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Abstract. We examine two natural operations to create numerical semigroups.
We say that a numerical semigroup S is k-normalescent if it is the projection of
the set of integer points in a k-dimensional polyhedral cone, and we say that S is
a k-quotient if it is the quotient of a numerical semigroup with k generators. We
prove that all k-quotients are k-normalescent, and although the converse is false in
general, we prove that the projection of the set of integer points in a cone with k
extreme rays (possibly lying in a dimension smaller than k) is a k-quotient. The
discrete geometric perspective of studying cones is useful for studying k-quotients:
in particular, we use it to prove that the sum of a k1-quotient and a k2-quotient is
a (k1 + k2)-quotient. In addition, we prove several results about when a numerical
semigroup is not k-normalescent.

1. Introduction

We denote N = {0, 1, 2, . . . }, and we define a numerical semigroup1 to be a set S ⊆ N
that is closed under addition and contains 0. A numerical semigroup can be defined
by a set of generators,

⟨a1, . . . , an⟩ = {a1x1 + · · ·+ anxn : xi ∈ N},

and if a1, . . . , an are the (unique) minimal set of generators of S, we say that S has
embedding dimension e(S) = n. For example,

⟨3, 5⟩ = {0, 3, 5, 6, 8, 9, 10, . . .}

has embedding dimension 2.

If S is a numerical semigroup, then an interesting way to create a new numerical
semigroup is by taking the quotient

S
d
= {t ∈ N : dt ∈ S}
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1It is more standard to also require that gcd(S) = 1, but we would like to prove our results in

greater generality. In Proposition 2.1 and Remark 2.2, we will see that the two options are actually
equivalent from our perspective.
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by some positive integer d. Note that S/d is itself a numerical semigroup, one that in
particular satisfies S ⊆ S/d ⊆ N. For example,

⟨3, 5⟩
2

= {0, 3, 4, 5, . . .} = ⟨3, 4, 5⟩.

The following definition was introduced in [2].

Definition 1.1. We say a numerical semigroup S is a k-quotient if S = ⟨a1, . . . , ak⟩/d
for some positive integers d, a1, . . . , ak. The quotient rank of S is the smallest k such
that S is a k-quotient, and we say S has full quotient rank if its quotient rank is e(S).
Note that ⟨a1, . . . , ak⟩ = ⟨a1, . . . , ak⟩/1, so the quotient rank is always at most e(S).

Quotients of numerical semigroups appear throughout the literature over the past
couple of decades [10, 11] as well as recently [1, 7]. The well-studied family of pro-
portionally modular numerical semigroups [13] are known to be precisely those with
quotient rank two [14]. See [12, Chapter 6] for a thorough overview of quotients. In [2],
we gave a sufficient condition for a numerical semigroup to have full quotient rank, as
well as explicit examples with arbitrarily large quotient rank, and showed that “almost
all” numerical semigroups have full quotient rank.

Seemingly unrelated to the above, normal affine semigroups are subsets of Zk of the
form C ∩ Zk, where C ⊆ Rk is a pointed rational polyhedral cone (with vertex at the
origin), that is,

C = cone(v1, . . . ,vℓ) = {λ1v1 + · · ·+ λℓvℓ : λi ∈ R≥0},

for some v1, . . . ,vℓ ∈ Zk. (See [17, Chapters 7 and 8] for background on cones.)
Although the only (nonnegative) one-dimensional normal affine semigroup is ⟨1⟩ = N,
we can obtain other numerical semigroups as the image of higher dimensional normal
affine semigroups under a projection, since linear maps preserve additive closure.

Definition 1.2. We say a numerical semigroup S is k-normalescent2 if S = π(C∩Zm),
where C ⊆ Rm is a k-dimensional rational polyhedral cone and π : Rm → R is a linear
map with integer coefficients. The normalescence rank of S is the smallest k such that
S is k-normalescent, and we say S has full normalescence rank if its normalescence
rank is e(S). Note ⟨a1, . . . , ak⟩ = π(C ∩ Zk), where C = Rk

≥0 and

π(x1, . . . , xk) = a1x1 + · · ·+ akxk,

so the normalescence rank of S is at most e(S).

It is convenient to allow C and π to have negative coordinates, though we must have
π(C) ⊆ R≥0 or else π(C ∩ Zm) would contain negative integers.

2The word normalescent is meant to evoke that it is obtained from a normal semigroup via the
process of projection; similar variants on the word “normal” tend to have some established meaning.
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Example 1.3. Arithmetical numerical semigroups, which have the form

S = ⟨a, a+ h, . . . , a+ nh⟩,
are 2-normalescent. Indeed, choose C = cone

(
(1, 0), (1, n)

)
and π(x, y) = ax + hy.

For 0 ≤ i ≤ n, (1, i) ∈ C has π(1, i) = a + ih. Since {(1, 0), . . . , (1, n)} is easily seen
to generate the normal affine semigroup C ∩ Z2, this yields S = π(C ∩ Z2). These
semigroups are known to have quotient rank two [14], identical to their normalescence
rank.

The classification of k-normalescent semigroups is an interesting question for several
reasons. On one hand, in the study of toric varieties [3], π can be thought of as
inducing a positive grading on the normal semigroup algebra R = k[C ∩ Zk] over a
field k, so that π(C ∩Zk) equals the set of π-graded degrees of monomials in R. In this
setting, our question becomes: “which numerical semigroups arise as the set of degrees
of a normal semigroup algebra?” On the other hand, from the viewpoint of semigroup
theory, we will note an intriguing, but easily proven, connection: all k-quotients are
k-normalescent. We will see that the converse is false in general (Proposition 1.6), but
our main result is to prove a partial converse that is already quite powerful.

Definition 1.4. The extreme rays of a cone C ⊆ Rm are the minimal set of v1, . . . ,vk

such that C = cone(v1, . . . ,vk). A numerical semigroup S is k-ray-normalescent if
S = π(C ∩ Zm), where C ⊆ Rm is a rational polyhedral cone with k extreme rays and
π : Rm → R is a linear map with integer coefficients.

Theorem 1.5 (Main Theorem). A numerical semigroup is a k-quotient if and only if
it is k-ray-normalescent.

Note that a k-dimensional cone C must have at least k extreme rays. If C has exactly
k extreme rays, then it is called simplicial, and π(C ∩Nm) will be both k-normalescent
and k-ray-normalescent. If C has ℓ > k extreme rays, then π(C ∩ Nm) will be ℓ-ray-
normalescent — and hence an ℓ-quotient — but it might not be a k-quotient. Indeed,
the proof of the following proposition uses a cone in R3 with four extreme rays, so its
projection S will be 3-normalescent and a 4-quotient, but S is not a 3-quotient.

Proposition 1.6. The numerical semigroup S = ⟨101, 102, 110, 111⟩ is 3-normalescent
but not a 3-quotient.

The above example has minimal dimension, in the sense that any 2-normalescent
numerical semigroup is a 2-quotient (this follows from the fact that every 2-dimensional
cone is simplicial). This was observed in [16], using the fact that 2-quotients are
precisely the family of proportionally modular numerical semigroups.

The ability to translate between k-quotients and k-ray-normalescent semigroups is
powerful, especially because it allows one to utilize tools from polyhedral geometry to
prove things about k-quotients. For example, supposing S is a k1-quotient and T is a
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k2-quotient, must S + T be a (k1 + k2)-quotient? This is not at all obvious, and we
were unable to obtain a direct semigroup-theoretical proof in [2]. But the corresponding
statement for normalescence (and ray-normalescence) is fairly easy to prove; we do so
here to illustrate the power of the discrete geometry perspective.

Theorem 1.7. If numerical semigroups S1 and S2 are k1-(ray-)normalescent and k2-
(ray-)normalescent, respectively, then the numerical semigroup S1 + S2 is (k1 + k2)-
(ray-)normalescent. In particular, if S1 is a k1-quotient and S2 is a k2-quotient, then
S1 + S2 is a (k1 + k2)-quotient.

Proof. For each i = 1, 2, let Ci ⊆ Rmi be a rational cone and πi be a projection such
that Si = πi(Ci ∩ Zmi). Let

C =
{
λ1(x1,0) + λ2(0,x2) : xi ∈ Ci, λi ≥ 0

}
⊆ Rm1+m2

and π(x1,x2) = π1(x1) + π2(x2) for xi ∈ Rmi . Notice any

λ1(x1,0) + λ2(0,x2) ∈ C ∩ Zm1+m2

necessitates λixi ∈ Ci ∩ Zmi , so

π(C ∩ Zm1+m2) = π1(C1 ∩ Zm1) + π2(C2 ∩ Zm2) = S1 + S2.

The proof is complete upon observing that dim C = dim C1+dim C2, giving us additivity
of normalescence, and that each extreme ray of C comes from an extreme ray of C1 or
of C2, giving us additivity of ray-normalescence. □

Example 1.8. The final claim of Theorem 1.7 (additivity of quotient rank) was proven
in [2, Theorem 2.3] with the additional hypothesis that the quotient denominators are
coprime, in which case

S
c
+

T
d

=
dS + cT

cd
.

While one can thus easily write

⟨23, 24, 25, 29, 30, 31, 32⟩ = ⟨23, 25⟩
2

+
⟨29, 32⟩

3
=

3⟨23, 25⟩+ 2⟨29, 32⟩
2 · 3

=
⟨58, 64, 69, 75⟩

6
as a 4-quotient, we could not find such a “nice” representation of

⟨23, 24, 25, 29, 30, 31⟩ = ⟨23, 25⟩
2

+
⟨29, 31⟩

2

as a 4-quotient (we were able to check by exhaustive search that is is not a 4-quotient
with denominator ten or less). Using the tools developed in this paper, we can show
that it is the 4-quotient

⟨13775465, 14996610, 18887728, 20196837⟩
109340422

.

These large values appear difficult to avoid in general when the denominators have a
common factor. Our proof of Theorem 1.5 highlights the broader toolset the polyhedral
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geometric perspective brings to the table when studying numerical semigroup quotients.
For example, it relies on the careful perturbation of the extreme rays of the cone and
analysis of the expected Smith Normal Form of a large, random matrix (see [20]).

The paper is organized as follows.
In Section 2, we develop our intuition about k-normalescence, see some examples,

and outline the proof of Theorem 1.5. This includes a complete proof of the easier
direction, that all k-quotients are k-ray-normalescent (Proposition 2.8).

In Section 3, we prove Proposition 1.6 and along the way develop a necessary con-
dition for k-normalescence (Corollary 3.2). This allows us to extend several results
of [2] about quotient rank to results about normalescence rank. In particular, we
give explicit examples of numerical semigroups with arbitrarily large normalescense
rank (Theorem 3.3), as well as prove that “almost all” numerical semigroups have full
normalescence rank (Theorem 3.4).

In Section 4, we prove two propositions from Section 2 that require careful use
of Smith Normal Form (see Definition 2.10), and in Section 5, we use the ideas we
have developed plus some more polyhedral geometry to prove the remaining (harder)
implication of Theorem 1.5: that all k-ray-normalescent semigroups are k-quotients.

Mathematica [9] code for many of the algorithms in this paper, including creating
examples like Example 1.8, may be found on GitHub [21].

We close this section with one of our primary lingering questions.

Question 1.9. Is there an algorithm that computes normalescence rank? How about
quotient rank?

We conjecture that the answer is yes, but at the time of writing, it is not even known
if these questions are decidable for k ≥ 3 (the case k = 2 is addressed in [15]).

2. Outline of Main Proof

We begin by stating a useful simplification of the problem (proved in Section 4): in
our equation S = π(C ∩ Nk), we may assume that C is full-dimensional and that π is
the projection onto the first coordinate.

Proposition 2.1. If S is k-normalescent with gcd(S) = d, then there exists a full-
dimensional cone C ⊆ Rk such that S = π(C ∩ Zk), where π(x) = dx1 is given by pro-
jection onto a multiple of the first coordinate. Furthermore, if S is k-ray-normalescent,
then we may take C to be simplicial (i.e., generated by k linearly independent rays).

Remark 2.2. Note that if gcd(S) = d > 1, then Proposition 2.1 shows that, by taking
the projection π/d, we may instead examine the semigroup obtained by dividing every
element of S by d. In particular, dS is k-(ray)-normalescent if and only if S is. One
can verify from definitions (see Remark 1.3 of [2]) that dS is a k-quotient if and only
if S is. Therefore, without loss of generality, we may assume gcd(S) = 1.
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Notation 2.3. Unless otherwise stated, from now on any numerical semigroup S will
be assumed to have gcd(S) = 1. Given a rank k matrix M ∈ Zk×ℓ with columns
v1, . . . ,vℓ ∈ Zk, define

s(M) = π(C ∩ Zk), where C = cone(M) = cone(v1, . . . ,vℓ)

and π is the projection onto the first coordinate.

Using Notation 2.3, we can rephrase Proposition 2.1 as follows.

Corollary 2.4. A numerical semigroup S (with gcd(S) = 1) is k-normalescent if and
only if there exist ℓ ≥ k and M ∈ Zk×ℓ such that s(M) = S. Furthermore, S is
k-ray-normalescent if we may take ℓ = k so that M is a square matrix.

Example 2.5. We have noted that ⟨11, 13⟩ is 2-normalescent via the cone R2
≥0 and

projection (x, y) 7→ 11x+ 13y, but it is also 2-normalescent via the cone generated by
(11, 5) and (13, 6) and projection (x, y) 7→ x: this is a consequence of

det

[
11 13
5 6

]
= ±1,

as we shall discuss in the next example. Using Notation 2.3, we write

⟨11, 13⟩ = s

([
11 13
5 6

])
.

Example 2.6. Suppose that M ∈ Zk×k is a unimodular matrix, that is, it has determi-
nant ±1 and so is invertible over Z. In this case, the corresponding cone C = cone(M)
is also called unimodular. If x ∈ C ∩ Zk, then

x = M
(
M−1x

)
is a nonnegative integer combination of the columns of M . In particular, if [a1 · · · ak]
is the first row of M , then

s(M) = ⟨a1, . . . , ak⟩.
With the above reduction in hand, we readily prove the easier half of Theorem 1.5.

We do this via the following fact that will be used again in Section 5.

Lemma 2.7. Let M be any k×ℓ integer matrix and let D be the k×k diagonal matrix
diag(1, d, d, . . . , d). Then s(M)/d = s(DM).

Proof. The product DM multiplies every row of M by d except the first. Thus,

t ∈ s(M)/d ⇔ dt ∈ s(M)

⇔ ∃x ∈ Zℓ−1 : (dt,x) ∈ cone(M)

⇔ ∃x ∈ Zℓ−1 : (t,x/d) ∈ cone(M)

⇔ ∃x ∈ Zℓ−1 : (t,x) ∈ cone(DM)

⇔ t ∈ s(DM),



NUMERICAL SEMIGROUPS VIA PROJECTIONS AND VIA QUOTIENTS 7

which implies s(M)/d = s(DM). □

Proposition 2.8. All k-quotients are k-ray-normalescent.

Proof. Let a k-quotient S = ⟨a1, . . . , ak⟩/d be given. First note that ⟨a1, . . . , ak⟩ equals
the image of Rk

≥0 ∩ Zk under the projection (x1, . . . , xk) 7→ a1x1 + · · · + akxk, and

thus is itself k-ray-normalescent. By Corollary 2.4, there is some M ∈ Zk×k such
that ⟨a1, . . . , ak⟩ = s(M). Now, letting D be the k × k diagonal matrix with diagonal
(1, d, . . . , d), Lemma 2.7 implies S = s(DM), so S is k-ray-normalescent. □

Example 2.9. Continuing Example 2.5, we have

⟨11, 13⟩
2

= s

([
1 0
0 2

]
·
[
11 13
5 6

])
= s

([
11 13
10 12

])
.

Note that (12, 11) = 1
2
(11, 10) + 1

2
(13, 12) is in the cone, and similarly 12 ∈ ⟨11, 13⟩/2.

Now we outline the proof of the converse, that k-ray-normalescent implies k-quotient,
with the full proof relegated to Section 5. We are given a k×k full rank matrix M , and
we want to detect whether s(M) can be written as a k-quotient. If we are lucky, the
Smith Normal Form [18] of M has a special property, which will immediately imply
that s(M) is a k-quotient.

Definition 2.10. Given a matrix M ∈ Zm×ℓ, a Smith Normal Form for M is a fac-
torization M = UDV such that:

• D is a (rectangular) diagonal matrix D ∈ Zm×ℓ,
• the main diagonal (d1, . . . , dn) of D (where n = min(ℓ,m)) consists of nonnega-
tive integers di such that di divides di+1 for all i,

• U ∈ Zm×m and V ∈ Zℓ×ℓ are unimodular matrices (that is, they have determinant
±1 and so are invertible over the integers).

See [8] for a broad overview. In particular, every integer matrix may be put in
Smith Normal Form, and the diagonal (d1, . . . , dn) is unique (so often we simply call
(d1, . . . , dn) the Smith Normal Form, or SNF, of M). The matrices U and V need not
be unique. Furthermore, each product d1d2 · · · di equals the gcd of the i× i minors of
M (with the convention that gcd(0, 0) = 0). The Smith Normal Form of an integer
matrix is a useful tool in discrete geometry and the theory of integer lattices. See [19]
for an introduction with applications to combinatorics.

The following condition shows what SNF we need in order to guarantee we have a
k-quotient (we save the proof for Section 4).

Theorem 2.11. Let M ∈ Zk×k be a full-rank matrix with positive first row (a1, . . . , ak).
If a1, . . . , ak are relatively prime and the SNF for M is (1, d, d, . . . , d) for some positive
integer d, then

s(M) =
⟨a1, . . . , ak⟩

d
,

and so s(M) is a k-quotient.
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Example 2.12. Continuing Example 2.9,

M =

[
11 13
10 12

]
=

[
1 0
0 1

]
·
[
1 0
0 2

]
·
[
11 13
5 6

]
is in Smith Normal Form with diagonal (1, 2), and so we immediately recover

s(M) =
⟨11, 13⟩

2
.

Example 2.13. More generally, let a1, . . . , ak be relatively prime positive integers, and
let a be the 1 × k matrix [a1 · · · ak]. Since the gcd of the 1 × 1 minors of a is 1, the
Smith Normal Form for a is (1). This means there exists a unimodular matrix V with

(2.1) a · V = [1] · a · V = [1 0 · · · 0].
Letting M = V −1, we see that [1 0 · · · 0] ·M = a, that is, the first row of M is a, and
so s(M) = ⟨a1, . . . , ak⟩, by Example 2.6.

Now let d be given, and let D be the k×k diagonal matrix with diagonal (1, d, . . . , d).
Then IDM is in Smith Normal Form, has first row a, and meets the criteria of Theo-
rem 2.11. Therefore

s(IDM) =
⟨a1, . . . , ak⟩

d
,

and we have another way of seeing that all k-quotients are k-ray-normalescent.

Unfortunately, Theorem 2.11, requires us to be lucky: only if M is of the required
form will it immediately guarantee that s(M) is a k-quotient. If we are not lucky, then
the next key idea is to try perturbing M slightly. The following heuristic indicates
that there are plenty of perturbed matrices M ′ that maintain s(M ′) = s(M): since we
may assume that gcd(S) = 1, we know that every sufficiently large positive integer
is in S; therefore, if we make C ′ = cone(M ′) just slightly larger than C = cone(M),
C ′ \ C will certainly contain integer points, but we should be able to ensure that their
first coordinates are large enough to already be in S, and therefore s(M ′) = s(M).
Hopefully by examining enough such perturbed M ′ we can find one of them that meets
the hypotheses of Theorem 2.11, which will prove that s(M) = s(M ′) is a k-quotient.

Example 2.14. Take

M =

[
6 8
1 1

]
.

We see s(M) = ⟨6, 7, 8⟩, by checking that {(6, 1), (7, 1), (8, 1)} generates cone(M)∩Z2

as a normal affine semigroup. We want to prove that s(M) is a 2-quotient. The first
row of M is not relatively prime, so we cannot use Theorem 2.11. But let’s look at a
new matrix

M ′ =

[
6 25
1 3

]
.
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The cone C ′ = cone(M ′) is slightly larger than the cone C = cone(M); for example
(25, 3) ∈ C ′ \ C. But we can check that, after projecting onto the first coordinate, we
still have s(M ′) = s(M); for example, (25, 3) projects to 25, but we already had that
25 = 3 · 6 + 1 · 7 ∈ ⟨6, 7, 8⟩ = s(M). This new matrix M ′ has first row relatively prime
and SNF (1, 7), and so

⟨6, 7, 8⟩ = s(M) = s(M ′) =
⟨6, 25⟩

7

is a 2-quotient.

Example 2.14 involves a 2 × 2 matrix M violating the hypothesis of Theorem 2.11
that M ’s first row must be relatively prime. However, when k > 2 the hypothesis that
the SNF of M is (1, d, . . . , d) turns out to be even more restrictive. Indeed, Wang and
Stanley showed [20] that most random integer matrices will have SNF (1, . . . , 1, d),
which is almost the “opposite” of what we want. This indicates that we will rarely be
lucky enough to be able to apply Theorem 2.11.

In order to get around this problem, we use our one last trick. Recall that the
adjugate of a full rank matrix B ∈ Zk×k is the integer matrix adj(B) = det(B)B−1.

Lemma 2.15. If B ∈ Zk×k with SNF (1, . . . , 1, d), then adj(B) has SNF (1, d, . . . , d).

Proof. Say we have B = UDV in SNF, where U and V are unimodular matrices and
D is the diagonal matrix with diagonal (1, . . . , 1, d). Let A = adj(B). Then

A = det(B)B−1 = dB−1 = dV −1D−1U−1 = V −1
(
dD−1

)
U−1.

We see that dD−1 is a diagonal matrix with diagonal (d, . . . , d, 1). Therefore, after
switching the first and last rows/columns with elementary operations, we see that
A = adj(B) has SNF (1, d, . . . , d). □

So our final step is this: let M ′ be a matrix such that any small integer perturbation
of M ′ will still project to the numerical semigroup s(M). Let B be a matrix that is
a slight integer perturbation of adj(M ′). Since adj(adj(M ′)) is a multiple of M ′, it
generates the same cone, that is,

s(adj(adj(M ′))) = s(M ′) = s(M).

We will see that A = adj(B) is a small perturbation of this multiple of M ′, so s(A) =
s(M). If B has SNF (1, . . . , 1, d), then Lemma 2.15 implies that A will have SNF
(1, d, . . . , d), and we will be nearly done! Fortunately, [20] indicates that such B should
be easy to find, and [5] provides the exact result that we need. We leave the details to
Section 5. This process is how we obtained the 4-quotient

⟨23, 25⟩
2

+
⟨29, 31⟩

2
=

⟨13775465, 14996610, 18887728, 20196837⟩
109340422
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in Example 1.8. The process of finding an M ′ that allows “wiggle room” for pertur-
bation and then taking adjugates twice contributes to the explosion in magnitudes of
the generators and denominator.

3. Quotient Rank and Normalescence Rank

Theorem 2.1 of our first paper [2] identifies a necessary condition for a given numeri-
cal semigroup to be a k-quotient. This condition was the principal ingredient in several
subsequent results in [2], including (for any given k ≥ 3) the first known example of a
numerical semigroup that is not a k-quotient. We now prove that the same condition
is also necessary for k-normalesence.

Proposition 3.1. Suppose S is k-normalescent. Given any elements s1, . . . , sp ∈ S
with p > k, there exists a nonempty subset I ⊆ {1, . . . , p} such that 1

2

∑
i∈I si ∈ S.

Proof. Suppose S = s(M) for some full rank integer matrix M with k rows, define
C = cone(M) ⊆ Rk, and fix b1, . . . ,bp ∈ C ∩ Zk so that si is the first coordinate of bi.
For a vector v ∈ Zk, define v mod 2 ∈ Zk

2 to be the coordinate-wise reduction of v
modulo 2. For each subset J ⊆ {1, . . . , p}, we define bJ =

∑
j∈J bj, and consider the

reduction bJ mod 2. There are 2p possible sets J and 2k possible values for bJ mod 2,
with p > k, so by the pigeonhole principle there must be distinct sets J1 and J2 with

bJ1 mod 2 = bJ2 mod 2.

Let I = (J1 \ J2) ∪ (J2 \ J1), which is nonempty. Then

bI mod 2 = bJ1 + bJ2 − 2bJ1∩J2 mod 2 = 0,

so 1
2
bI is an integer vector. Therefore 1

2
bI ∈ C ∩ Zk, so

1

2

∑
i∈I

si ∈ s(M) = S,

as desired. □

We record here three subsequent results whose proofs are identical to those of Corol-
lary 2.2 and Theorems 3.1 and 4.1 of [2], respectively, now that Proposition 3.1 has
been obtained.

Corollary 3.2. Let S = ⟨a1, . . . , an⟩ be a numerical semigroup. If S does not have full
normalescence rank, then there is a nonempty I ⊆ {1, . . . , n} such that∑

i∈I

ai ∈ ⟨aj : j /∈ I⟩.

Theorem 3.3. Given positive integers k and a ≥ 2k, the numerical semigroup

S = ⟨2a+ 2i : 0 ≤ i ≤ k⟩
has full normalescence rank k + 1.
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Theorem 3.4. Fix n ∈ Z+, and let q ∈ Z+ vary. If a1, . . . , an ∈ {1, . . . , q} are
uniformly and independently chosen, then the probability that S = ⟨a1, . . . , an⟩ has full
normalescence rank tends to 1 as q → ∞. More precisely, this probability is 1−O(q−

1
n ).

At the time of writing, Proposition 3.1 and Corollary 3.2 are the only known nec-
essary conditions for k-normalescence, and their analogous results in [2] are the only
known necessary conditions for k-quotientability. In particular, these conditions fail
to distinguish k-normalescent semigroups from k-quotients. We now prove Proposi-
tion 1.6, which shows that they are indeed distinct concepts.

Proof of Proposition 1.6. We first show that S is 3-normalescent. Let

u1 = (101, 1, 0), u2 = (102, 1, 0), u3 = (110, 0, 1), and u4 = (111, 0, 1),

let M be the 3 × 4 matrix with columns u1,u2,u3,u4, and let C = cone(M) ⊆ R3.
Then s(M) contains the generators of S and therefore contains S. On the other hand,
let M1 have columns u1,u3,u4 and M2 have columns u1,u2,u4. Both of these matrices
are unimodular, and so (as discussed in Example 2.6), we have

s(M1) = ⟨101, 110, 111⟩ and s(M2) = ⟨101, 102, 111⟩.

But cone(M1) ∪ cone(M2) = C, so in fact

s(M) = s(M1) ∪ s(M2) = S.

We now show that S is not 3-ray-normalescent, which will complete the proof by
Proposition 2.8. Suppose by way of contradiction that S = s(M ′) for some M ′ ∈ Z3×3.
Let w1, w2, w3, and w4 be lattice points in C ′ = cone(M ′) whose respective first
coordinates are 101, 102, 110, and 111, so that they project to the minimal generators
of S. Applying Corollary 3.2 to the generators of S, we conclude that there exists
a nonempty set I ⊆ {1, . . . , 4} such that

∑
i∈I wi ∈ ⟨wj : j /∈ I⟩ (the statement

of Corollary 3.2 only concerns projections of the wj, but one can readily observe in
the proof of Proposition 3.1 that the claimed expression descends from one involving
vectors). By considering the first coordinates of the four points, we can easily check
that the only possibility is that w1 +w4 = w2 +w3.

Consider the lattice points

v12 = 2w2 +w1 −w4, v24 = 2w2 +w4 −w1,
v13 = 2w3 +w1 −w4, v34 = 2w3 +w4 −w1.

Their respective first coordinates are 194, 210, 214, and 230, none of which lie in S, so
none of them belong to C ′. By the pigeonhole principle, one of the three inequalities
that define C ′ must be violated by at least two of the four points.

However, note that

v12 + v13 = (2w2 + 2w3) + (2w1 − 2w4) = (2w1 + 2w4) + (2w1 − 2w4) = 4w1 ∈ C ′,
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so the segment between v12 and v13 passes through C ′, and thus it cannot be the case
that a single hyperplane separates both v12 and v13 from C ′. Similarly, the sums

v12 + v24 = 4w2, v13 + v34 = 4w3, and v24 + v34 = 4w4

all belong to C ′, so none of these pairs of points can be separated from C ′ by the same
hyperplane. Finally,

v12 + v34 = v13 + v24 = 2(w2 +w3) ∈ C ′

so neither the pair {v12,v34} nor the pair {v13,v24} can be separated from C ′ by a
single hyperplane. This is a contradiction. □

4. Proofs of Proposition 2.1 and Theorem 2.11

Here we prove Proposition 2.1 and Theorem 2.11.

Proof of Proposition 2.1. This is a somewhat technical proof that gets the desired out-
come over multiple steps. The key idea is that Smith Normal Form is a useful tool
for transforming Rm in a way that respects the integer lattice, e.g., by transforming a
non-full-dimensional cone into a full-dimensional cone in lower ambient dimension.

Suppose S is k-normalescent, so there is a k-dimensional cone C ⊆ Rm (for some
m ≥ k) and a projection π : Rm → R such that S = π(C ∩ Zm). Suppose that C has
ℓ extreme rays, and let M ∈ Zm×l be the matrix whose columns are the extreme rays of
C. This means that any point in C can be written as Mx with x ∈ Rℓ

≥0 (since Mx is a
nonnegative real combination of the columns of M). Identify π with its corresponding
1×m row vector, so that π(y) = π · y when we think of y as a column vector.

Our goal is to replace C by a full-dimensional cone in Rk and π by the projection
Rk → R onto (a multiple of) the first coordinate. Using the Smith Normal Form
M = UDV , we will apply a series of modifications to achieve the intended goal.

Step 1: We first absorb the unimodular matrix U into the projection. To do this,
observe that

S =
{
πMx : x ∈ Rℓ

≥0, Mx ∈ Zm
}
=
{
πUDV x : x ∈ Rℓ

≥0, UDV x ∈ Zm
}
.

Let π1 = πU ∈ Z1×m and M1 = DV . Since the unimodular matrix U represents a
bijection from Zm to itself, we then have

S =
{
π1M1x : x ∈ Rℓ

≥0, UM1x ∈ Zm
}
=
{
π1M1x : x ∈ Rℓ

≥0, M1x ∈ Zm
}
.

Step 2: Since C is k-dimensional, M1 is of rank k. We next replace the matrix M1 with
a k× ℓ matrix of full rank, thus making the cone full-dimensional. Since M1 = DV has
rank k, the last m− k rows of D are zero. Let D2 be the matrix consisting of the first
k rows of D and M2 = D2V ∈ Zk×ℓ, which is also of rank k because V is invertible.
Let π2 be the 1× k row vector consisting of the first k entries of π1. Then

M1x =

[
D2

0

]
V x =

[
D2V x

0

]
=

[
M2x
0

]
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so M1x ∈ Zm if and only if M2x ∈ Zk. Furthermore,

π1M1x = π1

[
M2x
0

]
= π2M2x,

and so

S =
{
π2M2x : x ∈ Rℓ

≥0, M2x ∈ Zk
}
.

Step 3: We now want to change our projection to be projection onto a multiple of the
first coordinate. Let d = gcd(S), and let C2 = cone(M2). Every element of S will be a
multiple of gcd(π2), so certainly gcd(π2) divides d. We want to show that gcd(π2) = d.

Since C2 is full-dimensional, there exists a rational point y′′ in the (topological)
interior of C2. Scaling by the common denominator of the coordinates of y′′, we obtain
an integer point y′ ∈ interior(C2). The distance δ from y′ to the boundary of C2
is strictly positive; let y be an integer point obtained by scaling y′ by any integer
N > 1/δ. The distance from y to the boundary of C2 equals Nδ > 1, so in particular,
y + ei ∈ C2 for each i = 1, . . . , k. As such,

(π2)i =
(
π2(y + ei)− π2(y)

)
is a difference of two integers in S, and therefore d divides (π2)i, for all i.

Therefore gcd(π2) = d. Similarly to (2.1) in Example 2.13, the Smith Normal Form
for π2 is (d), and so there exists a unimodular matrix W such that

π2W = [1] · π2 ·W = [d 0 · · · 0].

Let π3 = π2W = [d 0 · · · 0] and M3 = W−1M2. Then

S =
{
π2M2x : x ∈ Rℓ

≥0, M2x ∈ Zk
}

=
{
π2WW−1M2x : x ∈ Rℓ

≥0, M2x ∈ Zk
}

=
{
π3M3x : x ∈ Rℓ

≥0, M3x ∈ Zk
}
,

using thatW−1 is a bijection of the integer lattice. Note that π3 is the desired projection
onto d times the first coordinate.

This completes the proof of Proposition 2.1 when S is k-normalescent. Now we turn
to ray-normalescence. Notice that the S that we have been examining is actually ℓ-ray-
normalescent, for some ℓ ≥ k. If ℓ > k, we actually want to create an ℓ-dimensional
cone in Rℓ projecting to S, so we need to increase the ambient dimension from k to
ℓ, while also increasing the dimension of the cone from k to ℓ at the same time. We
insert the following between Steps 2 and 3:

Step 2.5: Recall that our matrix is M2 = D2V , where D2 is a k × ℓ diagonal matrix
of full rank and V is an ℓ× ℓ unimodular matrix. We want to “lift” each extreme ray
in cone(M2) (these are the columns of M2) up into an ℓ-dimensional space, by adding
ℓ− k new rows to M2 to make a new matrix M ′

2, and we want to do it in such a way
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that cone(M ′
2) is ℓ-dimensional; our new projection π′

2 will simply forget about these
last ℓ− k rows.

In particular, let (d1, . . . , dk) be the diagonal entries of D2, which are all nonzero.
Let t be the least common multiple of the nonzero maximal minors of M2; there is at
least one nonzero maximal minor, since M2 is of full rank. Let D

′
2 be the ℓ× ℓ diagonal

matrix whose diagonal entries are (d1, . . . , dk, t, . . . , t). Now D′
2 and V are both ℓ × ℓ

matrices of full rank, so the matrix M ′
2 = D′

2V is as well, and thus cone(M ′
2) is a

full-dimensional cone in Rℓ. Let π′
2 be the 1 × ℓ matrix obtained by appending ℓ − k

zeros to π2.

We want to show that{
π′
2M

′
2x : x ∈ Rℓ

≥0, M
′
2x ∈ Zℓ

}
=
{
π2M2x : x ∈ Rℓ

≥0, M2x ∈ Zk
}
.

The forward inclusion, ⊆, is clear: M2 is the first k rows of M ′
2, so M ′

2x ∈ Zℓ implies
M2x ∈ Zk; and π2M2 = π′

2M
′
2, so π2M2x = π′

2M
′
2x (that is, an integer point in

cone(M ′
2) projects to an integer point in cone(M2) when we simply forget about the

last ℓ− k coordinates, so it will ultimately project to a point in S).
For the reverse inclusion, let x ∈ Rℓ

≥0 be such that M2x ∈ Zk. If M ′
2x ∈ Zℓ, we

would be done, because π′
2M

′
2x = π2M2x, but this need not be the case. Instead, we

must find a y ∈ Rℓ
≥0 such that

M ′
2y ∈ Zℓ and M2y = M2x

(the second equation says thatM2y andM2x are two different ways of writing the same
point as a nonnegative linear combination of the extreme rays of cone(M2)), which will
imply that

π′
2M

′
2y = π2M2y = π2M2x = π′

2M
′
2x

and complete the reverse inclusion.

To find such a y, we apply Carathéodory’s theorem [4] (see [17, Corollary 7.1a] for
the exact form we are using): since M2x ∈ cone(M2), there exist k linearly independent
columns of M2 such that M2x is in the cone they generate; that is, there exist a k × k
nonsingular submatrix Q of M2 and z ∈ Rk

≥0 such that Qz = M2x. Let y ∈ Rℓ
≥0 be

identical to z on the entries corresponding to the columns of M2 that comprise Q and
0 on the remaining entries, so that M2y = Qz = M2x. Then all that remains to prove
is that M ′

2y ∈ Zℓ.

Indeed, we know Qz = M2x ∈ Zk, and multiplying on the left by the adjugate
matrix adj(Q) = det(Q)Q−1 (which has integer entries), we get that (detQ)z ∈ Zk.
Therefore tz ∈ Zk because det(Q) is one of the nonzero maximal minors whose lcm is
t. Furthermore, ty ∈ Zk since the entries of y that are not also entries of z are just
zeros, and in fact t(v · y) = v · (ty) ∈ Z for any integer vector v. In particular, we
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conclude that

M ′
2y =

[
D2

0 tI

]
V y =


M2y

tvk+1 · y
...

tvℓ · y

 ∈ Zℓ,

where v1, . . . ,vℓ are the rows of V . □

Proof of Theorem 2.11. We will transform M into Smith Normal Form, but we want
to do it carefully by finding unimodular matrices U and V of a particular form so that
UMV = D (recall U and V are not unique). We will also use the letters U and V for
the intermediate matrices as we compute the SNF: that is, at the beginning we have
U = V = I, and UMV = M , and at the end we will have UMV = D, where D has
diagonal (1, d, . . . , d).

As in Example 2.13, Equation 2.1, we first let V be the unimodular matrix such that

[a1 · · · ak] · V = [1 0 · · · 0],

that is, the first row of MV is [1 0 · · · 0]. Noting that U corresponds to elementary
row operations, we can now subtract multiples of the first row from the other rows so
that the first column is [1 0 · · · 0]T , that is

UMV =

[
1 0
0 M ′

]
in block form, where M ′ is a (k−1)×(k−1) matrix. Since these row operations did not
alter the first row, the first row of U is [1 0 · · · 0]. Now put M ′ in SNF using elementary
row and column operations, and we will end with D = UMV and the first row of U is
still [1 0 · · · 0]. Note that D is indeed the diagonal matrix with diagonal (1, d, . . . , d)
by the uniqueness of the SNF diagonal. The first row of UM will be [a1 · · · ak], the
first row of M . Since V −1 = D−1UM and D−1, U have first row [1 0 · · · 0], the first
row of V −1 will also be [a1 · · · ak].

In summary, we have found a unimodular matrix V −1 whose first row is [a1 · · · ak],
so s(V −1) = ⟨a1, . . . , ak⟩ (see Example 2.6). Then by Lemma 2.7,

s(DV −1) =
⟨a1, . . . , ak⟩

d
.

Since U−1 is a unimodular matrix corresponding to row operations that don’t alter the
first row, M = U−1DV −1 also has

s(M) =
⟨a1, . . . , ak⟩

d
,

as desired. □
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5. Main Proof

We now fill in the remaining holes from the outline in Section 2 to give a complete
proof of Theorem 1.5. We already proved in Proposition 2.8 that all k-quotients are
k-ray-normalescent, so it remains to prove the converse.

Suppose S is k-ray-normalescent, that is, there exists a full rank matrix M ∈ Zk×k

such that S = s(M). We want to prove that S is a k-quotient. Using Theorem 2.11
and Lemma 2.15, it suffices to achieve the following.

Goal 5.1. To show that S is a k-quotient, it suffices to find a nonsingular matrix
B ∈ Zk×k with the following properties:

(a) B has SNF (1, . . . , 1, d),
(b) A = adj(B) has first row relatively prime,
(c) s(A) = S.

Proposition 5.2. Let B ∈ Zk×k be a nonsingular matrix and let B′ denote B with the
first column removed. Then B satisfies properties (a) and (b) of Goal 5.1 if and only
if the columns of B′ form a primitive set; that is, if they form a basis for the lattice of
integer points contained in their real linear span.

Proof. For 1 ≤ i, j ≤ k, let Bij denote the minor obtained by removing the ith row
and jth column of B. Property (a) above is equivalent to dk−1 (the (k− 1)-st diagonal
element of the SNF) being 1, because di divides di+1, for all i, and so dk−1 = 1 forces
dj = 1 for all j ≤ k − 1. This is equivalent to the (k − 1)× (k − 1) minors of B being
relatively prime, i.e.,

gcd (Bij : 1 ≤ i, j ≤ k) = 1.

For Property (b), notice that the ith entry of the first row of A is (−1)i+1Bi1, using
the standard definition of the adjugate matrix. Therefore, Property (b) is equivalent to

gcd (Bi1 : 1 ≤ i ≤ k) = 1.

In other words, Property (b) subsumes Property (a), and we are simply looking for
B such that gcd (Bi1 : 1 ≤ i ≤ k) = 1. Notice that all of these minors remove the first
column of B, so they are the maximal minors of B′. That is, we need to find B such
that the maximal minors of B′ are relatively prime. By [6, §1.3], this is equivalent to
the columns of B′ forming a primitive set. □

Now, it is already known [5] that the columns of a “random” integer matrix B′ with
more rows than columns will indeed form a primitive set with positive probability. The
precise result is as follows.

Theorem 5.3 ([5, Theorem 1]). Fix k′ < k ∈ Z+. For q ∈ Z+, 1 ≤ i ≤ k′, and
1 ≤ j ≤ k, let bq,i,j ∈ Z. For a given q, choose integers sij uniformly and independently
from the set bq,i,j ≤ sij ≤ bq,i,j + q. Let si = (si1, . . . , sik) and let S = {s1, s2, . . . , s′k}.



NUMERICAL SEMIGROUPS VIA PROJECTIONS AND VIA QUOTIENTS 17

If each bq,i,j is bounded by a polynomial in q, then as q → ∞, the probability that S is
a primitive set approaches

1

ζ(k)ζ(k − 1) . . . ζ(d− k + 1)

where ζ is the Riemann zeta function.

Thus, Goal 5.1 reduces to finding large regions of Rk×k in which the integer matrices
B all have Property (c), that is, s(adj(B)) = S (see Lemma 5.8). In such large regions,
we will surely be able to find a matrix satisfying (b) (and hence (a)), using Theorem 5.3.
This will give us a matrix satisfying Properties (a), (b), and (c) of Goal 5.1, and we
will have found our k-quotient.

Recall that S = s(M), let v1, . . . ,vk be the columns of M , and let

C = cone(M) = cone(v1, . . . ,vk).

Let t = v1 + · · ·+ vk, which is an integer vector in the (topological) interior of C. For
each positive integer r, let Mr be the matrix whose columns are the integer vectors
rv1 − t, . . . , rvk − t, and let Cr = cone(Mr). We will show in Lemma 5.7 that for
sufficiently large r, slight perturbations of Mr still have s(Mr) = s(M). It is convenient
to measure perturbations coordinate-wise, so we will use the element-wise ℓ∞-norm on
matrices, that is,

∥(mij)∥ = max
i,j

|mij|.

Lemma 5.4. For every integer r > k,

(a) the extreme rays of C are contained in the interior of Cr, and
(b) the extreme rays of Cr+1 are contained in the interior of Cr.

Proof. First, since
∑k

i=1 (rvi − t) = (r− k)t belongs to the interior of Cr for all r > k,
we have t ∈ interior(Cr) and thus vi = (vi − t) + t ∈ interior(Cr) for each i = 1, . . . , k,

Furthermore, for each i we have (r + 1)vi − t = (rvi − t) + vi. Since the first term
is a generator of Cr and the second belongs to C \ {0} which, by the first statement, is
contained in the interior of Cr, we conclude that (r + 1)vi − t ∈ interior(Cr). □

Lemma 5.5. Let r > k and let wi = (r + 1)vi − t, the extreme rays of Cr+1. For all
sufficiently small ϵ > 0, if C ′ is a cone generated by (real) vectors w′

1, . . . ,w
′
k such that

∥w′
i −wi∥ < ϵ for each i, then we have C ⊆ C ′ ⊆ Cr.

Proof. By Lemma 5.4, for each i = 1, . . . , k there exists ϵi such that the ball Bϵi(wi) is
contained in Cr. So the containment C ′ ⊆ Cr will hold whenever ϵ < min{ϵ1, . . . , ϵk}.
For the other containment, again by Lemma 5.4 we have C ⊆ interior(Cr+1) So let

ηi = dist(vi, ∂Cr+1) > 0 for each i. For the same reason, for each i we can write
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vi =
∑k

j=1 µijwj where each coefficient µij is strictly positive. Let δi =
∑k

j=1 µij. Let

v′
i =

k∑
j=1

µijw
′
j ∈ interior(C ′).

Then

∥v′
i − vi∥ = ∥

k∑
i=1

µij (w
′
i −wi)∥ ≤

k∑
j=1

µijϵ = δiϵ.

Thus if ϵ < min{η1
δ1
, . . . , ηk

δk
}, then vi ∈ C ′ for each i, and thus C ⊆ C ′. □

Lemma 5.6. For all sufficiently large r, s(Mr) = S.

Proof. By Lemma 5.4, for every r > k we have C ⊆ Cr, so the containment S ⊆ s(Mr)
is immediate.

For the opposite containment, we will consider the gaps of the semigroup S. For each
gap z, let Hz be the hyperplane x1 = z in Rn. By definition Hz ∩ C contains no lattice
points. Since Zn is a closed set and Hz ∩ C is compact, uz := dist(Hz ∩ C,Zn) > 0.

Let y be any (real) point in Cr ∩Hz. Then we can write

y =
k∑

i=1

λi (rvi − t) , λ1, . . . , λk ≥ 0.

Let si, t
′ be the first coordinates of vi, t, respectively, and note that z is the first

coordinate of y, so that

z =
k∑

i=1

λi (si − t′) ≥ (rs1 − t′)
k∑

i=1

λi.

On the other hand, the point w := r
∑k

i=1 λivi belongs to C, and we have

∥w − y∥ = ∥
k∑

i=1

λit∥ =

(
k∑

i=1

λi

)
∥t∥ ≤ z∥t∥

rs1 − t′
.

The last expression tends to zero as r grows. Since S has only finitely many gaps and
again since Hz ∩ C is compact, for sufficiently large r it will be the case for every gap
z and every y ∈ Cr ∩Hz that

dist(y, C) ≤ dist(y, Hz ∩ C) < uz.

By the definition of uz, it follows that for sufficiently large r, any such y cannot be an
integer point. Thus s(Mr) does not contain any of the gaps, so s(Mr) ⊆ S. □

Lemma 5.7. For all sufficiently small ε and all sufficiently large natural numbers r,
if A is a matrix such that ∥A−Mr+1∥ < ε, then s(A) = S.
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Proof. Let C ′ be the cone generated by the columns of A. By Lemma 5.5, we have
C ⊆ C ′ ⊆ Cr. Then by Lemma 5.6 we have S = s(M) ⊆ s(A) ⊆ s(Mr) = S. □

The above yields a large region from which we may choose A such that s(A) = S.
Looking at Goal 5.1, we want to instead choose some B from its own large region, and
then use A = adj(B). The following lemma allows us to do this.

Proposition 5.8. There exists a matrix B0 such that, for every positive integer q,
there exists a cube Λq ⊆ Rk×k centered on qB0 and of diameter q such that every
matrix B ∈ Λq ∩ Zk×k satisfies s(adj(B)) = S.

Proof. Choose r and ε to satisfy Lemma 5.7, and let M−1
r+1 = (mij). By the continuity

of the matrix inverse away from singular matrices, there exists δ > 0 such that, for all
B ∈ Rk×k with ∥B−M−1

r+1∥ < δ, we have that B is nonsingular and ∥B−1−Mr+1∥ < ε.
That is, since we are using the element-wise ∞-norm, the conclusion holds whenever
B = (bij) such that |bij −mij| < δ.

Let B0 = 1
2δ
M−1

r+1. Suppose B ∈ Zk×k is an integer matrix with ∥B − qB0∥ < q/2

(that is, B ∈ Λq ∩ Zk×k, as in the statement of this proposition). Let w = q/2δ and

note (2δB/q)−1 = wB−1. Then

∥B − qB0∥ < q/2 ⇒ ∥B/w − qB0/w∥ < q/2w

⇒ ∥B/w −M−1
r+1∥ < δ

⇒ ∥wB−1 −Mr+1∥ < ε,

and so s (wB−1) = S by Lemma 5.7. Let A = adj(B) = det(B)B−1, where adj(B) is
the classical adjoint. Scaling a matrix does not change the cone its columns generate, so

s (A) = s

(
det(B)

w
wB−1

)
= S,

which completes the proof. □

We are now ready to tie everything together and prove S = s(M) is a k-quotient. By
Proposition 5.8, for every integer q, the cube Λq with center qB0 and diameter q has the
property that if B ∈ Λq ∩Zk×k, then s(adj(B)) = S. That is, all B ∈ Λq ∩Zk×k satisfy
Property (c) of Goal 5.1. Notice that the inequalities defining the cube Λq depend
linearly on q. Thus the hypotheses of Theorem 5.3 apply to the k × (k − 1) matrix
B′ obtained by removing the first column of B. Therefore, for sufficiently large q,
the probability that the columns of B′ form a primitive set must be positive, and in
particular there exists at least one B ∈ Λq ∩ Zk×k such that the columns of B′ form a
primitive set. By Proposition 5.2, B will also satisfy Properties (a) and (b) of Goal 5.1,
meaning we have shown that S is a k-quotient.
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Departamento de Matemáticas, Universidad de los Andes, Bogotá, Colombia
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