈c, x〉 and γmax = max
x∈B

〈c, x〉.

Let γ1, γ2 be numbers such that γmin < γ1 < γ2 < γmax. Then there exists a point

x0 ∈ B and a number 0 < α < 1 such that, for

A = α(B − x0) + x0 = αB + (1− α)x0,

39

γmax

γmin

γ
2

γ1

B

A

Figure 2.2.5: Illustration of Lemma 2.2.4 with c = (0, 1)

one has A ⊂ B and

min
x∈A

〈c, x〉 = γ1 and max
x∈A

〈c, x〉 = γ2.

Proof. By translating and dilating B, we may assume without loss of generality that

γmin = 0 and γmax = 1. Since

0 <
γ1

1− γ2 + γ1

< 1,

we may choose x0 ∈ B such that 〈c, x0〉 = γ1

1−γ2+γ1
. Let α = γ2 − γ1. Then, for

A = αB + (1− α)x0, we have

min
x∈A

〈c, x〉 = α · 0 + (1− α)
γ1

1− γ2 + γ1

= γ1

and

max
x∈A

〈c, x〉 = α · 1 + (1− α)
γ1

1− γ2 + γ1

= γ2,

as desired. Furthermore, A ⊂ B, since B is convex.

40

2.2.6 Small gaps

We will use the following theorem to show that, if we choose w ∈ ker(T) (see

outline of proof, Section 2.1) such that T−1(a) ⊂ P is flat enough in the direction of

w, that is, such that

width(T−1(a), w) ≤ 2 · width(T−1(a)),

for a given a ∈ Rk, then π−1(a) ⊂ Ŝ will have small gaps, that is, gaps of size at

most σ(d) = d2ω(d)e. This is crucial to the proof of Theorem 1.1.15.

Theorem 2.2.7. Let B ⊂ Rd be a convex body, and let Λ ⊂ Rd be a lattice. Let

c ∈ Λ∗ be a nonzero vector. Let us consider the map:

φ : B ∩ Λ → Z, given by φ(x) = 〈c, x〉,

and let Y = φ(B ∩ Λ). Hence Y ⊂ Z is a finite set.

Suppose that

width(B, c) ≤ 2 · width(B).

Then, for any y1, y2 ∈ Y such that y2 − y1 > 2ω(d), there exists a y ∈ Y such that

y1 < y < y2.

Proof. Suppose there is no such y. Then for some small ε, 0 < ε < 1
2
, let γ1 = y1 + ε

and γ2 = y2 − ε, so [γ1, γ2] ∩ Y = ∅. Using Lemma 2.2.4, choose x0 ∈ B and α > 0

such that for A = α(B − x0) + x0, we have

min
x∈A

〈c, x〉 = γ1 and max
x∈A

〈c, x〉 = γ2.

Since A ⊂ B and [γ1, γ2]∩Y = ∅, we have A∩Λ = ∅. Then by the Flatness Theorem

(Theorem 2.2.3),

width(A) ≤ ω(d).

41

Since A = α(B − x0) + x0, we know

width(A, c) = αwidth(B, c) ≤ 2α · width(B) = 2 · width(A).

Therefore,

y2 − y1 − 2ε = γ2 − γ1 = width(A, c) ≤ 2 · width(A) ≤ 2ω(d),

for all ε > 0, and so y2 − y1 ≤ 2ω(d), a contradiction.

The following corollary will help us construct the set S ′ whose projection π : S ′ →

S is one-to-one (see outline of proof, Section 2.1).

Corollary 2.2.8. Let Y ⊂ Z be the set of Theorem 2.2.7 and let m = d2ω(d)e. If

Y 6= ∅, then the set

Z = Y \
m⋃

l=1

(Y + l)

consists of a single point.

Proof. By Theorem 2.2.7, that point is z, where z = min{y : y ∈ Y }.

2.3 Partitioning

Let T : Rd → Rk be a linear transformation such that T (Zd) ⊂ Zk. Let

P = {x ∈ Rd : Ax ≤ b}

be a rational polytope in Rd, for some n× d integer matrix A and some b ∈ Zn. For

a ∈ Rk, consider the fiber T−1(a) ∩ P . We will transform these fibers so that they

lie in Rr, where r = dim(ker(T)). We need the following lemma.

Lemma 2.3.1. There is a polynomial time algorithm which, given a linear transfor-

mation T : Rd → Rk such that T (Zd) ⊂ Zk with r = dim(ker(T)), computes linear

transformations T1 : Rd → Rd, T2 : Rd = Rd−r ⊕ Rr → Rd−r, and T3 : Rd−r → Rk

such that

42

1. T = T3 ◦ T2 ◦ T1,

2. T1 is a unimodular transformation (that is, T1(Zd) = Zd),

3. T2 : Rd = Rd−r ⊕ Rr → Rd−r is given by T2(x, y) = x, and

4. T3 is injective with T3(Zd−r) ⊂ Zk.

Proof. Let M be the k× d integer matrix which represents T . We first show how to

transform M into a lower triangular matrix (that is, a matrix such that Mij = 0 for

j > i) in polynomial time, using elementary (integer) column operations. Begin by

transforming the first row of M , using elementary operations on all columns, into

[
M ′

11 0 0 · · · 0

]
,

where M ′
11 = gcd(M11,M12, . . . , M1d). This requires at most d applications of the

Euclidean algorithm. Then, using elementary operations on all but the first column,

we may transform the second row into

[
M ′

21 M ′
22 0 · · · 0

]
,

where M ′
21, M

′
22 ∈ Z. Continuing gives us the desired lower triangular matrix. We

have decomposed M into

M = M ′C,

where M ′ is a k× d lower triangular matrix, and C is the d× d unimodular (that is,

|det(C)| = 1) matrix determined by the column operations. Let M ′′ be the k×(d−r)

matrix formed by the first d−r columns of M ′ (these are exactly the nonzero columns

of M ′). Then define T1 : Rd → Rd by

T1(x) = Cx,

43

define T2 : Rd = Rd−r ⊕ Rr → Rd−r by

T2(x, y) = x,

and define T3 : Rd−r → Rk by

T3(x) = M ′′x.

Then T = T3 ◦ T2 ◦ T1, and these maps have the desired properties.

We may assume, without loss of generality, that the map T3 from Lemma 2.3.1 is

the identity map Rd−r → Rd−r: otherwise, apply the following lemma with T ′ = T3

and S ′ = T2 ◦ T1(P ∩ Zd).

Lemma 2.3.2. Fix d and k. There is a polynomial time algorithm which, given an

injective linear transformation T ′ : Rd → Rk such that T (Zd) ⊂ Zk and a rational

generating function f(S ′;x) in the form

f(S ′;x) =
∑
i∈I

αi
xpi

(1− xai1)(1− xai2) · · · (1− xaiki)

with ki ≤ k, computes f(T ′(S ′);y) in the same form.

Proof. Let e1, e2, . . . , ed be the standard basis of Zd, and let fi = T ′(ei), for each i.

Then we obtain f(T ′(S ′);y) from f(S ′;x) by applying the monomial substitution

yi = xfi , using Theorem 1.2.8.

Now let T1 and T2 be given as in Lemma 2.3.1, and assume, without loss of

generality, the T3 is the identity transformation. Let P ′ = T1(P). If P =
{
x ∈ Rd :

Ax ≤ b
}
, and if C is the d× d matrix defined in the proof of Lemma 2.3.1, then P ′

is the polytope

P ′ =
{
y ∈ Rd : AC−1y ≤ b

}
.

44

Since T1 is a unimodular transformation, it bijectively maps P ∩ Zd to P ′ ∩ Zd, and

so

T (P ∩ Zd) = T2(P
′ ∩ Zd).

Therefore we may assume, without loss of generality, that T1 is the identity, that is,

that T = T2 is the map Rd = Rk ⊕ Rd−k → Rk given by T (x, y) = x.

Then we may identify the fibers T−1(a) ∩ P , for a ∈ Rk, with

Pa =
{
y ∈ Rd−k : (a, y) ∈ P

}
.

If P =
{
x ∈ Rd : Ax ≤ b

}
, let B be the n× k matrix formed by the first k columns

of A, and let B′ be the n× (d− k) matrix formed by that last d− k columns of A.

Then Pa is the polytope

{
y ∈ Rd−k : B′y ≤ b−Ba

}
.

2.3.3 Kannan’s partitioning lemma

We have the following lemma, a rephrasing of Part 3 of Lemma 3.1 of [Kan92].

In essence, it states that we may partition Q = T (P) into polynomially many (in

the input size of P and T , for fixed d) rational polytopes Qi, and for each i we may

find a direction wi ∈ Zd−k such that, for all a ∈ Qi, the lattice width of Pa is almost

attained at wi.

Lemma 2.3.4. Let us fix d. Then there exists a polynomial time algorithm, which,

for any rational polytope P ⊂ Rd and a linear transformation T : Rk ⊕ Rd−k → Rk

with T (x, y) = x, constructs rational polytopes Q1, Q2, . . . , Qm ⊂ Rk and vectors

w1, w2, . . . , wm ∈ Zd−k such that (when Pa is defined as above)

1. For each i = 1, 2, . . . , m and every a ∈ Qi, either

45

(a) width(Pa, wi) ≤ 2 · width(Pa) or

(b) width(Pa, wi) ≤ 1;

2. The relative interiors int(Qi) are pairwise disjoint and

m⋃
i=1

int(Qi) = T (P).

2.3.5 Patching together

To prove Theorem 1.1.15, we will first prove that we can find f(S ∩ Qi;x), for

each i. If we could then use these to find f(S ∩ int Qi;x), we would have

f(S;x) =
∑

i

f(S ∩ int Qi;x),

since T (P) is the disjoint union of the int Qi. The following lemma allows us to do

this “patching” together.

Lemma 2.3.6. Let us fix d and k. There exists a polynomial time algorithm which,

given a rational polytope Q and a rational generating function f(S ∩ Q;x) in the

form

f(S ∩Q;x) =
∑
i∈I

αi
xpi

(1− xai1)(1− xai2) · · · (1− xaiki)

with ki ≤ k, computes f(S ∩ int Q;x) in the form

f(S ∩ int Q;x) =
∑

i∈I′
βi

xqi

(1− xbi1)(1− xbi2) · · · (1− xbis)
,

where s ≤ 2k.

Proof. It suffices to calculate f(int Q ∩ Zd;x), because

S ∩ int Q = (S ∩Q) ∩ (int Q ∩ Zd),

46

and we could then apply Theorem 1.2.10. Recall that, for a set A ⊂ Rd, we define

the indicator function [A] : Rd → R by

[A](x) =

1 if x ∈ A

0 if x /∈ A

.

We have the following consequence of the Euler-Poincaré theorem (see, for example,

Section VI.3 of [Bar02]):

[int Q] = (−1)dim Q
∑

F

(−1)dim F [F],

where the sum is taken over all faces of Q, including Q itself. Therefore

f(int Q ∩ Zd;x) = (−1)dim Q
∑

F

(−1)dim F f(F ∩ Zd;x).

The number of faces of Q is bounded by a polynomial in the input size (since d is

fixed), and we may calculate a description of each face (which are also polyhedra) in

polynomial time. Therefore we may apply Theorem 1.2.3 to calculate f(F ∩ Zd;x)

for each face F , and the proof follows.

2.4 Proof of Theorem 1.1.15

In this section we will finally prove Theorem 1.1.15.

Theorem 1.1.15. Let d be fixed. Then there exists a constant s = s(d) and a

polynomial time algorithm which, given a rational polytope P ⊂ Rd and a linear

transformation T : Rd → Rk such that T (Zd) ⊂ Zk, computes f(S;x) in the form

f(S;x) =
∑
i∈I

αi
xpi

(1− xbi1) · · · (1− xbis)
,

where αi ∈ Q, pi ∈ Z, and bij ∈ Z \ {0}.

Proof. We prove it by induction on the dimension of ker(T). The case dim(ker(T)) =

0 was already proved in Section 2.1. We showed in Section 2.3 that we may assume,

without loss of generality, that T : Rd = Rk ⊕ Rd−k → Rk is the map T (x, y) = x.

47

Let Q1, Q2, . . . , Qm be the polytopes in Rk constructed in Lemma 2.3.4. Then it

is sufficient to compute f(S ∩Qi) for each i, because then we may use Lemma 2.3.6

to patch them together and find f(S;x).

Let us fix a particular i. From Lemma 2.3.4, we have a direction wi ∈ Rd−k such

that, for a ∈ Qi, either width(Pa, wi) ≤ 2 · width(Pa) or width(Pa, wi) ≤ 1, where

Pa =
{
y ∈ Rd−k : (a, y) ∈ P

}
. Let us consider the linear transformation

T̂ : Rk ⊕ Rd−k → Rk ⊕ R, given by T̂ (x, y) = (x, 〈wi, y〉)

and the projection

π : Rk ⊕ R→ Rk, given by π(x, ξ) = x,

so that T = π ◦ T̂ .

Let Ŝ = T̂ (P ∩Qi ∩ Zd), so that π(Ŝ) = S ∩Qi. Since dim(ker(T̂)) = d− k − 1,

we can compute f(Ŝ;x, xk+1) in polynomial time, by the induction hypothesis. Now

we must use f(Ŝ;x, xk+1) to compute f(S ∩Qi;x). To do this, we will find a subset

S ′ ⊂ Ŝ such that the projection π : S ′ → S ∩ Qi is a bijection. After computing

f(S ′;x, xk+1), we obtain f(S ∩ Qi;x) by specializing at xk+1 = 1, using Theorem

1.2.8.

For l ∈ Z, define Ŝ + l to be translation along the last coordinate, so that Ŝ + l =

Ŝ + (0, 0, . . . , 0, l). Note that

f(Ŝ + l;x, xk+1) = xl
k+1f(Ŝ;x, xk+1).

Let σ = σ(d − k) = d2ω(d − k)e, where ω(d − k) is the constant in the Flatness

Theorem (Theorem 2.2.3). Then we define

S ′ = Ŝ \
σ⋃

l=1

(Ŝ + l).

48

We can compute f(S ′;x, xk+1) using Theorem 1.2.10, since (without loss of gener-

ality) σ(d − k) ≤ σ(d), which is constant for fixed d. It remains to show that the

projection π : S ′ → S ∩ Qi is a bijection. Fix some a ∈ S ∩ Qi. We want to show

that a has a unique preimage in S ′, and we will use Corollary 2.2.8. Let

B = Pa = {y ∈ Rd−k : (a, y) ∈ P}.

Let φ : B ∩ Zd−k → Z be given by

φ(y) = 〈wi, y〉,

and let Y = φ(B ∩ Zd−k), as in the statement of Theorem 2.2.7. Let Ŝa be the

preimage π−1(a) ⊂ Ŝ. Then

Ŝa = {(a, 〈wi, y〉) : y ∈ Pa ∩ Zd−k} = {a} × Y.

Let

Z = Y \
σ⋃

l=1

(Y + l),

as in the statement of Corollary 2.2.8. Then {a} ×Z is the preimage of a under the

map π : S ′ → S. Therefore we must show that Z consists of a single point.

By Lemma 2.3.4, either width(Pa, wi) ≤ 2 · width(Pa) or width(Pa, wi) ≤ 1. If

width(Pa, wi) ≤ 2 · width(Pa), then Z consists of a single point, by Corollary 2.2.8.

If width(Pa, wi) ≤ 1, then Y consists of a single point (or perhaps 2 points), and

therefore Z is again a single point.

Therefore the map π : S ′ → S∩Qi is a bijection, and so we may obtain f(S∩Qi;x)

by specializing f(S ′;x, xk+1) at xk+1 = 1, using Theorem 1.2.8.

CHAPTER III

Applications

We turn now to several applications of Theorem 1.1.15.

3.1 The Frobenius Problem

As in Chapter 1, let a1, a2, . . . , ad be positive coprime integers, and let

S = {λ1a1 + λ2a2 + · · ·+ λdad : λi ∈ Z≥0}

be the set of all nonnegative integer combinations of a1, a2, . . . , ad. We now have the

tools to prove Theorem 1.1.5.

Theorem 1.1.5. Let d be fixed. Then there exists a constant s = s(d) and a

polynomial time algorithm which, given a1, a2, . . . , ad, computes f(S; x) in the form

f(S; x) =
∑
i∈I

αi
xpi

(1− xbi1) · · · (1− xbis)
,

where αi ∈ Q, pi ∈ Z, and bij ∈ Z \ {0}.

Furthermore, there is a polynomial time algorithm that computes the number of

positive integers not in S and computes the largest integer not in S.

Proof. We would like to apply Theorem 1.1.15. Suppose we let P be the polyhedron

Rd
≥0 and let T : Rd → R be defined by

T (λ1, λ2, . . . , λd) = λ1a1 + λ2a2 + · · ·+ λdad.

49

50

Then we do have that S = T (P ∩ Zd). Unfortunately, we cannot directly apply

Theorem 1.1.15, because P is unbounded; the theorem requires that P be a polytope.

This problem will occur quite often in these applications. The key to fixing this

problem is that the unbounded part of S will generally have a simple structure.

In this case, we know that every sufficiently large integer is in S. We take some

bound N on the largest integer not in S. For example, in [EG72], it is shown that

N = d2t2/de works, where t = max{a1, a2, . . . , ad}. It is important that this bound

be polynomial in the ai (that is, that log N be polynomial in the input size).

Now let

P ′ =
{
(λ1, λ2, . . . , λd) ∈ Rd : λi ≥ 0, for all i, and

λ1a1 + λ2a2 + · · ·+ λdad ≤ N
}
.

Then P ′ is bounded, and S is the disjoint union of T (P ′∩Zd) and {N +1, N +2, . . .}.

Using Theorem 1.1.15, we may find f(T (P ′ ∩ Zd); x) in polynomial time, and then

f(S; x) = f(T (P ′ ∩ Zd); x) +
xN+1

1− x
.

Now we turn to computing the number of positive integers not in S and the largest

integer not in S. Let S ′ be the set of positive integers which are not in S. Then

S ′ = Z≥0 \ S, and so

f(S ′; x) =
1

1− x
− f(S; x).

Specializing f(S ′; x) at x = 1 (using Theorem 1.2.8) gives the number of positive

integers not in S.

Note that the largest integer not in S is the degree of f(S ′; x) as a polynomial.

We also have an explicit bound on the degree, in particular d2t2/de, where t =

max{a1, a2, . . . , ad}. We can then find the largest integer not in S using the following

lemma, and the proof is finished.

51

Lemma 3.1.1. For fixed s, there is a polynomial time algorithm which, given a

generating function f(S; x) in the form

f(S; x) =
∑
i∈I

αi
xpi

(1− xbi1) · · · (1− xbis)
,

where αi ∈ Q, pi ∈ Z, and bij ∈ Z \ {0}, and given a known bound N on the degree

of f(S; x), computes the degree of f(S; x).

Proof. Let n be the degree of f(S; x). We will find n using a binary search. Let

m0 = 0 and M0 = N . Then we know that

m0 ≤ n ≤ M0.

Let a0 = d(M0 + m0)/2e. We would like to decide whether

m0 ≤ n ≤ a0 − 1 or a0 ≤ n ≤ M0.

To do this, let I0 = {a0, a0 + 1, . . . ,M0}. Then we know

f(I0; x) =
xa0 − xM0+1

1− x
.

Let g0(x) = f(S ∩ I0; x), which we can find in polynomial time, by Theorem 1.2.10.

Using Theorem 1.2.8, we may specialize at x = 1, and compute g0(1) = |S ∩ I0|.

If g0(1) = 0, then S ∩ I0 is empty, and we know

m0 ≤ n ≤ a0 − 1.

In this case, we let m1 = m0 and M1 = a0 − 1, and repeat the process.

If g0(1) > 0, then S ∩ I0 is nonempty, and we know

a0 ≤ n ≤ M0.

In this case, we let m1 = a0 and M1 = M0, and repeat the process.

52

The size of the interval [mi,Mi] is cut in half at each step of the algorithm, so

after log N repetitions, we will have mi = Mi, and this number is n, the degree of

f(S; x).

3.2 Hilbert Series for Monomial Ideals

Let a1, a2, . . . , ad ∈ Zk
≥0 be given, and let

S = {λ1a1 + λ2a2 + · · ·+ λdad : λi ∈ Z≥0, for all i} .

We would like to find f(S;x). This is a generalization of the Frobenius problem,

which corresponds to the case k = 1.

We may also think of f(S;x) as a Hilbert series. Let R be a Zk-graded ring over

a field, for some k (we will provide an example shortly). Then the set of elements of

R that are homogeneous of degree s, for a given s ∈ Zk, form a vector space over the

field. Define dims to be the dimension of this vector space. Then the Hilbert series,

HZk(z) is defined to be the generating function

HZk(z) =
∑

s∈Zk

dims · zs,

where z ∈ Ck. See Section 10.4 of [Eis95], for example, for more background on

Hilbert series.

Example 3.2.1. Let R be the polynomial ring C[x, y]. We may think of R as having

a Z-grading given by deg(xayb) = a + b. Then the degree i homogeneous part of R

is Cxi + Cxi−1y + Cxi−1y2 + · · ·+ Cyi, and dimi = i + 1. Then

HZ(z) = 1 + 2z + 3z2 + · · · = 1

(1− z)2
.

Note that HZ(z) can be written nicely as a short rational generating function.

53

Example 3.2.2. We may also think of R = C[x, y] as having a Z2-grading given by

deg(xayb) = (a, b). In this case, the degree (a, b) homogeneous part of R is Cxayb,

and dim(a,b) = 1. Then

HZ2(z1, z2) = 1 + z1 + z2 + z2
1 + z1z2 + z2

2 + · · · = 1

(1− z1)(1− z2)
.

Note that HZ(z) = HZ2(z, z).

Now let R be the monomial ring C[xa1 ,xa2 , . . . ,xad], where ai ∈ Zk
≥0 for all i, and

x = (x1, x2, . . . , xk) (see, for example, [BS98]). Let R have the standard Zk-grading

defined above. For s ∈ Zk, xs is in R if and only if, for some λ1, λ2, . . . , λd ∈ Z≥0,

we have

xs = (xa1)λ1 (xa2)λ2 · · · (xad)λd = xλ1a1+λ2a2+···+λdad .

Then xs is in R if and only if s ∈ S, where

S = {λ1a1 + λ2a2 + · · ·+ λdad : λi ∈ Z≥0 for all i} .

Therefore

HZk(z) = f(S; z).

We have the following proposition, from [BW03], which says that we can find f(S;x)

in polynomial time.

Proposition 3.2.3. (from Section 7.3 of [BW03]) Let a1, a2, . . . , ad ∈ Zk
≥0 be given.

Let

S = {λ1a1 + λ2a2 + · · ·+ λdad : λi ∈ Z≥0 for all i} ,

let R be the Zk-graded ring

C[xa1 ,xa2 , . . . ,xad],

54

and let HZk(z) be the Hilbert series for R. Then f(S; z) = HZk(z), and we may

compute this generating function in polynomial time (for fixed d), in the form given

in Theorem 1.1.15.

Sketch of proof: The full proof is given in Section 7.3 of [BW03], but we will sketch

it here. Let T : Rd → Rk be defined by

T (λ1, λ2, . . . , λd) = λ1a1 + λ2a2 + · · ·+ λdad.

Then S = T (Zd
≥0). As in Theorem 1.1.5, we cannot directly apply Theorem 1.1.15,

because Rd
≥0 is an unbounded polyhedron. Again, though, the infinite part of S is

“uninteresting.” In this case,

g(S; z) := f(S; z)(1− za1)(1− za2) · · · (1− zad)

is a polynomial, and we may compute a specific bound, L, on the degree of g (see

Section 7.3 of [BW03]).

Now if ∆ ⊂ Rk is the simplex

∆ =
{
(µ1, µ2 . . . , µk) ∈ Rk

≥0 : µ1 + µ2 + · · ·+ µk ≤ L
}

,

then P = T−1(∆) is now a polytope, and we may compute f(S ′; z), where S ′ =

T (P ∩ Zd). If we let

g(S ′; z) = f(S ′; z)(1− za1)(1− za2) · · · (1− zad),

then

g(S; z) = g(S ′; z) ? f(∆ ∩ Zk; z),

where ? is the Hadamard product (see Section 1.2). Using Theorem 1.2.3 and The-

orem 1.2.10, we may compute g(S; z), and hence we may compute f(S; z). ¤

55

3.3 Neighbors and Neighborhood Complexes

In Section 1.3, we introduced the neighborhood complex. Suppose we are given

an n× d integer matrix A such that the polyhedron

Kb =
{
x ∈ Rd : Ax ≤ b

}

is bounded, for any b ∈ Rn. Recall that (for generic A) we say {h0, h1, . . . , hk} ⊂ Zd

is a k-dimensional simplex in the neighborhood complex, C = C(A), if, for some

b ∈ Rd, the polytope Kb contains h0, h1, . . . , hk but contains no integer points in its

interior. Also recall, by Proposition 1.3.12, that the maximal simplices of C have

dimension at most 2d − 1. Given 1 ≤ k ≤ 2d − 1, define the generating function

gk(x1,x2, . . . ,xk) =
∑

{0,h1,h2,...,hk}∈C

xh1

1 xh2

2 · · ·xhk

k ,

where xi ∈ Cd. We would like to find this generating function, and the following

proposition says we can.

Proposition 3.3.1. Fix d. There is a polynomial time algorithm that, given a

(generic) n × d integer matrix A, computes gk(x1,x2, . . . ,xk) in the form given in

Theorem 1.1.15, for all 1 ≤ k ≤ 2d − 1.

Remark: This is true for non-generic matrices A (as defined in Section 1.3) as

well, but, for the sake of clarity, we prove it here for generic A.

Proof. Choose k with 1 ≤ k ≤ 2d − 1. Let a1, a2, . . . , an be the rows of A, and

let h0 = 0 throughout. Given (h1, h2, . . . , hk) ∈ (Rd)k, we want to know the b =

(b1, b2, . . . , bn) such that Kb is the smallest polytope (among all Kb′ with b′ ∈ Rn)

that contains h0, h1, h2, . . . , hk. Then we would have that {h0, h1, h2, . . . , hk} is in C

if and only if Kb has no integer points in its interior. We know that

bi = max
{〈ai, h

j〉 : 0 ≤ j ≤ k
}

.

56

We will first divide up (Rd)k into M pieces, where M is polynomial in the input size,

such that on a particular piece, we know, for each i, at which j this maximum is

achieved.

We do this as follows. We define n
(

k+1
2

)
hyperplanes Hij1j2 , for 1 ≤ i ≤ n and

0 ≤ j1 < j2 ≤ k, by

Hij1j2 =
{
(h1, h2, . . . , hk) ∈ (Rd)k : 〈ai, h

j1〉 = 〈ai, h
j2〉} .

These hyperplanes cut (Rd)k into polyhedral pieces. At first glance, it might seem

that there could be 2n(k+1
2) full-dimensional pieces in this decomposition, which would

be exponential in the input size, but in fact there are at most Φ(dk, n
(

k+1
2

)
), where

Φ(D,N) =

(
N

0

)
+

(
N

1

)
+ · · ·+

(
N

D

)
.

This can be proved by induction on D and N , see for example Section 6.1 of [Mat02].

Φ(dk, n
(

k+1
2

)
) is a polynomial in n, since d is fixed and k ≤ 2d − 1.

Now let us take a particular piece, P , the closure of one of the cells of the decom-

position. It is enough to calculate the generating function for {0, h1, h2, . . . , hk} ∈ C

such that h = (h1, h2, . . . , hk) ∈ P , because we can patch these pieces together us-

ing Lemma 2.3.6 to find gk(x1,x2 . . . ,xk). Furthermore, Proposition 1.3.14 gives a

bound on ‖hj‖∞ such that {0, h1, h2, . . . , hk} ∈ C, so we need only look at a bounded

portion, P ′, of P . For each i with 1 ≤ i ≤ n, let ji be the j where the maximum

max
{〈ai, h

j〉 : 0 ≤ j ≤ k
}

is achieved, for every h = (h1, h2, . . . , hk) ∈ P ′. Then if we take bi = 〈ai, h
ji〉, for

1 ≤ i ≤ n, Kb is the smallest polytope (of the Kb′ such that b′ ∈ Rn) containing

0 = h0, h1, h2, . . . , hk.

57

Then {0, h1, h2, . . . , hk} is in C if and only Kb contains no integer points in its

interior, that is, if and only if Kb−1∩Zd = ∅, where b−1 = (b1−1, b2−1, . . . , bn−1).

Define

K(h) = Kb−1,

and note that b− 1 is a linear function of h, for h ∈ P ′.

Define Q to be the polytope

Q =
{
(h, x) ∈ (Rd)k × Rd : h ∈ P ′ and x ∈ K(h)

}
,

and let T : (Rd)k ⊕ Rd → (Rd)k be defined by

T (h, x) = h.

Then T
(
Q ∩ [

(Zd)k × Zd
])

is exactly the h ∈ P ′ such that K(h) is nonempty, that

is, the h such that {0, h1, . . . , hk} is not in C. Then the generating function we are

looking for is

f
(
P ′ ∩ (Zd)k;x

)− f
(
T (Q ∩ [

(Zd)k × Zd
]
);x

)
,

which we may compute using Theorems 1.1.15 and 1.2.3. The proof follows.

Note that there are other types of test sets, including Schrijver’s universal test set

and Graver’s test set (see [Tho95]), which can also be defined. The methods used

in this chapter can be applied to see that these also have short rational generating

functions.

3.4 Hilbert Bases

Let a1, a2, . . . , an ∈ Zd be linearly independent vectors, and let K be the cone

generated by a1, a2, . . . , an, that is,

K = {λ1a1 + λ2a2 + · · ·+ λnan : λ1, . . . , λn ∈ R≥0}.

58

x

y

K

Figure 3.4.1: Example 3.4.2, Hilbert basis of cone K generated by (N, 1) and (1, N)

We will assume that K is pointed, that is, that 0 is a vertex of K. We say that

a set B ⊂ K ∩ Zd is a Hilbert basis if every point in K ∩ Zd can be written as a

nonnegative integer combination of the points in B. Hilbert bases are closely related

to the study of toric varieties (see [Ewa96] or [Ful93]) and of total dual integrality

in integer programming (see Section 22.3 of [Sch86]).

We call B a minimal Hilbert basis if no points from B are superfluous (that is,

none can be written as a sum of other points in B). When K is pointed, there is a

unique minimal Hilbert basis (see Section 16.4 of [Sch86]). This unique basis can be

defined as the set of indecomposable elements of K ∩ Zd, that is, the set of points v

which cannot be written as v = v1 + v2, where v1 and v2 are nonzero integer points

in K.

The cardinality of B can be exponentially large in the input size of a1, a2, . . . , an.

Example 3.4.2. Let n = d = 2, a1 = (N, 1) and a2 = (1, N) (see Figure 3.4.1).

59

x

y

Q

Figure 3.4.3: Q, such that Q ∩ Z2 = Z ∩ Z2 \ {0}

Then the minimal Hilbert basis is

B =
{
(1, 1), (2, 1), . . . , (N, 1), (1, 2), (1, 3), . . . , (1, N)

}
,

which contains 2N − 1 elements. Nevertheless, f(B;x) is can be written as a short

rational generating function,

f(B; x, y) = (xy + x2y + · · ·+ xNy) + (xy2 + xy3 + · · ·+ xyN)

=
xy − xN+1y

1− x
+

xy2 − xyN+1

1− y
.

In fact, we have the following proposition, which says that f(B;x) can always be

written as a short rational generating function.

Proposition 3.4.4. For fixed d, there is a polynomial time algorithm which, given

a1, a2, . . . , an ∈ Zd such that 0 is a vertex of K (the cone generated by a1, a2, . . . , an),

computes f(B;x) in the form given in Theorem 1.1.15, where B is the minimal

Hilbert basis of K.

60

Proof. Let Z be the zonotope generated by a1, a2, . . . , an, that is,

Z = {λ1a1 + λ2a2 + · · ·+ λnan : 0 ≤ λi ≤ 1 for all i} .

We will show that B ⊂ Z. Indeed, suppose v ∈ K∩Zd but v /∈ Z. Then v =
∑

i λiai,

where λi ≥ 0, for all i, and λj > 1, for some j. Therefore

v = (v − aj) + aj

is a decomposition of v into nonzero integer vectors in K, and so v /∈ B.

We construct a polytope Q (such as the one pictured in Figure 3.4.3, continuing

Example 3.4.2) so that

Q ∩ Zd = Z ∩ Zd \ {0}.

For example, take some l ∈ Zd such that 〈l, ai〉 > 0, for all i (which we can do since

K is pointed). Then

Q = Z ∩ {x ∈ Rd : 〈l, x〉 ≥ 1}

works.

Now let P = Q×Q and let T : Rd⊕Rd → Rd be defined by T (x, y) = x + y. Let

S1 = T (P ∩ Z2d). Then S1 is exactly the set of decomposable elements of K ∩ Zd,

and we may compute f(S1;x) using Theorem 1.1.15. Let S2 = Q ∩ Zd, which we

may compute using Theorem 1.2.3. Then B = S2 \ S1, and S1 ⊂ S2, and so

f(B;x) = f(S2;x)− f(S1;x),

and the proof follows.

As usual, once we have obtained f(B;x), we may compute |B| and other quanti-

ties.

61

3.5 Algebraic Integer Programming

In this section, we will examine some applications of Theorem 1.1.15 to algebraic

integer programming. For definitions of algebraic terms used in this section, see

[Eis95], for example. Throughout we will fix an m × n integer matrix A and an

integer vector c ∈ Zn. For b ∈ Zm, we have an integer program

IPA,c(b) = min
{〈c, u〉 : u ∈ Nn and Au = b

}
,

where N = {0, 1, 2, . . .}. We will assume that we have chosen A such that the set

{u ∈ Rn
≥0 : Au = b} is bounded for all b. Note that this is a different formulation

of the integer programming problem than we used in Section 1.3, but it is easy to

go from one formulation to the other. We are interested in this family of integer

programs, as b varies and A and c remain fixed.

If A were chosen at random in Rm×n, then, with probability one, for each b there

would be a unique u which achieves the optimum IPA,c(b). We are constraining A

to be integral, however, so this will often not happen. To combat this problem, we

will assume that we have a total order ≺ on Nn such that

1. if 〈c, u〉 < 〈c, v〉, then u ≺ v

2. if u ≺ v, then, for all w ∈ Nn, u + w ≺ v + w.

The first condition ensures that ≺ only “breaks ties” between u and v such that

〈c, u〉 = 〈c, v〉, and the second condition is needed to ensure that these ties are

broken consistently. For example, a possible order ≺ would be u ≺ v if either

• 〈c, u〉 < 〈c, v〉, or

• 〈c, u〉 = 〈c, v〉 and u precedes v lexicographically.

62

(3,2,0)

(2,4,0)

(1,6,0) (0,8,0)

(1,0,1)

(4,0,0)

y

x

z

Figure 3.5.1: N for Example 3.5.2

We can now formulate the integer programming problem as a problem with a unique

optimum:

IPA,≺(b) = the minimum u ∈ Nn (with respect to ≺) such that Au = b.

We will define some subsets of Nn based on this family of integer programs. Let O

be the set of u ∈ Nn which are optimal in the appropriate integer program IPA,≺(Au).

Let N = Nn \ O be the set of u which are not optimal. N is an ideal, that is, if

u ∈ N (i.e., there exists a v ∈ Nn such that Au = Av and v ≺ u) then u + w ∈ N

for all w ∈ Nn (because A(u + w) = A(v + w), and v + w ≺ u + w). Let M be the

set

M = {u ∈ N : u− w /∈ N , for any w ∈ Nn \ {0}} .

Then M is a minimal set of generators for the ideal N .

Example 3.5.2. Consider the integer programming family

min 10000x + 100y + z : (x, y, z) ∈ N3 and 2x + 5y + 8z = b,

63

as b varies in Z (see [Tho03] for a more thorough treatment of this example). The

ideal N is generated by

M =
{

(0, 8, 0), (1, 6, 0), (2, 4, 0), (3, 2, 0), (4, 0, 0), (1, 0, 1)
}

.

Figure 3.5.1 is a picture of N . Integer points on the pictured surface, as well as

points on the near side of the surface, are in N (the dotted line depicts where the

surface has been cut off: in reality, it continues to infinity). Integer points hidden by

the surface are in O, which consists of twelve points (p, q, 0) and eight infinite rays

of points (0, i, j), where 0 ≤ i ≤ 7 and j ∈ N. The six labelled points are the set M.

The family IPA,≺(b) is closely related to some algebraic objects. Define the ideal

IA of k[x1, x2, . . . , xn] by

IA = 〈xu − xv : u, v ∈ Nn and Au = Av〉.

Let in≺(IA) be the initial ideal of IA with respect to the order ≺, and let G be

the reduced Gröbner basis for IA with respect to ≺. Then we have the following

proposition relating IPA,≺ to these algebraic objects (see [Tho03] or Chapter 5 of

[Stu96] for these facts plus a general overview of these relationships).

Proposition 3.5.3. Let O,N ,M, IA, in≺(IA), and G be defined as above. Then

1. G = {xu − xv : u ∈M, v ∈ O, and Au = Av},

2. if u ∈ Nn, and if xu∗ is the (unique) normal form for xu with respect to G, then

u∗ is the optimal solution to IPA,≺(Au),

3. The set {u− v : (xu − xv) ∈ G} forms a test set for the family of integer pro-

grams IPA,c(b) (see Section 1.3 for discussion of test sets), and

4. u ∈ N if and only if xu ∈ in≺(IA).

64

Theorem 1.1.15 has several applications to the algebraic study of integer programs.

Theorem 3.5.4. (Theorem 1 of [DLHH+04]) Let n and m be fixed. Then there is a

polynomial time algorithm which, given an m×n integer matrix A and a term order

≺, computes

f(G;y, z) =
∑

(xu−xv)∈G
yuzv

as a short rational generating function, where G is the reduced Gröbner basis of

IA. Furthermore, given f(G;y, z) and any monomial xa, the following tasks can be

performed in polynomial time:

1. Decide whether xa is in normal form with respect to G,

2. Perform one step of the division algorithm modulo G, and

3. Compute the normal form of xa modulo G.

Remark: The algorithm takes as input a term order of Nn. We may assume that

one is given by a nondegenerate n× n integer matrix W , so that

u ≺ v if and only if Wu lexicographically precedes Wv.

Sketch of proof: By Proposition 3.5.3,

f(G;x,y) =
∑

u∈M,v∈O,
Au=Av

xuyv.

We will first compute separately

m(x) =
∑
u∈M

xu and o(y) =
∑
v∈O

yv.

Along the way, we will also compute

n(x) =
∑
u∈N

xu and h(x,y) =
∑

u,v≥0,
Au=Av

xuyv.

65

Computing h(x,y) is easy. It is the generating function for the integer points in a

polyhedron, so we may use Theorem 1.2.3 to find it in polynomial time. To compute

n(x), recall that we input the term order ≺ as a n×n integer matrix W , and we say

u ≺ v if and only if Wu lexicographically precedes Wv.

Define

P = {(x, y) ∈ Rn × Rn : x, y ≥ 0, Ax = Ay,Wy lexicographically precedes Wx} .

P is an unbounded polyhedron (except that parts of its boundary are open, a tech-

nicality which we will not discuss). Let T be the projection T : Rn ⊕ Rn → Rn,

given by T (x, y) = x. Then N , the set of non-optimal u, is T (P ∩Z2n). We then use

Theorem 1.1.15 (we must deal with the fact that P is unbounded, using a similar

method as in the proof of Proposition 3.2.3) to calculate n(x).

Now we can compute

o(x) =

(
n∏

i=1

1

1− xi

)
− n(x).

Also, we have

M = N \
(

n⋃
i=1

{u : u− ei ∈ N}
)

,

where ei is the standard basis vector. Since

f
({u : u− ei ∈ N} ;x

)
= xi · n(x),

we may calculate m(x) as a boolean combination of known generating functions,

using Theorem 1.2.10.

Finally, to compute f(G;x,y) itself. Let

H(x;y) = m(x) · o(y)

66

be the generating function for the set of (u, v) such that u ∈ M and v ∈ O. Then,

since f(G;x,y) is the generating function for the set

{
(u, v) : u ∈M, v ∈ O, Au = Av

}

=
{
(u, v) : u ∈M, v ∈ O} ∩ {

(u, v) : u, v ∈ Nn, Au = Av
}
,

and we have computed H(x,y) and h(x,y), we may compute f(G;x,y) as a boolean

combination, using Theorem 1.2.10. ¤

Let us more closely examine O, the set of u which are optimal in their integer

program. If u ∈ Nn and τ ⊂ {1, 2, . . . , n}, then we say that (u, τ) is an admissible

pair if

Su,τ := {u + w : w ∈ Nn and wi = 0 for i /∈ τ}

is contained in O. We say that (u, τ) is a standard pair if (u, τ) is a admissible pair

and there is no admissible pair (u′, τ ′) such that Su,τ (Su′,τ ′ . There are a finite

number of standard pairs, and the sets Su,τ , such that (u, τ) is a standard pair, cover

all of O. In Example 3.5.2, the standard pairs are

1. the twelve pairs
(
(p, q, 0), ∅), where Su,∅ is the point u and

2. the eight pairs
(
(0, i, 0), {3}), for 0 ≤ i ≤ 7, where Su,{3} is the ray in the

positive z direction with endpoint u.

Then we have the following proposition (Theorem 1.3 of [HT99]).

Proposition 3.5.5. For τ ⊂ {1, 2, . . . , n}, let pτ be the prime ideal 〈xj : j /∈ τ〉.

Then

1. pτ is an associated prime of in≺(IA) if and only if (u, τ) is a standard pair for

some u ∈ Nn,

67

2. The multiplicity of pτ as an associated prime is the number of u ∈ Nn such that

(u, τ) is a standard pair, and

3. the arithmetic degree of in≺(IA) is the total number of standard pairs (u, τ) with

u ∈ Nn and τ ⊂ {1, 2, . . . , n}.

We have the following application of Theorem 1.1.15.

Theorem 3.5.6. (Theorem 1 of [TW03]) Given A ∈ Zm×n, c ∈ Zn, and τ ⊂

{1, 2, . . . , n}, let

Sτ = {u ∈ Nn : (u, τ) is a standard pair} ,

and define the generating function

f(Sτ ;x) =
∑
u∈Sτ

xu.

Then for fixed n, there exists a polynomial time algorithm which, given A, c, and τ

as above, computes f(Sτ ;x) as a short rational generating function. Furthermore,

the following are computable in polynomial time:

1. for each τ ⊂ {1, 2, . . . , n}, the multiplicity of pτ = 〈xj : j /∈ τ〉 as an associated

prime of in≺(IA) and

2. the arithmetic degree of in≺(IA).

Proof. Given A, c, and τ , let Λ = {x ∈ Zn : Ax = 0}, let r = dim Λ, and let

B ∈ Zn×r be any matrix whose columns generate the lattice Λ. For u ∈ Nn, let

Qu = {z ∈ Rr : Bz ≤ u, (−cB) · z ≤ 0}.

Then Qu is almost the image of the polytope {x ∈ Rn : Ax = Au, x ≥ 0} under

an affine transformation which bijectively maps {x ∈ Zn : Ax = Au} to Zr, except

that a constraint involving the objective function, c, has been added.

68

1

Qu

Qu
{1}

(a) (b)

Figure 3.5.7: An example of (a) Qu and (b) Qτ̄
u

Let Qτ̄
u be the polyhedron

{z ∈ Rr : B τ̄z ≤ πτ (u), (−cB) · z ≤ 0},

where B τ̄ is the matrix obtained from B by deleting the rows indexed by τ , and

πτ : Rn → R|τ̄ | is the projection that kills the coordinates indexed by τ . Then Qτ̄
u is

the relaxation of Qu obtained by removing the inequalities indexed by τ , see Figure

3.5.7 for an example. We will use the following fact.

Theorem 3.5.8. (from Theorem 3.11 of [Tho03]) Let τ ⊂ {1, 2, . . . , n} and u ∈ Nn

be given. Then (u, τ) is a standard pair if and only if both

1. Qτ̄
u ∩ Zr = {0} and

2. Q
τ∪{i}
u (that is, Qτ̄

u with one additional constraint removed) contains a non-zero

lattice point, for all i /∈ τ .

Note that if Qτ̄
u is unbounded for a given τ , then for no u is (u, τ) a standard pair,

so we may assume that Qτ̄
u is a polytope.

69

We also need a bound M ∈ R+ such that log M is polynomial in the input size

of A and c and such that if (u, τ) is a standard pair then ‖u‖∞ ≤ M . This follows

from Theorem 4.8 of [Tho03].

Let P τ̄
u be the set Qτ̄

u\{0}. Then by Theorem 3.5.8, we have the following corollary.

Corollary 3.5.9. (u, τ) is a standard pair if and only if the following hold:

1. 0 ∈ Qτ̄
u,

2. P τ̄
u ∩ Zr = ∅, and

3. P
τ∪{i}
u ∩ Zr 6= ∅ for i /∈ τ .

Let P τ ⊂ Rn × Rr be the set

{(u, z) ∈ Rn × Rr : 0 ≤ ui ≤ M and z ∈ P τ̄
u }.

P τ is almost a polytope: it is bounded and defined by linear inequalities, except it

is missing a piece

{(u, 0) : 0 ≤ ui ≤ M}

from the boundary. The proof of Theorem 1.1.15 will still work for P τ : the crucial

points are that we can compute f(P τ ∩ (Zn × Zr);x) in polynomial time and that

Theorem 2.2.7 still applies since the missing piece is on the boundary.

Let Rτ = P τ ∩ (Zn ×Zr), and let ρ : Rn ⊕Rr → Rn be the projection (u, z) 7→ u.

Then

ρ(Rτ) = {u ∈ Zn : 0 ≤ ui ≤ M and P τ̄
u ∩ Zr 6= ∅}.

Let

U τ = {u ∈ Zn : 0 ≤ ui ≤ M and 0 ∈ Qτ̄
u}.

70

Then, by Corollary 3.5.9 we have

Sτ =
[
U τ \ ρ(Rτ)

]
∩

[⋂

i/∈τ

ρ(Rτ∪{i})
]
.

By Theorem 1.2.3, since U τ consists of the integer points in a polyhedron, we

can compute (for fixed n) f(U τ ;x) in polynomial time, in the desired form. By

Theorem 1.1.15, since Rτ consists of the integer points in a polytope, we can compute

f(ρ(Rτ);x) in polynomial time, for all τ ⊂ {, 2 . . . , n}. By Theorem 1.2.10, since

Sτ is a boolean combination of U τ , ρ(Rτ), and ρ(Rτ∪{i}), and since we can compute

f(U τ ;x), f(ρ(Rτ);x), and f(ρ(Rτ∪{i});x), we can compute f(Sτ ;x) in polynomial

time, as desired.

Furthermore, using Theorem 1.2.8, we can compute f(Sτ ; 1), which is the number

of standard pairs (u, τ) for a given τ , that is, we can compute the multiplicity of

pτ = 〈xj : j /∈ τ〉 as an associated prime of in≺(IA) (See Proposition 3.5.5). Summing

this number over all τ ⊂ {1, 2, . . . , n}, we get the arithmetic degree of in≺(IA).

In addition, these algebraic ideas, combined with Theorem 1.1.15, can give us

some information about the integer programming problems IPA,c(b). For the integer

programming problem

IPA,c(b) = min〈c, u〉 : u ∈ Nn and Au = b,

we also have a linear relaxation

LPA,c(b) = min〈c, u〉 : u ∈ Rn
≥0 and Au = b.

We know that LPA,c(b) ≤ IPA,c(b), and we would often like to know by how much

they may differ (this difference is called the integer programming gap). Let

gap(A, c) = max
(
IPA,c(b)− LPA,c(b)

)
over all b ∈ Nm.

Then we have the following.

71

Theorem 3.5.10. (Theorem 1.2 of [HS04]) For fixed n, there is a polynomial time

algorithm which, given A ∈ Zm×n and c ∈ Zn, computes gap(A, c).

Sketch of proof: As we showed in the proof of Theorem 3.5.4, we may compute the

generating function

o(x) =
∑
u∈O

xu,

which is the generating function for the u which are optimal in IPA,≺(Au). Let

α1, α2, . . . , αn ∈ Zm be the columns of A, let c = (c1, c2, . . . , cn), and let NA =

{Au : u ∈ Nn} . Note that for b /∈ NA, the integer programming problem has no

solution (the feasible region is empty). Define

HIP (y, z) = o
(
yα1zc1 ,yα2zc2 , . . . ,yαnzcn

)
,

where y ∈ Cm. That is

HIP (y, z) =
∑

b∈NA

ybzIPA,c(b).

We would also like to find

HLP (y, z) =
∑

b∈NA

ybzLPA,c(b).

This is not too difficult, because LPA,c(b) is a piecewise linear function of b, and the

pieces on which it is linear are polyhedral (we will need to use Theorem 1.2.3).

Next, we must use these two to get the generating function

G(y, z) =
∑

b∈NA

ybzIPA,c(b)−LPA,c(b).

To compute G(y, z), we must use a variation of Lemma 1.2.11.

Finally, we notice that gap(A, c) is the degree of G(y, z) as a polynomial in z.

Starting with a known upper bound for gap(A, c), we may find the degree using a

binary search, exactly as we did to compute the Frobenius number in the proof of

Theorem 1.1.5 (see Section 3.1). ¤

CHAPTER IV

The Neighborhood Complex and Generating Functions

In this chapter, we present an alternative approach for computing f
(
T (P∩Zd);x

)
.

The previous method (see Chapter II) is probably not practical to implement. For

example, several of the tools used, such as Theorem 1.2.10 (finding generating func-

tions for boolean combinations of sets) or Lemma 2.3.4 (partitioning the image space

into pieces based on flat directions), rapidly increase the complexity of the rational

generating function, especially if repeatedly applied. On the other hand, the al-

gorithm for finding the generating function for integer points in a polyhedron has

proven practical: a version of it has been implemented [DLHTY04] as LattE. Ex-

tending LattE to find generating functions for the projections of integer points in

polytopes seems to require some new mathematical ideas.

This chapter will examine one possible approach, involving neighborhood com-

plexes (see Section 1.3 for definitions). In Section 4.1, we introduce this approach

through an example. In Section 4.2, we state the result (Theorem 4.2.1). In Section

4.3, we examine some Euler characteristic calculations needed for the proof. In Sec-

tion 4.4, we prove Theorem 4.2.1. In Section 4.5, we give some examples. Finally, in

Section 4.6, we examine the non-generic case.

72

73

4.1 Introduction and Example

This new approach to generating functions will rely heavily on neighborhood

complexes (see Section 1.3 for definitions). This method has its benefits, though it

is not known (yet) how to use it to make a polynomial time algorithm. When the

dimension of the kernel of T is at most 2, however, it does yield a polynomial time

algorithm, one that would be much quicker than the original algorithm, in practice.

In fact, it gives the “right” answer for the Frobenius problem with 3 generators:

f(S; x) =
1− xp1 − xp2 − xp3 + xp4 + xp5

(1− xa1)(1− xa2)(1− xa3)
,

where pi are quickly computable from the generators a1, a2, a3.

This approach produces a new structural result (Theorem 4.2.1), and it also has

the benefit of not needing heavy-handed tools such as Theorem 1.2.10 or Lemma

2.3.4. If the neighborhood complex in higher dimensions were to have the structural

properties which L. Lovász conjectured it does (see Section 1.3 and [Lov89]), then

this approach would provide a polynomial time algorithm which is much quicker than

the original. Other structure (for example, a better way to compute the generating

functions of neighbors) might also provide a more practical algorithm for Theorem

1.1.15.

This approach generalizes work of H. Scarf and K. Woods [SW03]. They consider

P = {x ∈ Rd : xi ≥ 0}, so that T (P ∩ Zd) is the additive semigroup generated

by T (e1), T (e2), . . . , T (ed) (where e1, e2, . . . , ed is the standard basis of Rd). See, for

example, Corollary 4.5.4.

We first illustrate this approach with an example.

Example 4.1.1. Let P =
{
(x, y) ∈ R2 : x, y ≥ 0

}
, let T (x, y) = 2x + 5y, and

let S = T (P ∩ Z2). S is the Frobenius semigroup with two generators, 2 and 5.

74

(5,-2)

(-5,2)

x

y

Figure 4.1.2: Neighborhood complex, C, for T (x, y) = 2x + 5y

We define a certain neighborhood complex, C, whose vertices are on the lattice

{
(x, y) ∈ Z2 : T (x, y) = 0

}
(normally, we define the neighborhood complex on some

Zr, but, in this case, it is more intuitive to define C on this lattice). This complex

C will have vertices (5k,−2k) and edges
{(

5k,−2k
)
,
(
5(k + 1),−2(k + 1)

)}
, where

k ∈ Z (see Figure 4.1.2).

Given a ∈ Z, this induces a complex on the integer points in T−1(a) ∩ P , as

follows. First translate C by some vector va ∈ Z2 with T (va) = a, so that C + va lies

in the hyperplane
{
(x, y) ∈ R2 : T (x, y) = a

}
(it doesn’t matter what vector va we

choose, since C is lattice invariant). Then let

Ca = {(x, y) ∈ C + va : x, y ≥ 0} ,

the intersection of C + va with the polyhedron P . Each Ca is a simplicial complex

with vertices the integer points in T−1(a) ∩ P . Figure 4.1.3 illustrates these Ca in

our example. The complex C17, for example, consists of two vertices (in black) and

one edge (in dark gray).

75

T(x,y)=3 T(x,y)=11 T(x,y)=17 T(x,y)=22

y

x

Figure 4.1.3: The complexes Ca

In Figure 4.1.3, we see that, for any a ∈ Z,

(4.1.4) # of vertices in Ca − # of edges in Ca =

1, if a ∈ T (P ∩ Zd)

0, otherwise

.

This can be viewed as an Euler characteristic calculation, and it relies on the fact

that if Ca is nonempty then it is contractible.

We can compute the generating function

g(z) =
∑

a∈Z
(# of vertices in Ca) · za.

Indeed

g(z) = (1 + z2 + z4 + · · ·)(1 + z5 + z10 + · · ·) =
1

(1− z2)(1− z5)
.

For example, the integer point (3, 1) satisfies T (3, 1) = 11, and it corresponds to the

(z2)
3
(z5)

1
= z11 term in the expansion of g(z).

If we could compute

h(z) =
∑

a∈Z
(# of edges in Ca) · za,

76

T(x,y)=3 T(x,y)=11 T(x,y)=17 T(x,y)=22

y

x

Q

Figure 4.1.5: Bijection between integer points in Q and edges in the Ca

then, by (4.1.4), we would have

f
(
T (P ∩ Z2); z

)
= g(z)− h(z).

Let v = (5,−2) be the vector such that the edges of Ca are {c, c + v}. Let

Q =
{
(x, y) ∈ R2 : (x, y) ∈ P and (x, y) + v ∈ P

}

=
{
(x, y) ∈ R2 : x ≥ 0 and y ≥ 2

}
.

Then, for any a ∈ Z, there is a bijection between integer points c ∈ T−1(a) ∩ Q

and edges {c, c+ v} ∈ Ca. For example, in Figure 4.1.5, the bijection maps the three

black points to the three dark gray edges. We can easily calculate

h(z) =
z10

(1− z2)(1− z5)
,

and so

f
(
T (P ∩ Z2); z

)
= g(z)− h(z) =

1− z10

(1− z2)(1− z5)
,

which is easy to see directly (see Section 1.1).

77

(a) (b)

(c) (d)

Figure 4.1.6: Example 4.1.7, T (x, y, z) = 3x + 4y + 5z, (a) C, (b) C15, (c) C20, (d) C25

In the next section, we will examine this method for general P and T . In this

general case, we will have to do a more complicated Euler characteristic count, but

the idea still works.

Example 4.1.7. Let P = R3
≥0, and let T : R3 → R be defined by T (x, y, z) =

3x + 4y + 5z. Then dim(ker(T)) = 2, and so C is 2-dimensional. If we transform C

and Ca to have vertices in Z2, then Figure 4.1.6(a) shows C and Figures 4.1.6(b)-(d)

show C15, C20, and C25, respectively (the dotted lines are T−1(a) ∩ P). Note that

each Ca is contractible and has Euler characteristic one.

78

We will be more explicit in the next section, where we state Theorem 4.2.1.

4.2 The General Case

Let P ⊂ Rd be a polyhedron which contains no straight lines, and let T : Rd → Rk

be such that T (Zd) ⊂ Zk and such that T−1(y) ∩ P is bounded, for all y ∈ Rk.

Suppose P is defined by

P =
{
x ∈ Rd : Ax ≤ b

}
,

where A is an n × d integer matrix and b ∈ Zn. Define a d × r matrix B, where

r = dim(ker(T)), whose columns form a basis for the lattice ker(T) ∩ Zd. We may

do this in polynomial time, as follows.

As in the proof of Lemma 2.3.1, if M is the k × d matrix representing T , then

decompose

M = M ′C,

where M ′ is a k × d lower triangular matrix and C is a d × d unimodular matrix.

Then r = dim(ker(T)) is the number of zero columns of M , and we may take B to

be the last r columns of C−1.

As a linear transformation, B : Rr → Rd bijectively maps Zr to ker(T) ∩ Zd.

Define

A′ = AB,

an n× r matrix.

Now let C = C(A′) be the neighborhood complex defined on Zr by the matrix

A′. Recall that if A′ is not generic, then we must choose a proper perturbation ϕ in

order to define C (see Section 1.3). The complex C is invariant under translation by

Zr. Let C̄ be a set of distinct representatives of C modulo Zr.

79

In Section 4.4, we will prove the following theorem, which says that we may write

f(S; z) as a sum of simpler generating functions, using C̄.

Theorem 4.2.1. Given T : Rd → Rk and P =
{
x ∈ Rd : Ax ≤ b

}
, define A′, C =

C(A′), and C̄ as above. For s = {h0, h1, . . . , hl} ∈ C̄, let bs = b−max(A′h0, A′h1, . . . , A′hl),

where the maximum is taken coordinate-wise, and let

Qs = {x ∈ Rd : Ax ≤ bs}.

Then

f
(
T (P ∩ Zd); z

)
=

∑

s∈C̄

(−1)dim sf
(
Qs ∩ Zd; zf1 , zf2 , . . . , zfd

)
,

where fi = T (ei) and e1, e2, . . . , ed is the standard basis of Rd.

Note that the generating functions f(Qs∩Zd;x) can be computed using Theorem

1.2.3, and the substitution of zfi for xi can be accomplished using Theorem 1.2.8.

Example 4.2.2. Let us apply Theorem 4.2.1 to Example 4.1.1. Let A =
[−1 0

0 −1

]

and b =
[

0
0

]
, so that

P =
{
(x1, x2) ∈ R2 : x1, x2 ≥ 0

}
=

{
x ∈ R2 : Ax ≤ b

}
.

We could choose B =
[

5
−2

]
, and so A′ = AB =

[−5
2

]
. C is a simplicial complex on

Z, and we may choose C̄ to be the vertex {0} and the edge {0, 1} (note that the

edge {0, 1} ⊂ Z corresponds to {B · [0], B · [1]} =
{
0, (5,−2)

} ⊂ (ker T ∩ Z2), which

is an edge of the complex as defined in Example 4.1.1). Then

b{0} =
[

0
0

]
and b{0,1} =

[
0

−2

]
.

Therefore

Q{0} = P and Q{0,1} =
{
(x, y) ∈ R2 : x ≥ 0 and y ≥ 2

}
= Q,

80

where Q is as defined in the previous section. Then

f(Q{0}; x, y) =
1

(1− x)(1− y)
and f(Q{0,1}; x, y) =

y2

(1− x)(1− y)
.

Applying Theorem 4.2.1,

f(S; z) = f(Q{0}; z
2, z5)− f(Q{0,1}; z

2, z5) =
1− z10

(1− z2)(1− z5)
,

just as we calculated in the previous section.

4.3 The Euler Characteristic

To prove Theorem 4.2.1, we will do Euler characteristic calculations on certain

subcomplexes of C. For a ∈ Rk, choose an affine transformation, bijectively mapping

T−1(a) ∩ Zd to Zr, which takes T−1(a) ∩ P to

Pa :=
{
y ∈ Rr : A′y ≤ ba

}
,

where ba is an affine image of a. Given a ∈ Rk, define

Ca =
{{h0, h1, . . . , hl} ∈ C : hi ∈ Pa for all i

}
.

This is the subcomplex of C which is its restriction to Pa. In this section, we will

prove the following theorem.

Theorem 4.3.1. Given Ca as above

χ(Ca) =

1, if a ∈ T (P ∩ Zd)

0, otherwise

,

where χ(Ca) =
∑

s∈Ca
(−1)dim s.

We will prove this theorem by giving a geometric realization of the Ca and then

using properties of this realization to compute the Euler characteristic. For purposes

81

of exposition, we will present lemmas in a different order from how they are proved.

The structure of the proof of Theorem 4.3.1 is: Lemma 4.3.8 and Lemma 4.3.7 imply

Lemma 4.3.3, and then Lemma 4.3.2 and Lemma 4.3.3 imply Theorem 4.3.1.

We first examine another simplicial complex. Let X = {x1, x2, . . . , xm} be a

finite subset of Rn. We say that X is generic if there is no x, y ∈ X (x 6= y) with

(A′x)i = (A′y)i for some i. (A less strict version of this definition would work if we

wanted). We will deal with the non-generic case in Section 4.6. For now we assume,

for the sake of clarity, that X is generic. Recall that, for b′ ∈ Rn,

Kb′ = Kb′(A
′) := {x ∈ Rr : A′x ≤ b′} .

Define the simplicial complex S(X) on the vertices X to be the s ⊂ X for which

there exists a b′ ∈ Rn such that s ⊂ Kb′ but X ∩ int(Kb′) = ∅ (compare this to the

definition of the neighborhood complex in Section 1.3).

Lemma 4.3.2. If X = Pa ∩ Zr, then Ca = S(X).

Proof. Suppose s =
{
h0, h1, . . . , hl

} ∈ Ca. Then there exists a b′ ∈ Rn such that

s ⊂ Kb′ but Zr ∩ int(Kb′) = ∅. Since X ⊂ Zr, X ∩ int(Kb′) = ∅ and s ∈ S(X).

Conversely, suppose s =
{
h0, h1, . . . , hl

} ∈ S(X). Then there exists a b′ ∈ Rn

such that s ⊂ Kb′ but X ∩ int(Kb′) = ∅. We may choose b′ such that Kb′ ⊂ Ps, since

X ⊂ Pa and Pa is itself Kba . But then

Zr ∩ int(Kb′) = Zr ∩ Pa ∩ int(Kb′) = X ∩ int(Kb′) = ∅,

and so s ∈ Ca.

Theorem 4.3.1 follows from Lemma 4.3.2 and the following lemma.

Lemma 4.3.3. If X = {x1, x2, · · · , xm}, for some m ≥ 1, and S(X) is defined as

above, then χ
(
S(X)

)
= 1.

82

P1

4 8

8

4

y

x

Figure 4.3.4: Example 4.3.6, P1, with X = {−2,−1, 0, 1, 2}

4.3.5 Geometric realization of S(X) and C

To prove this lemma, we follow the method of [BSS98] and construct a polyhedron

Pt from the points x1, x2, . . . , xm, as follows. Given t ≥ 0, define Et : Rr → Rn by

Et(x) = et(A′x) = (et〈a′1,x〉, et〈a′2,x〉, . . . , et〈a′n,x〉),

where a′i is the ith row of A′. Now we define

Pt = Rn
≥0 + conv

{
Et(x

1), Et(x
2), . . . , Et(x

m)
}

,

where X = {x1, x2, . . . , xm} and “conv” means the convex hull.

Example 4.3.6. Let X = {−2,−1, 0, 1, 2}. Then Figure 4.3.4 illustrates P1.

The polyhedron Pt has the following useful property.

Lemma 4.3.7. There exists a sufficiently large t such that, if s ⊂ X with s =

{
h0, h1, . . . , hl

}
, then s ∈ S(X) if and only if conv

{
Et(h

0), Et(h
1), . . . , Et(h

l)
}

is a

face of Pt.

83

Proof. Theorem 2 of [BSS98] proves this fact for X = Zr, and that proof also works

here (in fact, their proof is more difficult, because they must deal with an infinite

X). The contents of this lemma are also proved in [BS98] using matroid theory.

In Example 4.3.6 (see Figure 4.3.4), this lemma tells us that S(X) has vertices

−2,−1, 0, 1, 2, and edges {−2,−1}, {−1, 0}, {0, 1}, {1, 2}, as we would expect. In

general, Lemma 4.3.7 gives a geometric realization of S(X) in Rn. In fact, as shown

in Theorem 2 of [BSS98], if we take X to be the (infinite) set Zr, this gives a geometric

realization of C.

Now pick a sufficiently large t such that Lemma 4.3.7 holds. Then the simplices in

S(X) are exactly the bounded faces of Pt. Then Lemma 4.3.3 (and hence Theorem

4.3.1) follows from the following lemma.

Lemma 4.3.8. Let Q be an unbounded polyhedron in Rn. Let F be the collection of

bounded faces of Q. Then

χ(F) =
∑
F∈F

(−1)dim(F) = 1.

Proof. Choose a half-space H+ such that H+ contains all of the bounded faces of Q

in its interior and such that Q′ = Q ∩ H+ is bounded. Let F ′ be the collection of

faces of Q′. We know
∑

F ′∈F ′
(−1)dim(F ′) = 1 + (−1)n−1.

This is the Euler-Poincaré formula, and it can be seen combinatorially (see, for

example, Corollary VI.3.2 of [Bar02]), or it can be seen from the fact that the complex

F ′ is homeomorphic to an n− 1 sphere (and then applying standard facts from the

homology of CW-complexes, see, for example, Theorem IX.4.4 of [Mas91]). Let H be

the hyperplane which is the boundary of H+. The faces of Q′ fall into 4 categories:

84

1. F , the bounded faces of Q,

2. The face Q ∩H,

3. F ∩H+, where F is an unbounded face of Q, and

4. F ∩H, where F is an unbounded face of Q.

There is a bijective correspondence between the last two categories, mapping a face

F from category 3 of dimension k to F ∩ H, a face from category 4 of dimension

k− 1. Therefore, in
∑

F ′∈F ′(−1)dim(F ′), these two categories will exactly cancel each

other, and so we have

1 + (−1)n−1 =
∑

F ′∈F ′
(−1)dim(F ′) =

[∑
F∈F

(−1)dim(F)
]

+ (−1)n−1 + 0.

The lemma follows.

4.4 Proof of Theorem 4.2.1

Now we turn to proving Theorem 4.2.1. Given s ∈ C̄ define the generating

function

gs(z) =
∑

a∈Zk

caz
a,

where ca is the number of s + λ, as λ varies over Zr, which are contained in Ca, that

is, ca = |(s + Zr) ∩ Ca|. Note that C is the disjoint union

⋃

s∈C̄

(s + Zr) .

85

Then Theorem 4.3.1 tells us that

f(S;x) =
∑

a∈T (P∩Zd)

za =
∑

s∈C̄

(−1)dim sgs(z).

Recall that B is the matrix whose columns form a basis for the lattice ker T ∩Zd,

and so B as a linear transformation bijectively maps Zr to ker T ∩ Zd. Given s =

{h0, h1, . . . , hl} ∈ C̄, let

Qs =
{
x ∈ Rd : x + Bhi ∈ P for all i

}
.

For any a ∈ Zk, there is a bijection between integer points λ in Qs ∩ T−1(a) and

simplices s + λ in Ca. If P = {x ∈ Rd : Ax ≤ b}, then

Qs = {x ∈ Rd : A(x + Bhi) ≤ b for all i}

= {x ∈ Rd : Ax ≤ b− A′hi for all i}

= {x ∈ Rd : Ax ≤ bs},

where

bs = b−max
(
A′h0, A′h1, . . . , A′hl

)
.

If c = (c1, c2, . . . , cd) ∈ Qs ∩ Zd, we want it to contribute zT (c) to

gs(z) =
∑

a∈Zk

caz
a.

This is accomplished by substituting xi = zfi into f(Qs ∩ Zd;x), where fi = T (ei),

because xc1
1 xc2

2 · · · xcd
d becomes zc1f1+c2f2+···+cdfd = zT (c). Therefore

f(Qs ∩ Zd; zf1 , zf2 , . . . , zfd) = gs(z),

and the theorem is proved.

86

Q{0}

Q{0,1}

x

y

=P

Figure 4.5.1: Q{0} = P and Q{0,1} in Example 4.5.2

4.5 Examples

Note that we may use Theorems 1.2.3 and 1.2.8 to calculate f(Qs∩Zd; zf1 , zf2 , . . . , zfd)

in polynomial time. In some cases, this works out well. In general though, the prob-

lem is that C̄ may have exponentially many simplices.

Here we present some examples of Theorem 4.2.1. In particular, if we take P =

Rd
≥0, so that T (P ∩Zd) is the affine semigroup (that is, additive semigroup with zero

in Rk) generated by T (e1), T (e2), . . . , T (ed), then we recover Corollary 4.5.4, which

originally appeared in [SW03].

Example 4.5.2. Let

A =

[
−1 0

1 −4
−2 3

]
and b =

[
0
0
6

]
,

and let P =
{
x ∈ R2 : Ax ≤ b

}
, as pictured in Figure 4.5.1. Let T : R2 → R be

defined by T (x, y) = 2x + 5y. Then ker(T) ∩ Z2 is generated by (5,−2), so we may

take

B =
[

5
−2

]
and A′ = AB =

[−5
13

−16

]
.

87

We may take C̄ to be the vertex {0} and the edge {0, 1}. Then, as in Theorem 4.2.1,

we have

b{0} = b−max{A′[0]} = b and b{0,1} = b−max{A′[0], A′[1]} =
[

0
−13

6

]
,

and P = Q{0} and Q{0,1} are as pictured in 4.5.1. We may compute (using LattE

[DLHTY04] or by hand)

f(Q{0} ∩ Z2; x, y) =
1 + xy + x2y + x3y

(1− y)(1− x4y)
− y3 + xy3 + x2y4

(1− y)(1− x3y2)

and

f(Q{0,1} ∩ Z2; x, y) =
x3y4 + x5y5 + x6y5 + x7y6 + x8y6

(1− x4y)(1− x3y2)
.

Then, by Theorem 4.2.1,

f
(
T (P ∩ Z2); t

)
= f(Q{0} ∩ Z2; t2, t5)− f(Q{0,1} ∩ Z2; t2, t5)

=
1 + t7 + t9 + t11

(1− t5)(1− t13)
− t15 + t17 + t24

(1− t5)(1− t16)
− t26 + t35 + t37 + t44 + t46

(1− t13)(1− t16)
.

4.5.3 Affine Semigroups

Now we apply Theorem 4.2.1 to affine semigroups.

Corollary 4.5.4. Given m1,m2, . . . , md ∈ Zk, let S ⊂ Zk be the affine semigroup

they generate. Let M be the k × d matrix whose columns are mi, let Λ = {λ ∈ Zd :

〈mi, λ〉 = 0 for all i}, and let r = dim Λ. Let A′ be a d × r matrix whose columns

are a basis for Λ. Define the neighborhood complex C = C(A′) on Zr as above, and

let C̄ be a set of distinct representatives of C modulo Zr. Then

f(S; z) =

∑
s∈C̄(−1)dim szM ·max(A′s)

(1− zm1)(1− zm2) · · · (1− zmd)
,

where max(A′s) is the coordinate-wise maximum of A′h0, A′h1, . . . , A′hl when s =

{h0, h1, . . . , hl}.

88

Proof. Note that S = T (P ∩ Zd), where P = {x ∈ Rd : xi ≥ 0} and T : Rd → Rk

is given by the matrix M . Let A be the negative d × d identity matrix, and let

b = 0 ∈ Rd, so that P = {x ∈ Rd : Ax ≤ b}. Let B = −A′, so that the columns of

B also form a basis for Λ = ker(T) ∩ Zd. Then we have that A′ = AB, as required

for Theorem 4.2.1. For s ∈ C̄, let bs = b−max(A′s) = −max(A′s), and let

Qs = {x ∈ Rd : Ax ≤ bs} = {x ∈ Rd : x ≥ max(A′s)}.

Then

f(Qs ∩ Zd; z) =
xmax(A′s)

(1− x1)(1− x2) · · · (1− xd)
.

Therefore, by Theorem 4.2.1,

f(S;x) =
∑

s∈C̄

(−1)dim sf
(
Qs ∩ Zd; zm1 , zm2 , . . . , zmd

)

=

∑
s∈C̄(−1)dim szM ·max(A′s)

(1− zm1)(1− zm2) · · · (1− zmd)
,

as desired.

This corollary originally appeared in [SW03]. We note that Corollary 4.5.4 also

follows from algebraic results in [BS98]. Here we have proved it geometrically. Now

we examine Corollary 4.5.4 for some specific d and k.

Suppose k = 1. If m1,m2, . . . , md are positive integers whose greatest common

divisor is one, then S is the Frobenius semigroup. H. Scarf and D. Shallcross [SS93]

have related the Frobenius number itself to the neighborhood complex. They show

(using slightly different terminology) that, if

N = max{M ·max(A′s) : s is in the neighborhood complex, C},

then the Frobenius number is

N − (m1 + m2 + · · ·+ mn).

89

x

y

h1

h2

h1 h2+

Figure 4.5.5: C̄ for k = 1, d = 3 in Example 4.5.7

Note that, in the terminology of this dissertation, N is the largest exponent in the

numerator of f(S; z) in the form from Corollary 4.5.4.

Example 4.5.6. Corollary 4.5.4, with k = 1, d = 2. Then

f(z) =
1− zlcm(m1,m2)

(1− zm1)(1− zm2)
.

In this case, we may choose C̄ ⊂ Z to consist of the vertex {0} and the edge

{0, 1}. This formula can easily be verified directly.

Example 4.5.7. Corollary 4.5.4, with k = 1, d = 3. Then

f(z) =
1− xp1 − xp2 − xp3 + xp4 + xp5

(1− zm1)(1− zm2)(1− zm3)
,

where p1, p2, . . . , p5 ∈ Z+ are quickly computable from m1, m2, m3.

In this case, C̄ consists of one vertex, three edges, and two triangles (see Section

1.3 and [Sca81]). More specifically, for some h1, h2 ∈ Z2, we may take C̄ to be the set

with vertex {0}; edges {0, h1}, {0, h2}, and {0, h1 +h2}; and triangles {0, h1, h1 +h2}

90

and {0, h2, h1+h2} (see Figure 4.5.5). This formula was previously shown in [Den03],

and also follows from [Her70] and [BS98], but their proofs use algebraic methods.

Here is a specific example:

Example 4.5.8. Corollary 4.5.4, with m1 = 11, m2 = 17, and m3 = 23. Then

f(z) =
1− z34 − z138 − z132 + z155 + z149

(1− z11)(1− z17)(1− z23)
.

In this case, if we choose A′ =
[

1 11
−2 1

1 −6

]
, then we may take h1 = (1, 0) and

h2 = (0, 1).

Unfortunately, for k = 1, d ≥ 4, the number of simplices in C̄ may be very large,

so no formula is quite so nice. Now we examine Corollary 4.5.4 for arbitrary k.

Example 4.5.9. Corollary 4.5.4, with d = k + 1. If the R-span of the mi is all of

Rk, then

f(z) =
1− zm

∏d
i=1(1− zmi)

,

where m = M · max{0, λ} and λ is the generator of the 1-dimensional lattice Λ =

{λ ∈ Zd : 〈mi, λ〉 = 0, for all i}.

As in the special case k = 1, d = 2, C̄ consists solely of one vertex and one edge.

This formula can also easily be verified directly.

Example 4.5.10. Corollary 4.5.4, with d = k + 2. If the R-span of the mi is all of

Rk, then

f(z) =
∑

j

zpj

(1− zqj)
∏

i(1− zmi)
+

∑

l

zp′l∏
i(1− zmi)

,

where pj, qj, p
′
l ∈ Zk. The number of terms in the sums is bounded by C · (dk +

∑
log2 A′

ij), for some constant C.

In other words, we can write f(S; z) using relatively “few” terms. This is not

immediately obvious, because the number of simplices in C̄ may be much larger

91

than C · (dk+
∑

log2 A′
ij), exponentially larger, in fact. In [Sca81], however, H. Scarf

shows that C̄ has a nice structure, which we will exploit. In particular, we may

represent the edges of C̄ by {0, hij}, for i ∈ I and 0 ≤ j ≤ Ni, where hi0, hi1, . . . , hiNi

lie on an interval, that is,

hij = ci + jdi,

for some ci, di ∈ Z2. The number of such intervals, |I|, is bounded by C1 · (dk +

∑
log2 A′

ij), where C1 is a constant. The triangles and 3-simplices also lie on intervals

(and there are no higher dimensional simplices, by Proposition 1.3.12). For example,

the 3-simplices are

{0, di, ci + (j − 1)di, ci + jdi},

for i ∈ I and 1 ≤ j ≤ Ni. The exponents in the numerator of f(S; z), which are

M ·max(A′s) for s ∈ C̄, will also lie on intervals αk + jβk, for k ∈ K, 0 ≤ j ≤ Nk,

and αk, βk ∈ Z2, and we may write

Nk∑
j=0

zαk+jβk as
zαk − zαk+(Nk+1)βk

1− zβk
.

Doing this gives us a short formula for f(z).

Here is a specific example:

Example 4.5.11. Corollary 4.5.4, with a1 = (2, 0), a2 = (0, 3), a3 = (3, 8), and

a4 = (5, 2). Then

f(S; z, w) =
−(z20w42 − z32w6) + (z23w50 − z35w14)

(1− z2w−6)(1− z2)(1− w3)(1− z3w8)(1− z5w2)

+
(z22w42 − z32w12)− (z25w50 − z35w20)

(1− z2w−6)(1− z2)(1− w3)(1− z3w8)(1− z5w2)

+
1− z5w8 − z18w48 + z20w48

(1− z2)(1− w3)(1− z3w8)(1− z5w2)
.

92

In this example, if we choose A′ =

[
1 10

−2 14
1 −5

−1 −1

]
then C̄ has one vertex, and it has

eight edges on two intervals, represented by {0, hij}, where h10 = (1, 0) and

h2j = (j − 1, 1), for j = 0, . . . , 6.

In all, C̄ has twelve triangles and five 3-simplices.

Unfortunately, for general d and k, the neighborhood complex has no known

structure as nice as in the d = k +2 case. See the discussion at the beginning of this

chapter and in Section 1.3.

4.6 The Non-generic Case

Since we are mostly concerned with A′ which are integer matrices, A′ and X =

Pa ∩ Zr will often not be generic. In this case, we define C(A′) as in the discussion

of non-genericity in Section 1.3. In particular, given a proper perturbation ϕ :

Zn → Rn, we define the neighborhood complex, C, on the vertices Zr, by saying

s = {h0, h1, . . . , hl} ⊂ Zr is in C if and only if for no x ∈ Zr is

ϕ(A′x) < max
(
ϕ(A′h0), ϕ(A′h1), . . . , ϕ(A′hl)

)
.

Then we may again define Ca by

Ca =
{{h0, h1, . . . , hl} ∈ C : hi ∈ Pa for all i

}
.

Using ϕ, we may also define S(X) by saying s = {h0, h1, . . . , hl} ⊂ X is in S(X) if

and only if for no x ∈ X is

ϕ(A′x) < max
(
ϕ(A′h0), ϕ(A′h1), . . . , ϕ(A′hl)

)
.

First we prove a non-generic version of Lemma 4.3.2.

93

Lemma 4.6.1. If a proper perturbation, ϕ, and a ∈ Rk are given, let X = Pa ∩ Zr,

and let Ca and S(X) be defined as above. Then Ca = S(X).

Proof. Suppose s = {h0, h1, . . . , hl} ∈ Ca. Then h0, . . . , hl ∈ Pa and for no x ∈ Zr is

ϕ(A′x) < max
(
ϕ(A′h0), ϕ(A′h1), . . . , ϕ(A′hl)

)
.

Therefore for no x ∈ X is ϕ(A′x) < max
(
ϕ(A′h0), ϕ(A′h1), . . . , ϕ(A′hl)

)
(since X ⊂

Zr), and so s ∈ S(X).

Conversely, suppose s ∈ S(X), with s = {h0, h1, . . . , hl}. Then h0, . . . , hl ∈ Pa

and for no x ∈ X is ϕ(A′x) < max
(
ϕ(A′h0), ϕ(A′h1), . . . , ϕ(A′hl)

)
. Since Pa = {y ∈

Rr : A′y ≤ ba}, and hj ∈ Pa for all j, we have that

[A′hj]i ≤ [ba]i

for all i, j. Suppose (seeking a contradiction) that

ϕ(A′x) < max
(
ϕ(A′h0), ϕ(A′h1), . . . , ϕ(A′hl)

)

for some x ∈ Zr. Then for each i there is a j such that

[ϕ(A′x)]i < [ϕ(A′hj)]i.

Therefore, for that i and j, [A′x]i ≤ [A′hj]i ≤ [ba]i, by Property 2 of proper

perturbations. But then we must have that x ∈ Pa, contradicting that for no

x ∈ X = Pa ∩ Zr is ϕ(A′x) < max
(
ϕ(A′h0), ϕ(A′h1), . . . , ϕ(A′hl)

)
. Therefore,

for no x ∈ Zr is ϕ(A′x) < max
(
ϕ(A′h0), ϕ(A′h1), . . . , ϕ(A′hl)

)
, and so s ∈ Ca.

The rest of the proof of Theorem 4.2.1 remains the same, except that we examine

the polyhedron

Pt = Rn
≥0 + conv

{
etϕ(A′x1), etϕ(A′x2), etϕ(A′xm)

}
,

where X = {x1, x2, . . . , xm} and t is taken sufficiently large.

CHAPTER V

Presburger Arithmetic

In Presburger arithmetic, we try to answer yes-or-no questions about integers.

In writing these questions, we are allowed to use addition, multiplication by integer

constants, comparison (≤), boolean operations (and, or, not), and quantifiers (∀ and

∃). For example, we might want to decide whether the following statement is true

or false:

∃x∀y : (5x + 3y ≤ 7) or (2x− y ≤ 10 and − 5x− 3y ≤ −5), with x, y ∈ N.

In general, Presburger sentences are of the form

Q1x1Q2x2 · · ·Qdxd : F (x1, x2, . . . , xd), xi ∈ N,

where the Qi represent quantifiers (either ∃ or ∀), and F is a quantifier-free formula

consisting of linear inequalities and boolean operations (there is no loss of generality

here in restricting our attention to N = {0, 1, 2, . . .} instead of all of Z).

Presburger arithmetic is intimately related to the subject of rational generating

functions. We say that a set S ⊂ Nl is definable in Presburger arithmetic if, for some

d, there exist quantifiers Q1, Q2, . . . , Qd (each either ∃ or ∀) and a quantifier-free

formula F (x1, x2, . . . , xd, y1, y2, . . . , yl) consisting of linear inequalities and boolean

94

95

operations, such that

S =
{

y ∈ Nl
∣∣∣ Q1x1Q2x2 · · ·Qdxd : F (x, y), xi ∈ N

}
.

In Section 5.1, we will prove that the sentences which are definable in Presburger

arithmetic are exactly the sentences which can be encoded as rational generating

functions.

In Section 5.2, we will examine Presburger arithmetic from a complexity point of

view. In Section 5.3, we examine the connection between Presburger arithmetic and

rational generating functions, again from a complexity point of view.

5.1 Presburger Arithmetic and Rational Generating Func-
tions

In this section, we prove the following theorem.

Theorem 5.1.1. A set S ⊂ Nl is definable in Presburger arithmetic if and only if

f(S;x) can be written as a rational generating function of the form

∑
i∈I

αi
xpi

(1− xai1)(1− xai2) · · · (1− xaiki)
,

where αi ∈ Q, pi, aij ∈ Zl, and aij 6= 0.

Let S ⊂ Nl be given.

To prove the forward implication, suppose S is definable in Presburger arithmetic.

We must show how to write f(S;x) as a rational generating function.

5.1.2 Quantifier elimination

The tool we employ is quantifier elimination (see [Opp78] for a nice exposition).

Using quantifier elimination, we may write

S =
{

y ∈ Nl
∣∣∣ F (y)

}
,

96

where F (y) is a quantifier-free formula consisting of linear inequalities, boolean op-

erations, and statements of the form

a1y1 + a2y2 + · · ·+ alyl ≡ c (mod d),

where ai, c, d ∈ Z. Note that the elements of Zl which satisfy such a congruence

equation form an affine translate of a sublattice of Zl. Therefore, using this form,

we may then write S as a disjoint union

S =
n⋃

i=1

int(Pi) ∩ (λi + Λi),

where, for 1 ≤ i ≤ n, Pi ⊂ Rl is a polyhedron, Λi is a sublattice of Zl, λi is in Nl, and

int(Pi) is the relative interior of Pi (in general, some of the polyhedra in this disjoint

union will not be full-dimensional). We know we can write f(Si;y) as a rational

generating function, where Si = int(Pi) ∩ (λi + Λi) (in fact Theorem 1.2.3, Theorem

1.2.10, and Lemma 2.3.6 give a way to compute this quickly), and so

f(S;x) =
∑

i

f(Si;x)

can be written as a rational generating function.

Conversely, suppose we have that f(S;x) can be written as a rational generating

function. We must show how to define S in Presburger arithmetic. First we need a

few definitions.

5.1.3 Quasi-polynomials

We say that a function g : Zl → R is a quasi-polynomial if there is a full-

dimensional sublattice Λ of Zl and there are polynomials pλ̄(y1, . . . , yl), one for each

λ̄ ∈ Zl/Λ, such that

g(y) = pλ̄(y), for ȳ = λ̄.

97

We say that a function g : Zl → R is a quasi-polynomial on polyhedral pieces if there

is a finite partition
⋃

i int(Pi) of Rl with Pi polyhedra and there are quasi-polynomials

gi such that

g(y) = gi(y) for y ∈ int(Pi).

We need the following lemma.

Lemma 5.1.4. Let

h(x) =
∑
i∈I

αi
xpi

(1− xai1)(1− xai2) · · · (1− xaiki)

be a rational function, where x ∈ Cl, αi ∈ Q, pi, aij ∈ Zl, and aij 6= 0 for all i, j,

and let
∑

m∈Zl

cmxm

be a Laurent series expansion of h(x) convergent on some neighborhood in Cl. Then

cm, as a function of m, is a quasi-polynomial on polyhedral pieces.

Proof. It suffices to prove this for rational functions of the form

h(x) =
xp

(1− xa1)(1− xa2) · · · (1− xak)
,

where p, ai ∈ Zl, because the property of being a quasi-polynomial on polyhedral

pieces is preserved under summation. Furthermore, we may take p = 0, because

multiplying by xp only shifts the function cm. Let

∑

m∈Zl

cmxm

be the Laurent series expansion of h(x) convergent on the neighborhood of some

point (er1 , er2 , . . . , erl), and let r = (r1, r2, . . . , rl). As in the proof of Theorem 1.2.10,

we may assume that 〈r, ai〉 < 0 for all i; otherwise, use the fact that

1

1− xai
= − x−ai

1− x−ai

98

to transform the fraction so that it does hold.

Then
∑

m∈Zl

cmxm =
∑

λ1,...,λk∈N
xλ1a1+λ2a2+···+λkak

as Laurent series, and so

cm = #
{
λ1, λ2, . . . , λk ∈ N : m = λ1a1 + λ2a2 + · · ·+ λkak

}
.

In this form, cm, as a function of m, is the vector partition function, and it is known

to be a quasi-polynomial on polyhedral pieces, see, for example Theorem 1 of [Stu95].

We use this lemma as follows. We know that our rational function f(S;x) is

actually a generating function, meaning that for some Laurent series expansion

∑
m∈Zl cmxm of f , the coefficients cm are all either 1 or 0. Let

⋃n
i=1 int(Pi) be a

partition of Rl with Pi polyhedra, let Λi be full-dimensional sublattices of Zl, and

let pi,λ̄ be polynomials (for λ̄ ∈ Zl/Λi), such that

cm = pi,λ̄(m) for m ∈ int(Pi) ∩ (λ + Λi),

as guaranteed by the lemma. It suffices to show that S ∩ int(Pi) ∩ (λ + Λi) can be

defined in Presburger arithmetic for each i and each λ̄ ∈ Zl/Λi, because S is the

union of these pieces.

Let a particular i and λ̄ ∈ Zl/Λi be given.

If Pi is bounded, then S ∩ int(Pi) ∩ (λ + Λi) is finite and so can easily be defined

in Presburger arithmetic.

If Pi is unbounded, let K be the cone

K = {y ∈ Rl : y + Pi ⊂ Pi}.

99

Then K is the largest cone such that x + K ⊂ Pi for all x ∈ Pi, and is often called

the recession cone or characteristic cone of P (see Section 8.2 of [Sch86]).

If dim K = dim Pi, then, since pi,λ̄(m) = cm is 0 or 1 (for m ∈ int(Pi)∩ (λ + Λi)),

pi,λ̄ must be a constant function on int(Pi) ∩ (λ + Λi). In this case, if pi,λ̄ ≡ 1, then

S ∩ int(Pi) ∩ (λ + Λi) = int(Pi) ∩ (λ + Λi)

can be defined in Presburger arithmetic, and if pi,λ̄ ≡ 0, then

S ∩ int(Pi) ∩ (λ + Λi) = ∅

can also be defined in Presburger arithmetic.

If dim K < dim Pi, then pi,λ̄(m) need not be constant on int(Pi) ∩ (λ + Λi). For

example, if

Pi =
{
(x, y) ∈ R2 : x ≥ 0 and − .5 ≤ y ≤ 1.5

}
,

then

K =
{
(x, 0) : x ≥ 0

}
,

and the polynomial p(x, y) = y is 1 for y = 1 and 0 for y = 0. However, we can

partition int(Pi) ∩ (λ + Λi) into a finite number of pieces, Qj, of the form

Qj = (vj + K) ∩ (λ + Λi),

for some vj, and on each of these pieces pi,λ̄(m) will be constant. We then proceed

as in the previous case, where dim K = dim Pi. The proof follows.

5.2 Complexity and Presburger Arithmetic

In this section, we will discuss algorithms for deciding whether statements in

Presurger arithmetic are true or false. In general, there is no good algorithm, but we

100

will examine various subclasses of this problem (for example, when the number of

quantifiers is fixed), and we will be looking for subclasses for which there is a quick

(that is, polynomial time) algorithm to decide whether statements are true or false.

Note that another reasonable class of problems to study would be sentences where

we are also allowed multiplication of variables, for example

∃x∃y : x2 + 2y2 ≤ 4 and x2 − 4x + y2 − 4y + xy ≤ −5, with x, y ∈ N.

In general, however, these problems are very hard. In fact, there is a certain multi-

variate polynomial p(x0, x1, . . . , xd) such that the class of problems

Given a ∈ N, decide whether

∃x1,∃x2, . . . , ∃xd : p(a, x1, x2, . . . , xd) = 0, with xi ∈ N

is undecidable. This is a consequence of the DPRM-theorem (after Davis, Putnam,

Robinson, and Matiyasevich, see, for example, [Dav73]), which solves Hilbert’s 10th

problem in the negative. Hilbert asked [Hil00] for an algorithm that, given a multi-

variate polynomial p, would decide whether p has any integer roots.

The Presburger arithmetic problem, at least, is decidable, as originally proved

[Pre91] by Presburger in 1929. Since then, better algorithms have been found. For

example, D. Oppen gave an algorithm [Opp78], based on work of D. Cooper [Coo72],

with running time 222cφ

, where φ is the input size of the problem and c is a constant.

Nevertheless, lower bounds on the running time exist [FR74], which say any algorithm

that solves all Presburger arithmetic problems will sometimes take at least 22c′φ
steps,

where c′ is a constant.

A natural subclass to look at in order to find quick algorithms is the class where

the number of quantifiers is fixed, but the number of boolean operations, linear

inequalities, and the coefficients of the linear inequalities are all allowed to vary.

101

With the number of quantifiers fixed, we are able to use integer programming ideas

to solve some of these problems.

5.2.1 Presburger arithmetic and integer programming

For example, suppose we have a problem

Q1x1Q2x2 · · ·Qdxd : F (x1, x2, . . . , xd), xi ∈ N,

where the Qi represent quantifiers (either ∃ or ∀), and F is a quantifier-free formula

consisting of linear inequalities and boolean operations. We would like to convert F

into disjunctive normal form in polynomial time, that is, into the form

(p11 and · · · and p1,n1) or · · · or (pm1 and · · · and pm,nm),

where pij are (possibly strict) linear inequalities. In this form, the problem would

have a nice geometric interpretation, because F could be written as

x ∈
n⋃

j=1

int(Pj),

where Pj are polyhedra.

To convert into disjunctive normal form is, in general, a hard problem. For ex-

ample, if Aij are boolean functions, for 1 ≤ i ≤ n and j ∈ {1, 2} (and we don’t

know anything special about the Aij, such as their being linear inequalities), then

the disjunctive normal form for

(A11 or A12) and (A21 or A22) and · · · and (An1 or An2) =
n∧

i=1

(Ai1 ∨ Ai2)

is
∨

ψ:[n]→{1,2}

(
n∧

i=1

Aiψ(i)

)
,

102

where ∨ is the disjunction “or” and ∧ is the conjunction “and.” The number of atoms

needed changes from 2n in the conjunctive normal form to n2n in the disjunctive

normal form.

Nevertheless, if the atoms Ai are linear inequalities, and the number of quantifiers

is fixed, we may use geometry to help us put F into disjunctive normal form quickly.

Proposition 5.2.2. Fix d. There is a polynomial time algorithm which, given a

quantifier-free formula F (x1, x2, . . . , xd) consisting of linear inequalities and boolean

operations, converts F into disjunctive normal form.

Proof. The inequalities appearing in F cut Rd into many polyhedral pieces. It might

appear at first glace that the number of such pieces could be 2N , where N is the total

number of inequalities in F . Nevertheless, as discussed in Section 3.3, the number

of pieces is bounded by

Φ(d,N) =

(
N

0

)
+

(
N

1

)
+ · · ·+

(
N

d

)
.

See Section 6.1 of [Mat02] for a proof. We have that Φ(d,N) is a polynomial in N of

degree at most d (where d is fixed), and the description of each piece may be found

in polynomial time. Within each piece, F is either always true or always false. Then

the disjunctive normal form is simply
∨

P{x ∈ P}, where the disjunction is taken

over all polyhedral pieces P such that F is true.

Converting F into disjunctive normal form allows us to use integer programming

methods to solve these problems. For example, if the fixed number of quantifiers are

all ∃, then we have

∃x1∃x2 · · · ∃xd : x ∈
⋃
j

int(Pj), xi ∈ N,

103

where Pj are polyhedra. Now we may use Lenstra’s algorithm for integer program-

ming [Len83] to solve this problem in polynomial time, by checking each int(Pi) one

at a time to see if it contains an integer point. If the quantifiers are not all ∃, how-

ever, we cannot expect a polynomial time algorithm, as the following theorem (see

[Sch97]) shows.

Theorem 5.2.3. (from [Sch97]) The problem of deciding whether sentences of the

form

∃x1∀x2 : F (x1, x2), xi ∈ N,

where F is a quantifier-free formula consisting of linear inequalities and boolean

operations, are true or false is NP-complete.

The next possibility is to examine the class of problems where the number of

quantifiers and the number of linear inequalities and boolean operations are all fixed,

but the coefficients of the linear inequalities are allowed to vary. In this case, R.

Kannan showed [Kan90] that sentences of the form

∃x1 · · · ∃xk∀xk+1 · · · ∀xd : F (x1, x2, . . . , xd), xi ∈ N

can be decided in polynomial time. He used integer programming methods similar

to Lemma 2.3.4, together with Lenstra’s algorithm for integer programming in fixed

dimension. For sentences with more quantifier alternation (alternation between ∃

and ∀), no polynomial time algorithm is known.

5.3 Complexity, Presburger Arithmetic, and Rational Gen-
erating Functions

Theorem 5.1.1 shows that the sentences which are definable in Presburger arith-

metic are exactly the sentences which can be encoded as rational generating func-

104

tions. Here we will discuss complexity issues related to this correspondence. In

particular, given a set defined by a Presburger sentence, can we find a rational gen-

erating function for it quickly?

From the discussion in the last section, it is certainly true that we will have to

fix the number of variables in the sentence to have any hope of finding a quick

algorithm. The following proposition says that if we fix the number of variables and

if the Presburger sentence has no quantifiers, then we can find a rational generating

function in polynomial time.

Proposition 5.3.1. Fix l. There is a polynomial time algorithm which, given a

quantifier-free formula F (y1, y2, . . . , yl) consisting of boolean combinations of linear

inequalities, computes f(S;y), where

S =
{

y ∈ Nl
∣∣∣ F (y)

}
.

Proof. First use Proposition 5.2.2 to convert F (y) to disjunctive normal form. In

particular, we see from the proof of Proposition 5.2.2 that we can find polyhedra

Pi ⊂ Rl, whose relative interiors int(Pi) are disjoint, such that

F (y) if and only if y ∈
⋃
i

int(Pi).

Then if Si = int(Pi) ∩ Nl, we can find f(Si;y) in polynomial time using Theorem

1.2.3 and Lemma 2.3.6, and

f(S;y) =
∑

i

f(Si;y).

In general, however, the problem of finding a rational generating function for a

set defined by a Presburger formula becomes hard if even one quantifier is allowed.

105

Proposition 5.3.2. The following class of problems is NP-hard: Given a quantifier-

free formula F (x, y) consisting of boolean combinations of linear inequalities, compute

f(S; y), where

S =
{

y ∈ N
∣∣∣ ∀x : F (x, y), x ∈ N

}
.

Proof. As usual for these sorts of proofs, we give a polynomial time reduction of a

known NP-complete problem to this problem. Here we use Theorem 5.2.3, which

states that the problem of deciding whether sentences of the form

∃x1∀x2 : F (x1, x2), xi ∈ N,

where F is a quantifier-free formula consisting of linear inequalities and boolean

operations, are true or false is NP-complete. Indeed, suppose we know f(S; y) as a

rational function, where

S =
{

y ∈ N
∣∣∣ ∀x : F (x, y), x ∈ N

}
.

Then the sentence

∃x∀y : F (x, y), xi ∈ N,

is true if and only if f(S; y) is nonzero, which we can decide in polynomial time by

performing the substitution y = 1, using Theorem 1.2.8 (if the set S is infinite, we

cannot apply this theorem, but we could have checked that in advance, in polynomial

time).

We note that this proposition also shows that the following problem is NP-hard:

given a rational generating function f(Ŝ; x, y), find f(π(Ŝ); y) where π : R2 → R

is defined by π(x, y) = y. Indeed, given a quantifier-free formula F (x, y) consisting

of boolean combinations of linear inequalities, we can compute in polynomial time

106

f(Ŝ; x, y), where

Ŝ = {(x, y) ∈ N2 : F (x, y)},

using Proposition 5.3.1. But then π(Ŝ) = S, where S is defined as in the statement

of Proposition 5.3.2, and finding f(S; y) is NP-hard. In contrast, given rational

generating functions f(S1;x), . . . , f(Sn;x), where Si ⊂ Nl, we can use Theorem

1.2.10 to find f(S;x) in polynomial time (for fixed l and n), where S is a boolean

combination of the Si.

As we did in the previous section, we might then turn to the class of problems

where not only the number of variables, but also the number of linear inequalities in

the formula is fixed, but the coefficients of the linear inequalities are allowed to vary.

We have the following corollary to Theorem 1.1.15.

Corollary 5.3.3. Fix l, d, and n. There is a polynomial time algorithm which,

given a quantifier-free formula F (x1, x2, . . . , xd, y1, y2, . . . , yl) consisting of boolean

combinations of at most n linear inequalities, computes f(S;y), where

S =
{

y ∈ Nl
∣∣∣ ∃x1∃x2 · · · ∃xd : F (x, y), xi ∈ N

}
.

Proof. First convert F into disjunctive normal form, (x, y) ∈ ⋃N
j=1 int(Pj), where Pj

are polyhedra. Since n, l, and d are fixed, N is fixed. For each Pj, let

Sj =
{

y ∈ Nl
∣∣∣ ∃x1∃x2 · · · ∃xd : (x, y) ∈ int(Pj), xi ∈ N

}
,

so that S =
⋃

j Sj. We would like to compute each f(Sj;y) in polynomial time,

and then we can compute f(S;y) using Theorem 1.2.10. Let j be fixed. Note that

int(Pj) ∩ Nd+l = P ∩ Nd+l for some polyhedron P (for example, if Pj = {x ∈ Rd+l :

Ax ≤ b} is full-dimensional, then we may take P = {x ∈ Rd+l : Ax ≤ b− 1}, where

b − 1 = (b1 − 1, . . . , bm − 1)). As often occurred in Chapter III, we would like to

107

apply Theorem 1.1.15, since Sj = T (P ∩ Nd+l) where T : Rd ⊕ Rl → Rl is given by

T (x, y) = y, but we cannot apply it directly, since P may be unbounded.

We will use Proposition 3.2.3, which says that we may find T ′(Nr) in polynomial

time, for fixed r, where T ′ : Rr → Rk is a linear transformation with T ′(Zr) ⊂ Zk.

Suppose P = {x ∈ Rd+l
≥0 : Ax ≤ b}, for some m× (d + l) integer matrix A and some

b ∈ Zm. Then the map ϕ : Rd+l → Rd+l ⊕ Rm given by

ϕ(x) = (x, b− Ax)

maps P to

Q :=
{
(x, z) ∈ Rd+l

≥0 × Rm
≥0 : Ax + z = b

}
,

and bijectively maps P ∩ Nd+l onto Q ∩ Nd+l+m. Let T ′ : Rd+l ⊕ Rm → Rl ⊕ Rm be

given by

T ′(x, z) = (T (x), Ax + z).

Then we may find f
(
T ′(Nd+l×Nm);y, z

)
in polynomial time using Proposition 3.2.3,

and then f(T (P ∩ Nd+l);y) is the coefficient (in C[y]) of zb. We may compute

f(T (P ∩ Nd+l);y) by first taking the Hadamard product of f
(
T ′(Nd+l × Nm);y, z

)

and

zb

l∏
i=1

1

1− yi

,

using Lemma 1.2.11, and then specializing at z = (1, 1, . . . , 1), using Theorem 1.2.8.

This corollary also holds if all of the quantifiers are ∀, because

{
y ∈Nl

∣∣∣ ∀x1∀x2 · · · ∀xd : F (x, y), xi ∈ N
}

= Nl \ {
y ∈ Nl

∣∣∣ ∃x1∃x2 · · · ∃xd : ¬F (x, y), xi ∈ N
}
.

108

A natural question, then, is whether we can extend this to cases where the quantifiers

are not all the same. It might also be true that answering these questions about

generating functions would help us with the original decision problem. We close

with the following conjecture.

Conjecture 5.3.4. Fix l, d, and n. There is a polynomial time algorithm which,

given a quantifier-free formula F (x1, x2, . . . , xd, y1, y2, . . . , yl) consisting of boolean

combinations of at most n linear inequalities, and given quantifiers Q1, Q2, . . . , Qd

(each either ∃ or ∀), computes f(S;y), where

S =
{

y ∈ Nl
∣∣∣ Q1x1Q2x2 · · ·Qdxd : F (x, y), xi ∈ N

}
.

In particular, there is a polynomial time algorithm which, given a quantifier-free

formula G(x1, x2, . . . , xd) consisting of boolean combinations of at most n linear in-

equalities, and given quantifiers Q1, Q2, . . . , Qd (each either ∃ or ∀), decides whether

Q1x1Q2x2 · · ·Qdxd : G(x), xi ∈ N.

BIBLIOGRAPHY

109

110

BIBLIOGRAPHY

[Bar94] Alexander Barvinok. A polynomial time algorithm for counting integral points in
polyhedra when the dimension is fixed. Math. Oper. Res., 19(4):769–779, 1994.

[Bar02] Alexander Barvinok. A Course in Convexity, volume 54 of Graduate Studies in Math-
ematics. American Mathematical Society, Providence, RI, 2002.

[Bel77] David Bell. A theorem concerning the integer lattice. Studies in Appl. Math.,
56(2):187–188, 1976/77.

[BLPS99] Wojciech Banaszczyk, Alexander Litvak, Alain Pajor, and Stanislaw Szarek. The
flatness theorem for nonsymmetric convex bodies via the local theory of Banach spaces.
Math. Oper. Res., 24(3):728–750, 1999.

[BP99] Alexander Barvinok and James Pommersheim. An algorithmic theory of lattice points
in polyhedra. In New Perspectives in Algebraic Combinatorics (Berkeley, CA, 1996–
97), volume 38 of Math. Sci. Res. Inst. Publ., pages 91–147. Cambridge Univ. Press,
Cambridge, 1999.

[Bri88] Michel Brion. Points entiers dans les polyèdres convexes. Ann. Sci. École Norm. Sup.
(4), 21(4):653–663, 1988.

[BS98] Dave Bayer and Bernd Sturmfels. Cellular resolutions of monomial modules. J. Reine
Angew. Math., 502:123–140, 1998.

[BSS98] Imre Bárány, Herbert Scarf, and David Shallcross. The topological structure of max-
imal lattice free convex bodies: the general case. Math. Programming, 80(1, Ser.
A):1–15, 1998.

[BW03] Alexander Barvinok and Kevin Woods. Short rational generating functions for lattice
point problems. J. Amer. Math. Soc., 16(4):957–979 (electronic), 2003.

[CGST86] William Cook, Albertus Gerards, Alexander Schrijver, and Éva Tardos. Sensitivity
theorems in integer linear programming. Math. Programming, 34(3):251–264, 1986.

[Coo72] D.C. Cooper. Theorem proving in arithmetic without multiplication. Machine Intel-
ligence, 7:91–99, 1972.

[Dav73] Martin Davis. Hilbert’s tenth problem is unsolvable. Amer. Math. Monthly, 80:233–
269, 1973.

[Den03] Graham Denham. Short generating functions for some semigroup algebras. Electron.
J. Combin., 10:Research Paper 36, 7 pp. (electronic), 2003.

[DLHH+04] Jesus De Loera, David Haws, Raymond Hemmecke, Peter Huggins, Bernd Sturmfels,
and Ruriko Yoshida. Short rational functions for toric algebra. to appear in Journal
of Symbolic Computation, 2004.

111

[DLHTY04] Jesus De Loera, Raymond Hemmecke, Jeremy Tauzer, and Ruriko Yoshida. Effective
lattice point counting in rational convex polytopes. to appear in Journal of Symbolic
Computation, http://www.math.ucdavis.edu/∼latte, 2004.

[Doi73] Jean-Paul Doignon. Convexity in cristallographical lattices. J. Geometry, 3:71–85,
1973.

[EG72] Paul Erdős and Ronald Graham. On a linear diophantine problem of Frobenius. Acta
Arith., 21:399–408, 1972.

[Eis95] David Eisenbud. Commutative Algebra with a view toward algebraic geometry, volume
150 of Graduate Texts in Mathematics. Springer-Verlag, New York, 1995.

[Ewa96] Günter Ewald. Combinatorial Convexity and Algebraic Geometry, volume 168 of Grad-
uate Texts in Mathematics. Springer-Verlag, New York, 1996.

[FR74] Michael Fischer and Michael Rabin. Super-exponential complexity of Presburger arith-
metic. In Complexity of computation (Proc. SIAM-AMS Sympos., New York, 1973),
pages 27–41. SIAM–AMS Proc., Vol. VII. Amer. Math. Soc., Providence, R.I., 1974.

[Ful93] William Fulton. Introduction to Toric Varieties, volume 131 of Annals of Mathematics
Studies. Princeton University Press, Princeton, NJ, 1993.

[Her70] Jürgen Herzog. Generators and relations of abelian semigroups and semigroup rings.
Manuscripta Math., 3:175–193, 1970.

[Hil00] David Hilbert. Mathematical problems. Bull. Amer. Math. Soc. (N.S.), 37(4):407–436
(electronic), 2000. Reprinted from Bull. Amer. Math. Soc. 8 (1902), 437–479.

[HS04] Serkan Hoşten and Bernd Sturmfels. Computing the integer programming gap. to
appear in Combinatorics, 2004.

[HT99] Serkan Hoşten and Rekha Thomas. The associated primes of initial ideals of lattice
ideals. Math. Res. Lett., 6(1):83–97, 1999.

[Kan90] Ravi Kannan. Test sets for integer programs, ∀∃ sentences. In Polyhedral combina-
torics (Morristown, NJ, 1989), volume 1 of DIMACS Ser. Discrete Math. Theoret.
Comput. Sci., pages 39–47. Amer. Math. Soc., Providence, RI, 1990.

[Kan92] Ravi Kannan. Lattice translates of a polytope and the Frobenius problem. Combina-
torica, 12(2):161–177, 1992.

[KLS90] Ravi Kannan, László Lovász, and Herbert Scarf. The shapes of polyhedra. Math.
Oper. Res., 15(2):364–380, 1990.

[Len83] Hendrik Lenstra, Jr. Integer programming with a fixed number of variables. Math.
Oper. Res., 8(4):538–548, 1983.

[Lov89] László Lovász. Geometry of Numbers and Integer Programming. In Mathematical
programming (Tokyo, 1988), volume 6 of Math. Appl. (Japanese Ser.), pages 177–201.
SCIPRESS, Tokyo, 1989.

[Mas91] William Massey. A Basic Course in Algebraic Topology, volume 127 of Graduate Texts
in Mathematics. Springer-Verlag, New York, 1991.

[Mat02] Jǐŕı Matoušek. Lectures on Discrete Geometry, volume 212 of Graduate Texts in Math-
ematics. Springer-Verlag, New York, 2002.

[Opp78] Derek Oppen. A superexponential upper bound on the complexity of Presburger arith-
metic. J. Comput. System Sci., 16(3):323–332, 1978.

112

[Pap94] Christos Papadimitriou. Computational Complexity. Addison-Wesley Publishing
Company, Reading, MA, 1994.

[Pre91] Mojżesz Presburger. On the completeness of a certain system of arithmetic of whole
numbers in which addition occurs as the only operation. Hist. Philos. Logic, 12(2):225–
233, 1991. Translated from the German and with commentaries by Dale Jacquette.

[RA96] Jorge Ramı́rez-Alfonśın. Complexity of the Frobenius problem. Combinatorica,
16(1):143–147, 1996.

[Sca77] Herbert Scarf. An observation on the structure of production sets with indivisibilities.
Proc. Nat. Acad. Sci. U.S.A., 74(9):3637–3641, 1977.

[Sca81] Herbert Scarf. Production sets with indivisibilities. II. The case of two activities.
Econometrica, 49(2):395–423, 1981.

[Sca97] Herbert Scarf. Test sets for integer programs. Math. Programming, 79(1-3, Ser.
B):355–368, 1997.

[Sch86] Alexander Schrijver. Theory of Linear and Integer Programming. Wiley-Interscience
Series in Discrete Mathematics. John Wiley & Sons Ltd., Chichester, 1986.

[Sch97] Uwe Schöning. Complexity of Presburger arithmetic with fixed quantifier dimension.
Theory Comput. Syst., 30(4):423–428, 1997.

[Sha92] David Shallcross. Neighbors of the origin for four by three matrices. Math. Oper. Res.,
17(3):608–614, 1992.

[SS93] Herbert Scarf and David Shallcross. The Frobenius problem and maximal lattice free
bodies. Math. Oper. Res., 18(3):511–515, 1993.

[Stu95] Bernd Sturmfels. On vector partition functions. J. Combin. Theory Ser. A, 72(2):302–
309, 1995.

[Stu96] Bernd Sturmfels. Gröbner Bases and Convex Polytopes, volume 8 of University Lecture
Series. American Mathematical Society, Providence, RI, 1996.

[SW86] László Székely and Nicholas Wormald. Generating functions for the Frobenius problem
with 2 and 3 generators. Math. Chronicle, 15:49–57, 1986.

[SW03] Herbert Scarf and Kevin Woods. Neighborhood complexes, generating functions, and
semigroups. preprint, 2003.

[Tho95] Rekha Thomas. A geometric Buchberger algorithm for integer programming. Math.
Oper. Res., 20(4):864–884, 1995.

[Tho03] Rekha Thomas. The structure of group relaxations. to appear in Handbook of Discrete
Optimization (eds: K. Aardal, G. Nemhauser, R. Weismantel), 2003.

[TW03] Rekha Thomas and Kevin Woods. Generating functions for standard pairs.
manuscript, 2003.

ABSTRACT

Rational Generating Functions and Lattice Point Sets

by

Kevin M. Woods

Chair: Alexander Barvinok

We prove that, for any fixed d, there is a polynomial time algorithm for computing the

generating function of any projection of the set of integer points in a d-dimensional

polytope. This implies that many interesting sets of integer points can be encoded as

short rational generating functions, such as the Frobenius semigroup of all nonnega-

tive integer combinations of given positive integers, affine semigroups, neighbors and

the neighborhood complex (also known as the Scarf complex or complex of maximal

lattice-free bodies), Hilbert bases, and sets from algebraic integer programming. We

also show how to use the generating functions to solve computational problems (such

as finding the cardinality of the set or finding its maximum element) in polynomial

time. We may also use this theorem to compute, as a short rational function, the

Hilbert series of rings generated by monomials. We examine the connection between

generating functions and the neighborhood complex, and we consider possibilities for

improving the algorithm for the main theorem. Finally, we examine the relationship

between rational generating functions and the complexity of Presburger arithmetic.

