MAXIMAL PERIODS OF (EHRHART) QUASI-POLYNOMIALS

MATTHIAS BECK, STEVEN V. SAM, AND KEVIN M. WOODS

Abstract

A quasi-polynomial is a function defined of the form $q(k)=c_{d}(k) k^{d}+c_{d-1}(k) k^{d-1}+$ $\cdots+c_{0}(k)$, where $c_{0}, c_{1}, \ldots, c_{d}$ are periodic functions in $k \in \mathbb{Z}$. Prominent examples of quasipolynomials appear in Ehrhart's theory as integer-point counting functions for rational polytopes, and McMullen gives upper bounds for the periods of the $c_{j}(k)$ for Ehrhart quasi-polynomials. For generic polytopes, McMullen's bounds seem to be sharp, but sometimes smaller periods exist. We prove that the second leading coefficient of an Ehrhart quasi-polynomial always has maximal expected period and present a general theorem that yields maximal periods for the coefficients of certain quasi-polynomials. We present a construction for (Ehrhart) quasi-polynomials that exhibit maximal period behavior and use it to answer a question of Zaslavsky on convolutions of quasipolynomials.

1. Introduction

A quasi-polynomial is a function defined on \mathbb{Z} of the form

$$
\begin{equation*}
q(k)=c_{d}(k) k^{d}+c_{d-1}(k) k^{d-1}+\cdots+c_{0}(k), \tag{1}
\end{equation*}
$$

where $c_{0}, c_{1}, \ldots, c_{d}$ are periodic functions in k, called the coefficient functions of q. Assuming c_{d} is not identically zero, we call d the degree of q. Quasi-polynomials play a prominent role in enumerative combinatorics [9, Chapter 4]. Arguably their best known appearance is in Ehrhart's fundamental work on integer-point enumeration in rational polytopes [3]. For more applications, we refer to the recent article [4].

A rational polytope $\mathcal{P} \subset \mathbb{R}^{n}$ is the convex hull of finitely many points in \mathbb{Q}^{n}. The dimension of a polytope \mathcal{P} is the dimension d of the smallest affine space containing \mathcal{P}, in which case we call \mathcal{P} a d-polytope. A face of \mathcal{P} is a subset of the form $\mathcal{P} \cap H$, where H is a hyperplane such that \mathcal{P} is entirely contained in one of the two closed half-spaces of \mathbb{R}^{n} that H naturally defines. A ($d-1$)-face of a d-polytope is a facet, and a 0 -face is a vertex. The smallest $k \in \mathbb{Z}_{>0}$ for which the vertices of $k \mathcal{P}$ are in \mathbb{Z}^{n} is the denominator of \mathcal{P}. Ehrhart's theorem states that the integer-point counting function $L_{\mathcal{P}}(k):=\#\left(k \mathcal{P} \cap \mathbb{Z}^{n}\right)$ is a quasi-polynomial of degree d in $k \in \mathbb{Z}_{>0}$, and the denominator of \mathcal{P} is a period of each of the coefficient functions. For a general introduction to polytopes, we refer to [12]; for an introduction to Ehrhart theory, see [1].

In general, many of the coefficient functions will have smaller periods. Suppose q is given by (1). The minimum period of c_{j} is the smallest $p \in \mathbb{Z}_{>0}$ such that $c_{j}(k+p)=c_{j}(k)$ for all $k \in \mathbb{Z}$ (any multiple of p is, of course, also a period of c_{j}). The minimum period of q is the least common multiple of the minimum periods of $c_{0}, c_{1}, \ldots, c_{d}$. In this paper, we study the minimum periods of the c_{j}. All of our illustrating examples can be realized as Ehrhart quasi-polynomials. Ehrhart's theorem tells us that the minimum period of each c_{j} divides the denominator of \mathcal{P}.

[^0]The following theorem due to McMullen [8, Theorem 6] gives a more precise upper bound for these periods. For $0 \leq j \leq d$, define the j-index of \mathcal{P} to be the minimal positive integer p_{j} such that the j-dimensional faces of $p_{j} \mathcal{P}$ all span affine subspaces that contain integer lattice points.
Theorem 1 (McMullen). Given a rational d-polytope \mathcal{P}, let p_{j} be the j-index of \mathcal{P}. If $L_{\mathcal{P}}(k)=$ $c_{d}(k) k^{d}+c_{d-1}(k) k^{d-1}+\cdots+c_{0}(k)$ is the Ehrhart quasi-polynomial of \mathcal{P}, then the minimum period of c_{j} divides p_{j}.

Note that $p_{d}\left|p_{d-1}\right| \cdots \mid p_{0}$. Since p_{0} is the denominator of \mathcal{P}, this is a stronger version of Ehrhart's theorem. If we further assume that \mathcal{P} is full-dimensional, then $p_{d}=1$, and so $c_{d}(k)$ is a constant function. In this case, it is well known that $c_{d}(k)$ is the Euclidean volume of \mathcal{P} [1, 3].

These bounds on the periods seem tight for generic rational polytopes, that is, p_{j} is the minimum period of c_{j}, but this statement is ill-formed (we make no claim what notion of genericity should be used here) and conjectural. One of the contributions of this paper is a step in the right direction: for any $p_{d}\left|p_{d-1}\right| \cdots \mid p_{0}$, there does indeed exist a polytope such that c_{j} has minimum period p_{j}.
Theorem 2. Given distinct positive integers $p_{d}\left|p_{d-1}\right| \cdots \mid p_{0}$, the simplex

$$
\Delta=\operatorname{conv}\left\{\left(\frac{1}{p_{0}}, 0, \ldots, 0\right),\left(0, \frac{1}{p_{1}}, 0, \ldots, 0\right), \ldots,\left(0, \ldots, 0, \frac{1}{p_{d}}\right)\right\} \subset \mathbb{R}^{d+1}
$$

has an Ehrhart quasi-polynomial $L_{\Delta}(k)=c_{d}(k) k^{d}+c_{d-1}(k) k^{d-1}+\cdots+c_{0}(k)$, where c_{j} has minimum period p_{j} for $j=0,1, \ldots, d$ (and p_{j} is the j-index of Δ).

Note that Δ is actually not a full-dimensional polytope; it is a d-dimensional polytope in \mathbb{R}^{d+1}. This allows us to state the theorem in slightly greater generality (we don't have to constrain $p_{d}=1$, which is necessary for a full-dimensional polytope).

Theorem 2 complements recent literature [2, 7] that contains several special classes of polytopes that defy the expectation that c_{j} has minimum period p_{j}. De Loera-McAllister [2] constructed a family of polytopes stemming from representation theory that exhibit period collapse, i.e., the Ehrhart quasi-polynomials of these polytopes (which have arbitrarily large denominator) have minimum period 1-they are polynomials. McAllister-Woods [7] gave a class of polytopes whose Ehrhart quasi-polynomials have arbitrary period collapse (though not for the periods of the individual coefficient functions), as well as an example of non-monotonic minimum periods of the coefficient functions.

First, we will prove (in Section 2) that no period collapse is possible in the second leading coefficient $c_{d-1}(k)$:
Theorem 3. Given a rational d-polytope \mathcal{P}, let p_{d-1} be the $(d-1)$-index of \mathcal{P}. Let $L_{\mathcal{P}}(k)=$ $c_{d}(k) k^{d}+c_{d-1}(k) k^{d-1}+\cdots+c_{0}(k)$. Then c_{d-1} has minimum period p_{d-1}.

In Section 3, we give some general results on quasi-polynomials with maximal period behavior. Namely, we will prove:

Theorem 4. Suppose $c(k)$ is a periodic function with minimum period n, and m is some nonnegative integer. Then the rational generating function $\sum_{k \geq 0} c(k) k^{m} x^{k}$ has as poles only $n^{\text {th }}$ roots of unity, and each of these poles has order $m+1$.

A direct consequence of this statement is the following:
Corollary 5. Suppose $r(x)$ is a proper rational function all of whose poles are primitive $n^{\text {th }}$ roots of unity. Then r is the generating function of a quasi-polynomial

$$
r(x)=\sum_{k \geq 0}\left(c_{d}(k) k^{d}+c_{d-1}(k) k^{d-1}+\cdots+c_{0}(k)\right) x^{k}
$$

where each c_{j} is either identically zero or has minimum period n.

As an application to Theorem 2 (proved in Section 4), we turn to a question that stems from a recent theorem of Zaslavsky [11]. Suppose $A(k)=a_{d}(k) k^{d}+a_{d-1}(k) k^{d-1}+\cdots+a_{0}(k)$ and $B(k)=b_{e}(k) k^{e}+b_{e-1}(k) k^{e-1}+\cdots+b_{0}(k)$ are quasi-polynomials, where the minimum period of a_{j} is α_{j} and the minimum period of b_{j} is β_{j}. Then the convolution

$$
C(k):=\sum_{m=0}^{k} A(k-m) B(m)
$$

is another quasi-polynomial. If we write $C(k)=c_{d+e+1}(k) k^{d+e+1}+c_{d+e}(k) k^{d+e}+\cdots+c_{0}(k)$, and let c_{j} have minimum period γ_{j}, Zaslavsky proved the following result.
Theorem 6 (Zaslavsky). Define $g_{j}=\operatorname{lcm}\left\{\operatorname{gcd}\left(\alpha_{i}, \beta_{j-i}\right): 0 \leq i \leq d, 0 \leq j-i \leq e\right\}$ for $j \geq 0$, and let $g_{-1}=1$. Then

$$
\begin{equation*}
\gamma_{j+1} \mid \operatorname{lcm}\left\{\alpha_{j+1}, \ldots, \alpha_{d}, \beta_{j+1}, \ldots, \beta_{e}, g_{j}\right\} \tag{2}
\end{equation*}
$$

We will reprove this result in Section 5 using the generating-function tools we develop. A natural problem, raised by Zaslavsky, is to construct two quasi-polynomials whose convolution satisfies (2) with equality. The answer is given by another application of Theorem 2 (Section 5).
Theorem 7. Given $d \geq e$ and distinct positive integers $\alpha_{d}\left|\alpha_{d-1}\right| \cdots\left|\alpha_{e}\right| \beta_{e}\left|\alpha_{e-1}\right| \beta_{e-1}|\cdots| \alpha_{0} \mid \beta_{0}$, let

$$
\Delta_{1}=\operatorname{conv}\left\{\left(\frac{1}{\alpha_{0}}, 0, \ldots, 0\right),\left(0, \frac{1}{\alpha_{1}}, 0, \ldots, 0\right), \ldots,\left(0, \ldots, 0, \frac{1}{\alpha_{d}}\right)\right\}
$$

and

$$
\Delta_{2}=\operatorname{conv}\left\{\left(\frac{1}{\beta_{0}}, 0, \ldots, 0\right),\left(0, \frac{1}{\beta_{1}}, 0, \ldots, 0\right), \ldots,\left(0, \ldots, 0, \frac{1}{\beta_{e}}\right)\right\} .
$$

Then the convolution of $L_{\Delta_{1}}$ and $L_{\Delta_{2}}$ satisfies (2) with equality.

2. The Second Leading Coefficient of an Ehrhart Quasi-Polynomial

In this section we prove Theorem 3, namely the minimum period of the second leading coefficient of the Ehrhart quasi-polynomial of a rational d-polytope \mathcal{P} equals the $(d-1)$-index of \mathcal{P}. Most of the work towards Theorem 3 is contained in the proof of the following result.

Proposition 8. If \mathcal{P} is a rational d-polytope with Ehrhart quasi-polynomial $L_{\mathcal{P}}(k)=c_{d}(k) k^{d}+$ $c_{d-1}(k) k^{d-1}+\cdots+c_{0}(k)$, then c_{d-1} is constant if and only if the $(d-1)$-index of \mathcal{P} is 1 .
Proof. If the $(d-1)$-index of \mathcal{P} is 1 , then c_{d-1} is constant by McMullen's Theorem 1.
For the converse implication, we use the Ehrhart-Macdonald Reciprocity Theorem [1, 5]. It says that for a rational d-polytope \mathcal{P}, the evaluation of $L_{\mathcal{P}}$ at negative integers yields the lattice-point enumerator of the interior \mathcal{P}°, namely,

$$
L_{\mathcal{P}}(-k)=(-1)^{d} L_{\mathcal{P} \circ}(k) .
$$

This identity implies that the lattice-point enumerator for the boundary of \mathcal{P} is the quasi-polynomial $L_{\partial \mathcal{P}}(k)=L_{\mathcal{P}}(k)-(-1)^{d} L_{\mathcal{P}}(-k)$. Since $L_{\partial \mathcal{P}}(k)$ counts integer points in a $(d-1)$-dimensional object, it is a degree $d-1$ quasi-polynomial, and we see that its leading coefficient is $c_{d-1}(k)+c_{d-1}(-k)$.

Suppose that the $(d-1)$-index of \mathcal{P} is $m>1$, and that c_{d-1} is a constant. Then the leading coefficient of $L_{\partial \mathcal{P}}(k)$ is constant, and the affine span of every facet of \mathcal{P} contains lattice points when dilated by any multiple of m. However, there are facets of \mathcal{P} whose affine spans contain no lattice points when dilated by $j m+1$ for $j \geq 0$. Let F_{1}, \ldots, F_{n} be these facets, and consider the polytopal complex $\mathcal{P}^{\prime}=\bigcup F_{i}$. In fact, the lattice points of $k \mathcal{P}^{\prime}:=\bigcup k F_{i}$ are counted by a quasi-polynomial $L_{\mathcal{P}^{\prime}}(k)$. We can obtain $L_{\mathcal{P}^{\prime}}(k)$ by first starting with $L_{\partial \mathcal{P}}(k)$. Then for each facet of \mathcal{P} not among F_{1}, \ldots, F_{n}, subtract its Ehrhart quasi-polynomial from $L_{\partial \mathcal{P}}(k)$. Some of the lower dimensional faces of \mathcal{P}^{\prime} might now be uncounted by the resulting enumerator, so we play an inclusion-exclusion
game with their Ehrhart quasi-polynomials to get $L_{\mathcal{P}^{\prime}}(k)$ as a sum of Ehrhart quasi-polynomials of the faces of \mathcal{P}. We are concerned only with the leading coefficient function of $L_{\mathcal{P}^{\prime}}(k)$, which is unaffected by this inclusion-exclusion. The Ehrhart quasi-polynomial for each facet not among F_{1}, \ldots, F_{n} has constant leading term by McMullen's Theorem, so the leading term of $L_{\mathcal{P}^{\prime}}(k)$ is some constant c. This means that for large values of k, the number of lattice points in $k \mathcal{P}^{\prime}$ is asymptotically $c k^{d-1}$. However, by construction of \mathcal{P}^{\prime}, we have $L_{\mathcal{P}^{\prime}}(j m+1)=0$ for all $j \geq 0$, which gives a contradiction. Thus, if the $(d-1)$-index of \mathcal{P} is greater than 1 , then c_{d-1} is not a constant.

Proof of Theorem 3. Let p be the minimal period of c_{d-1} and q be the $(d-1)$-index of \mathcal{P}. By McMullen's Theorem 1, $p \mid q$. On the other hand, the second-leading coefficient of $L_{p} \mathcal{P}$ is constant, and by Proposition 8 , the $(d-1)$-index of $p \mathcal{P}$ is 1 , which implies $q \mid p$.

3. Some General Results on Quasi-Polynomial Periods

A key ingredient to proving Theorem 4 is a basic result (see, e.g., [1, Chapter 3] or [9, Chapter 4]) about a quasi-polynomial $q(k)$ and its generating function $r(x)=\sum_{k \geq 0} q(k) x^{k}$, which is easily seen to be a rational function.
Lemma 9. Suppose q is a quasi-polynomial with generating function $r(x)=\sum_{k \geq 0} q(k) x^{k}$ (which evaluates to a proper rational function). Then n is a period of q and q has degree d if and only if all poles of r are $n^{\text {th }}$ roots of unity of order $\leq d+1$ and there is a pole of order $d+1$.

The above result will be useful again in the proof of Theorem 2. Recall that the statement of Theorem 4 is that given a periodic function $c(k)$ with minimum period n and a nonnegative integer m, the only poles of the rational generating function $\sum_{k \geq 0} c(k) k^{m} x^{k}$ are $n^{\text {th }}$ roots of unity, and each pole has order $m+1$.

Proof of Theorem 4. We use induction on m. The case $m=0$ follows directly from Lemma 9 , as

$$
\sum_{k \geq 0} c(k) k^{0} x^{k}=\frac{c(0)+c(1) x+\cdots+c(n-1) x^{n-1}}{1-x^{n}}
$$

The induction step is a consequence of the identity

$$
\sum_{k \geq 0} c(k) k^{m} x^{k}=x \frac{d}{d x} \sum_{k \geq 0} c(k) k^{m-1} x^{k}
$$

and the fact that a pole of order m turns into a pole of order $m+1$ under differentiation.
Corollary 5 now follows like a breeze. Recall its statement: If $r(x)$ is a proper rational function all of whose poles are primitive $n^{\text {th }}$ roots of unity, then r is the generating function of a quasipolynomial

$$
r(x)=\sum_{k \geq 0}\left(c_{d}(k) k^{d}+c_{d-1}(k) k^{d-1}+\cdots+c_{0}(k)\right) x^{k}
$$

where each $c_{j} \not \equiv 0$ has minimum period n.
Proof of Corollary 5. Consider the rational generating functions

$$
r_{j}(x):=\sum_{k \geq 0} c_{j}(k) k^{j} x^{k}, \quad \text { so that } \quad r(x)=r_{d}(x)+r_{d-1}(x)+\cdots+r_{0}(x) .
$$

We claim that the poles of each (not identically zero) $r_{j}(x)$ are all $n^{\text {th }}$ roots of unity. Indeed, suppose not, and consider the largest j such that $r_{j}(x)$ has a pole ω which is not a $n^{\text {th }}$ root
of unity. Theorem 4 says that ω is a pole of $r_{j}(x)$ of order $j+1$. Since ω is not a pole of $r_{d}(x), r_{d-1}(x), \ldots, r_{j+1}(x)$ (we chose j as large as possible), ω is a pole of

$$
r_{d}(x)+r_{d-1}(x)+\cdots+r_{j+1}(x)+r_{j}(x)
$$

of order $j+1$. On the other hand, Theorem 4 also implies that $r_{j-1}(x), r_{j-2}(x), \ldots, r_{0}(x)$ have no poles of order greater than j. Summing over all the r_{i}, ω must be a pole of $r(x)$ of order $j+1$, contradicting that fact that $r(x)$ has only poles that are $n^{\text {th }}$ roots of unity.

Therefore the poles of each (not identically zero) $r_{j}(x)$ are all primitive roots of unity. Lemma 9 implies that n is a period of each nonzero c_{j}, and Theorem 4 implies that n is the minimum period, proving the corollary.

4. Ehrhart Quasi-Polynomials with Maximal Periods

Recall that Theorem 2 says that for given distinct positive integers $p_{d}\left|p_{d-1}\right| \cdots \mid p_{0}$, the simplex

$$
\Delta=\operatorname{conv}\left\{\left(\frac{1}{p_{0}}, 0, \ldots, 0\right),\left(0, \frac{1}{p_{1}}, 0, \ldots, 0\right), \ldots,\left(0, \ldots, 0, \frac{1}{p_{d}}\right)\right\} \subset \mathbb{R}^{d+1}
$$

has an Ehrhart quasi-polynomial $L_{\Delta}(k)=c_{d}(k) k^{d}+c_{d-1}(k) k^{d-1}+\cdots+c_{0}(k)$, where c_{j} has minimum period p_{j} for $j=0,1, \ldots, d$. Note that p_{j} is the j-index of Δ.

Proof of Theorem 2. The Ehrhart series of

$$
\Delta=\left\{\left(x_{0}, x_{1}, \ldots, x_{d}\right) \in \mathbb{R}_{\geq 0}^{d+1}: p_{0} x_{0}+p_{1} x_{1}+\cdots+p_{d} x_{d}=1\right\}
$$

is, by construction,

$$
\operatorname{Ehr}_{\Delta}(x):=\sum_{k \geq 0} L_{\Delta}(k) x^{k}=\frac{1}{\left(1-x^{p_{0}}\right)\left(1-x^{p_{1}}\right) \cdots\left(1-x^{p_{d}}\right)} .
$$

Given j, let ω be a primitive $p_{j}^{\text {th }}$ root of unity. Then ω is a pole of $\operatorname{Ehr}_{\Delta}(x)$ of order $j+1$. We expand $\operatorname{Ehr}_{\Delta}(x)$ to yield the Ehrhart quasi-polynomial:

$$
\operatorname{Ehr}_{\Delta}(x)=\sum_{k \geq 0} L_{\Delta}(k) x^{k}=\sum_{k \geq 0}\left(c_{d}(k) k^{d}+c_{d-1}(k) k^{d-1}+\cdots+c_{0}(k)\right) x^{k} .
$$

Let n be the minimum period of $c_{j}(k)$. By McMullen's Theorem 1, $n \mid p_{j}$. Therefore, we need to show that $p_{j} \mid n$. As before, let $r_{j}(x)=\sum_{k \geq 0} c_{j}(k) k^{j} x^{k}$, so that $\operatorname{Ehr}_{\Delta}(x)=r_{d}(x)+r_{d-1}(x)+\cdots+$ $r_{0}(x)$. Since ω is a pole of $\operatorname{Ehr}_{\Delta}(x)$, it must be a pole of (at least) one of r_{d}, \ldots, r_{0}. Let J be the largest index such that ω is a pole of $r_{J}(x)$. By Theorem 4, ω is a pole of $r_{J}(x)$ of order $J+1$. Since ω is not a pole of $r_{d}(x), r_{d-1}(x), \ldots, r_{J+1}(x), \omega$ is a pole of

$$
r_{d}(x)+r_{d-1}(x)+\cdots+r_{J+1}(x)+r_{J}(x)
$$

of order $J+1$. On the other hand, Theorem 4 also implies that $r_{J-1}(x), r_{J-2}(x), \ldots, r_{0}(x)$ have no poles of order greater than J. Summing over all the r_{i}, ω must be a pole of $\operatorname{Ehr}_{\Delta}(x)$ of order $J+1$. Since we saw that ω is a pole of $\operatorname{Ehr}_{\Delta}(x)$ of order $j+1$, we have that $J=j$, that is, ω is a pole of $r_{j}(x)$. Since ω is a primitive $p_{j}^{\text {th }}$ root of unity, Theorem 4 says that p_{j} must divide the minimum period n, and so $n=p_{j}$, as desired.

5. Quasi-Polynomial Convolution with Maximal Periods

We start our last section with a generating-function proof of Zaslavsky's Theorem 6. It uses the following generalization of Lemma 9:
Lemma 10. Suppose $q(k)=c_{d}(k) k^{d}+c_{d-1}(k) k^{d-1}+\cdots+c_{0}(k)$ is a quasi-polynomial with rational generating function $r(x)=\sum_{k \geq 0} q(k) x^{k}$.
(a) If n is a period of c_{j}, then there is an $n^{\text {th }}$ root of unity that is a pole of r of order at least $j+1$.
(b) If all poles of r of order $\geq j+1$ are $n^{\text {th }}$ roots of unity, then n is a period of c_{j}.

Proof. Part (a) follows from Theorem 4.
For part (b), expand r (crudely) into partial fractions as $r(x)=s(x)+t(x)$, such that s has as poles the poles of r of order $\geq j+1$ and t has as poles those of order $\leq j$. Now apply Lemma 9 to s and note that t does not contribute to c_{j}.
Proof of Theorem 6. Let $f_{A}(x)=\sum_{k \geq 0} A(k) x^{k}$ and define f_{B} and f_{C} analogously. To determine γ_{j+1}, the period of c_{j+1}, Lemma $10(\mathrm{~b})$ tells us that we need to consider the poles of $f_{C}(x)=$ $f_{A}(x) f_{B}(x)$ of order $\geq j+2$. These poles come in three types:
(1) poles of f_{A} of order $\geq j+2$;
(2) poles of f_{B} of order $\geq j+2$;
(3) common poles of f_{A} and f_{B} whose orders add up to at least $j+2$.

Lemma 10(a) gives the statement of Theorem 6 instantly; the periods $\alpha_{j+1}, \ldots, \alpha_{d}$ give rise to poles of type (1), $\beta_{j+1}, \ldots, \beta_{e}$ give rise to poles of type (2), and $g_{j}=\operatorname{lcm}\left\{\operatorname{gcd}\left(\alpha_{i}, \beta_{j-i}\right): 0 \leq i \leq d, 0 \leq\right.$ $j-i \leq e\}$ stems from poles of type (3).
Proof of Theorem 7. The convolution of $L_{\Delta_{1}}$ and $L_{\Delta_{2}}$ equals L_{Δ}, where Δ is the ($d+e+1$)-simplex $\Delta=\operatorname{conv}\left\{\left(\frac{1}{\alpha_{0}}, 0, \ldots, 0\right), \ldots,\left(0, \ldots, 0, \frac{1}{\alpha_{d}}, 0, \ldots, 0\right),\left(0, \ldots, 0, \frac{1}{\beta_{0}}, 0, \ldots, 0\right), \ldots,\left(0, \ldots, 0, \frac{1}{\beta_{e}}\right)\right\}$, which follows directly from the fact that the generating function of the convolution of two quasipolynomials is the product of their generating functions. Let

$$
L_{\Delta}(k)=c_{d+e+1}(k) k^{d+e+1}+c_{d+e}(k) k^{d+e}+\cdots+c_{0}(k)
$$

and suppose $c_{j}(k)$ has minimum period γ_{j}. By construction and Theorem 2, we have

$$
\gamma_{2 j}=\beta_{j} \quad \text { and } \quad \gamma_{2 j+1}=\alpha_{j} \quad \text { for } 0 \leq j \leq e,
$$

and $\gamma_{e+j+1}=\alpha_{j}$ for $j>e$. We will show that these values agree with the upper bounds given by Zaslavsky's Theorem 6. We distinguish three cases.

Case 1: $j \leq 2 e$ and $j+1=2 m$ for some integer m. We need to show that

$$
\begin{equation*}
\gamma_{j+1}=\operatorname{lcm}\left\{\alpha_{j+1}, \alpha_{j+2}, \ldots, \alpha_{d}, \beta_{j+1}, \beta_{j+2}, \ldots, \beta_{e}, g_{j}\right\}=\beta_{m} . \tag{3}
\end{equation*}
$$

Consider

$$
g_{j}=\operatorname{lcm}\left\{\operatorname{gcd}\left(\alpha_{i}, \beta_{j-i}\right): 0 \leq i \leq d, 0 \leq j-i \leq e\right\} .
$$

If $2 i \geq j$, i.e., $i \geq m$, then $\operatorname{gcd}\left(\alpha_{i}, \beta_{j-i}\right)=\beta_{j-i}$. Thus

$$
g_{j}=\operatorname{lcm}\left\{\alpha_{j}, \alpha_{j-1}, \ldots, \alpha_{m+1}, \beta_{m}, \beta_{m+1}, \ldots, \beta_{j}\right\}=\beta_{m}
$$

which proves (3), since $j+1>m$.
Case 2: $j \leq 2 e$ and $j=2 m$ for some integer m. We need to show that

$$
\begin{equation*}
\gamma_{j+1}=\operatorname{lcm}\left\{\alpha_{j+1}, \alpha_{j+2}, \ldots, \alpha_{d}, \beta_{j+1}, \beta_{j+2}, \ldots, \beta_{e}, g_{j}\right\}=\alpha_{m} . \tag{4}
\end{equation*}
$$

Now

$$
g_{j}=\operatorname{lcm}\left\{\alpha_{j}, \alpha_{j-1}, \ldots, \alpha_{m}, \beta_{m+1}, \beta_{m+2}, \ldots, \beta_{j}\right\}=\alpha_{m}
$$

which proves (4), since $j+1>m$.
Case 3: $j>2 e$. We would like to show that

$$
\begin{equation*}
\gamma_{j+1}=\operatorname{lcm}\left\{\alpha_{j+1}, \alpha_{j+2}, \ldots, \alpha_{d}, \beta_{j+1}, \beta_{j+2}, \ldots, \beta_{e}, g_{j}\right\}=\alpha_{j-e} \tag{5}
\end{equation*}
$$

Here

$$
g_{j}=\operatorname{lcm}\left\{\operatorname{gcd}\left(\alpha_{i}, \beta_{j-i}\right): j-e \leq i \leq j\right\} .
$$

However, for $j-e \leq i \leq j$, we have $\operatorname{gcd}\left(a_{i}, \beta_{j-i}\right)=\alpha_{i}$, whence $g_{j}=\alpha_{j-e}$, which proves (5).

6. Open Problems

For an Ehrhart quasi-polynomial, period collapse cannot happen in relation to the j-index for the first two coefficients. On the other side, McAllister-Woods [7] showed that period collapse can happen for any other coefficient, however, it is still a mystery to us to what extent. Tyrrell McAllister [6] constructed polygons whose Ehrhart periods are ($1, s, t$) (the minimum periods of $c_{2}(k), c_{1}(k)$, and $c_{0}(k)$, respectively $)$.

In constructing the simplex with maximal period behavior, we required that the integers p_{0}, \ldots, p_{d} be distinct, but perhaps this restriction is not necessary. Does the statement still hold true if we weaken the conditions, or do there exist counterexamples?

In the example of periods of quasi-polynomial convolution, Theorem 7, our methods require that we assume that $\alpha_{d}\left|\alpha_{d-1}\right| \cdots\left|\alpha_{e}\right| \beta_{e}\left|\alpha_{e-1}\right| \beta_{e-1}|\cdots| \alpha_{0} \mid \beta_{0}$, rather than the more natural $\alpha_{d}\left|\alpha_{d-1}\right| \cdots \mid \alpha_{0}$ and $\beta_{e}\left|\beta_{e-1}\right| \cdots \mid \beta_{0}$. We conjecture that the theorem is still true in this case.

More generally, this would follow from a conjecture about a special class of generating functions:
Conjecture 11. Let $a_{1}, a_{2}, \ldots, a_{n}$ be given positive integers. Let $q(k)=c_{d}(k) k^{d}+\cdots+c_{0}(k)$ be the quasi-polynomial whose generating function $r(x)=\sum_{k \geq 0} q(k) x^{k}$ is given by

$$
\frac{1}{\left(1-x^{a_{1}}\right)\left(1-x^{a_{2}}\right) \cdots\left(1-x^{a_{n}}\right)} .
$$

For a positive integer m, define $b_{m}=\#\left\{i: m \mid a_{i}\right\}$. For $0 \leq j \leq d$, let $p_{j}=\operatorname{lcm}\left\{m: b_{m}>j\right\}$. Then the minimum period of $c_{j}(k)$ is p_{j}.

There are several multi-parameter versions of Ehrhart quasi-polynomials to which a generalization of McMullen's Theorem 1 applies (see [8, Theorem 7] and [10]). Beyond McMullen's theorem, not much is known about periods and minimum periods (which are now lattices in some \mathbb{Z}^{m}) of these multivariate quasi-polynomials and coefficient functions.

References

1. Matthias Beck and Sinai Robins, Computing the continuous discretely: Integer-point enumeration in polyhedra, Undergraduate Texts in Mathematics, Springer-Verlag, New York, 2007.
2. Jesús A. De Loera and Tyrrell B. McAllister, Vertices of Gelfand-Tsetlin polytopes, Discrete Comput. Geom. 32 (2004), no. 4, 459-470.
3. Eugène Ehrhart, Sur les polyèdres rationnels homothétiques à n dimensions, C. R. Acad. Sci. Paris 254 (1962), 616-618.
4. Petr Lisoněk, Combinatorial families enumerated by quasi-polynomials, J. Combin. Theory Ser. A 114 (2007), 619-630.
5. Ian G. Macdonald, Polynomials associated with finite cell-complexes, J. London Math. Soc. (2) 4 (1971), 181-192.
6. Tyrrell B. McAllister, personal communications, February 11, 2007.
7. Tyrrell B. McAllister and Kevin M. Woods, The minimum period of the Ehrhart quasi-polynomial of a rational polytope, J. Combin. Theory Ser. A 109 (2005), no. 2, 345-352, arXiv:math.CO/0310255.
8. Peter McMullen, Lattice invariant valuations on rational polytopes, Arch. Math. (Basel) 31 (1978/79), no. 5, 509-516.
9. Richard P. Stanley, Enumerative Combinatorics. Vol. 1, Cambridge Studies in Advanced Mathematics, vol. 49, Cambridge University Press, Cambridge, 1997, With a foreword by Gian-Carlo Rota, Corrected reprint of the 1986 original.
10. Bernd Sturmfels, On vector partition functions, J. Combin. Theory Ser. A 72 (1995), no. 2, 302-309.
11. Thomas Zaslavsky, Periodicity in quasipolynomial convolution, Electron. J. Combin. 11 (2004), no. 2, Research Paper 11 and comment (correction), $6+1 \mathrm{pp}$. (electronic).
12. Günter M. Ziegler, Lectures on polytopes, Springer-Verlag, New York, 1995, Revised edition, 1998; "Updates, corrections, and more" at www.math.tu-berlin.de/~ziegler.

Department of Mathematics, San Francisco State University, San Francisco, CA 94132, USA
E-mail address: beck@math.sfsu.edu
URL: http://math.sfsu.edu/beck
Department of Mathematics, University of California, Berkeley, CA 94720, USA
E-mail address: ssam@berkeley.edu
Department of Mathematics, Oberlin College, Oberlin, OH 44074, USA
E-mail address: kevin.woods@oberlin.edu
URL: http://www.oberlin.edu/math/faculty/woods.html

[^0]: Date: May 29, 2007. To appear in Journal of Combinatorial Theory Series A.
 2000 Mathematics Subject Classification. Primary 05A15; Secondary 52C07.
 Key words and phrases. Ehrhart quasi-polynomial, period, lattice points, rational polytope, quasi-polynomial convolution.

 The authors thank an anonymous referee for helpful suggestions.

