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Abstract

If P ⊂ R
d is a rational polytope, then iP (n) := #(nP ∩Z

d) is a quasi-
polynomial in n, called the Ehrhart quasi-polynomial of P . The period
of iP (n) must divide D(P ) = min{n ∈ Z>0 : nP is an integral polytope}.
Few examples are known where the period is not exactly D(P ). We show
that for any D, there is a 2-dimensional triangle P such that D(P ) = D
but such that the period of iP (n) is 1, that is, iP (n) is a polynomial in
n. We also characterize all polygons P such that iP (n) is a polynomial.
In addition, we provide a counterexample to a conjecture by T. Zaslavsky
about the periods of the coefficients of the Ehrhart quasi-polynomial.

1 Introduction

An integral (respectively, rational) polytope is a polytope whose vertices have
integral (respectively, rational) coordinates. Given a rational polytope P ⊂ R

d,
the denominator of P is

D(P ) = min{n ∈ Z>0 : nP is an integral polytope}.

Ehrhart proved ([1]) that if P ⊂ R
d is a rational polytope, then there is a

quasi-polynomial function iP : Z 7→ Z with period D(P ) such that, for n ≥ 0,

iP (n) = #
(

nP ∩ Z
d
)

.

In other words, there exist polynomial functions f1, . . . , fD(P ) such that iP (n) =
fj(n) for n ≡ j (mod D(P )). In particular, if P is integral, then D(P ) = 1, so
iP is a polynomial function.

We call iP the Ehrhart quasi-polynomial of P . This counting function satis-
fies several important properties:

1. The degree of each fj is the dimension of P .
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2. The coefficient of the leading term of each fj is the volume of P , nor-
malized with respect to the sublattice of Z

d which is the intersection of
Z

d with the affine hull of P (in particular, if P is full dimensional, the
coefficient is simply the Euclidean volume of P ).

3. (Law of Reciprocity) For n ≥ 1, let

i◦P (n) = #
(

interior(nP ) ∩ Z
d
)

.

Then i◦P (n) = (−1)diP (−n).

Properties (1) and (2) were proved by Ehrhart in [1]. Property (3) was conjec-
tured by Ehrhart and proved in full generality by I.G. MacDonald in [2]. For
an excellent introduction to Ehrhart quasi-polynomials that includes proofs of
all these properties, see [3].

We know that D(P ) is a period of the Ehrhart quasi-polynomial of P , but
what is the minimum period? Of course, it must divide D(P ), and it very often
equals D(P ). Though this is not always the case, very few counterexamples were
previously known. R.P. Stanley ([3], Example 4.6.27) provided an example of
a polytope P with denominator D(P ) = 2 where the minimum period is 1,
that is, where the Ehrhart quasi-polynomial is actually a polynomial. Stanley’s
example is a 3-dimensional pyramid P with vertices (0, 0, 0), (1, 0, 0), (0, 1, 0),
(1, 1, 0), and (1/2, 0, 1/2). In this case, iP (n) =

(

n+3
3

)

.

We say that period collapse occurs when the minimum period is strictly less
than the denominator of the polytope. We say that P has full period if the min-
imum period equals the denominator of the polytope. Stanley’s example raises
some natural questions. In what dimensions can period collapse occur? Can pe-
riod collapse occur for P such that D(P ) > 2? What values may the minimum
period be when it is not D(P )? This note answers all of these questions.

In Section 2, we provide (Theorem 2.2) an infinite class of 2-dimensional
triangles such that, for any D, there is a triangle P in this class with denominator
D, but such that iP (n) is actually a polynomial. In fact, for any d ≥ 2 and for
any D and s with s|D, there is a d-dimensional polytope with denominator D
but with minimum period s. Such period collapse cannot occur in dimension
1, however: rational 1-dimensional polytopes always have full period (Theorem
2.1). Finally, in Section 3 (Theorem 3.1), we give a geometric characterization
of all polygons P whose quasi-polynomials are actually polynomials. We also
provide several examples, one of which settles a conjecture of Zaslavsky that we
detail now.

Another way to consider the period of a quasi-polynomial is to examine the
periods of its coefficients. Suppose P is a d-dimensional polytope and, for all j,

fj(n) = cjdn
d + cj,d−1n

d−1 + · · · + cj1n + cj0.

Then we say that sk, the period of the kth coefficient, is the minimum period of
the sequence

c1k, c2k, c3k, . . . .
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The minimal period of P is then the least common multiple of s0, s1, . . . , sd.
T. Zaslavsky conjectured (unpublished) that the periods of the coefficients are
decreasing, i.e., sk ≤ sk−1 for 1 ≤ k ≤ d. In this paper, we provide a counterex-
ample (Example 3.3) which is a 2-dimensional triangle.

2 Period Collapse

First, we prove that period collapse cannot happen in dimension 1.

Theorem 2.1. The quasi-polynomials of rational 1-dimensional polytopes al-
ways have full period.

Proof. In this case, P is simply a segment [p
q
, r

s
] (where the integers p, q, r, and s

are chosen so that the fractions are fully reduced). Write D = D(P ) = lcm(s, q).

On the one hand, we clearly have that

iP (n) =
⌊

n
r

s

⌋

−

⌈

n
p

q

⌉

+ 1. (1)

On the other hand, there exist D polynomials f1(n), . . . , fD(n) such that iP (n) =
fj(n), for n ≡ j (mod D). The claim is that iP has period D. To show this, it
suffices to show that the constant term of fj(n) is 1 if and only if j = D.

Since P is one-dimensional, we have that, for each j ∈ {1, 2, . . . ,D}, the
polynomial fj(n) is linear, and therefore it is determined by its values at n = j
and n = j + D. Interpolating using (1) yields

fj(n) =

(

r

s
−

p

q

)

n + 1 −

(⌈

j
p

q

⌉

− j
p

q

)

−
(

j
r

s
−

⌊

j
r

s

⌋)

.

The constant term is 1 if and only if q and s both divide j, which happens if
and only if j = D.

While in dimension 1, nothing (with respect to period collapse) is possi-
ble, in dimension 2 and higher, anything is possible, as the following theorem
demonstrates.

Theorem 2.2. Given d ≥ 2, and given D and s such that s|D, there exists
a d-dimensional polytope with denominator D whose Ehrhart quasi-polynomial
has minimum period s.

Proof. We first prove the theorem in the case where d = 2 and s = 1; that is, we
exhibit a polygon with denominator D for which iP (n) is actually a polynomial
in n. Given D ≥ 2, let P be the triangle with vertices (0, 0), (1, D−1

D
), and (D, 0)

(see Figure 1). We will prove that

iP (n) =
D − 1

2
n2 +

D + 1

2
n + 1.
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Figure 1: The first three dilations of P when D = 3

Figure 2: Q and 3Q when D = 3

First we will calculate iQ(n), where Q is the half-open parallelogram with
vertices (0, 0), (1, D−1

D
), (D, 0), and (D−1,−D−1

D
) and with top two edges open.

That is, to construct Q, take the closed parallelogram with these vertices and

remove the line segments
[

(0, 0), (1, D−1
D

)
]

and
[

(1, D−1
D

), (D, 0)
]

(see Figure 2).

Q has the nice property that, for n ∈ N, nQ can be tiled by translates of Q with
no overlap. It is clear that Q contains exactly D − 1 lattice points (the lattice
points (1, 0), (2, 0), . . . , (D− 1, 0)). To tile nQ, however, we must use translates
of Q that are not lattice translates, so it is not immediately clear how many
lattice points these translates contain. In fact, they all contain D− 1 points, as
we shall show.

It suffices to prove this for Qt = Q−(0, t
D

), where t = 0, 1, . . . ,D−1, because
all of the translates of Q that we need to tile nQ are lattice translates of one
of these Qt. The only horizontal lines y = a, with a integral, that possibly
intersect Qt are y = 0 and y = −1, and they intersect Qt with x-coordinates in
the intervals ( t

D−1 ,D− t) and [D− t,D−1+ t−1
D−1 ], respectively. These intervals
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contain D− t− 1 and t integral points, respectively, so in all, Qt contains D− 1
integer points. Therefore, we must have that

iQ(n) = (D − 1)n2.

Let Q be the closure of Q. To calculate iQ̄(n), we must add to iQ(n) the

number of integer points in nQ \ nQ, which is n + 1 (one can check that the

number of lattice points on the interval
[

(0, 0), (n, nD−1
D

)
)

is
⌊

n−1
D

⌋

+1 and the

number of lattice points on the interval
[

(n, nD−1
D

), (0, nD)
]

is n −
⌊

n−1
D

⌋

, so

there are n + 1 in all). So

iQ̄(n) = (D − 1)n2 + n + 1.

nQ is the union (not disjoint) of 2 copies of nP (one rotated by a half-turn),
each with the same number of lattice points. The overlap of these two copies of

nP is the line segment
[

(0, 0), (0,Dn)
]

, which contains Dn + 1 integer points.

Therefore

iP (n) =
1

2

(

iQ̄(n) + (Dn + 1)
)

=
D − 1

2
n2 +

D + 1

2
n + 1,

as desired.

Now suppose d is 2, but s is not necessarily 1. Let P ′ be the pentagon with
vertices (0, 0), (1, D−1

D
), (D, 0), (D,− 1

s
), and (0,− 1

s
). If P is the triangle defined

as before, then nP ′ \ nP contains
⌊

n
s

⌋

· (Dn + 1) lattice points, and so

iP ′(n) = iP (n) +
⌊n

s

⌋

· (Dn + 1),

which has minimum period s.

Now suppose d is greater than 2. Let P ′ be the pentagon defined as before,
and let P ′′ = P ′ × [0, 1]d−2, a polytope of dimension d. Then

iP ′′(n) = (n + 1)d−2iP ′(n),

which also has minimum period s.

3 The 2-dimensional Case

We have seen (in Theorem 2.2) an infinite class of rational polygons P in di-
mension 2 such that iP (n) is a polynomial. Can we characterize such polygons?
We know that, for all integer polygons P , iP (n) is a polynomial. One property
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that an integer polygon P has is that it and its dilates satisfy Pick’s theorem,

i.e., if we let ∂P (n) = #
(

boundary(nP ) ∩ Z
d
)

, then

iP (n) = Area(nP ) +
1

2
∂P (n) + 1

= n2Area(P ) +
1

2
∂P (n) + 1.

Another property that an integer polygon, P , and its dilates satisfy is that the
number of points on their boundary is linear, i.e.,

∂P (n) = n∂P (1).

In fact, these two properties are exactly what we need to guarantee that a
rational polygon’s Ehrhart quasi-polynomial is actually a polynomial.

Theorem 3.1. Let P ⊂ Z
2 be a rational polygon, let A be the area of P , and

let D be the denominator of P . Then the following are equivalent:

1. iP (n) is a polynomial in n;

2. iP (n) = An2 + 1
2∂P (1)n + 1;

3. For all n ∈ N,

(a) nP obeys Pick’s theorem, i.e., iP (n) = An2 + 1
2∂P (n) + 1, and

(b) ∂P (n) = n∂P (1); and

4. For n = 1, 2, . . . ,D, 3a and 3b hold.

Proof. We will prove that 1 ⇒ 2 ⇒ 3 ⇒ 4 ⇒ 2 ⇒ 1. Two of these steps, 3 ⇒ 4
and 2 ⇒ 1, are trivial. To prove the remaining implications, we will repeatedly
use the law of reciprocity for Ehrhart quasi-polynomials, which was stated in
the introduction.

1 ⇒ 2. If 1 holds, then iP (n) = An2 + bn + c for some b and c. Since
iP (0) = 1, we know that c = 1. By the reciprocity law, we know that

i◦P (n) = A(−n)2 + b(−n) + c,

and so
∂P (1) = iP (1) − i◦P (1) = 2b.

Therefore iP (n) = An2 + 1
2∂P (1)n + 1, as desired.

2 ⇒ 3. If 2 holds, then, again using reciprocity, for all n ∈ N,

i◦P (n) = An2 −
1

2
∂P (1)n + 1,
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and so
∂P (n) = iP (n) − i◦P (n) = ∂P (1)n,

and so 3b holds. Then

iP (n) = An2 +
1

2
∂P (1)n + 1

= An2 +
1

2
∂P (n) + 1,

and so 3a holds.

4 ⇒ 2. If 4 holds, then let

fj(n) = An2 + bjn + cj ,

for j = 1, 2, . . . ,D, be the polynomials such that iP (n) = fj(n) for n ≡
j (mod D). Given j with 1 ≤ j ≤ D, we again use reciprocity, and we have

j∂P (1) = ∂P (j)

= fj(j) − fD−j(−j)

= (bj + bD−j) · j + (cj − cD−j)

(2)

and

(D − j)∂P (1) = ∂P (D − j)

= fD−j(D − j) − fj(j −D)

= (bj + bD−j) · (D − j) + (cD−j − cj)

(3)

Multiplying Equation (2) by D − j and Equation (3) by j and subtracting,

0 = D · (cj − cD−j),

and so
cj = cD−j . (4)

Adding Equations (2) and (3),

D · ∂P (1) = D · (bj + bD−j),

and so
bj + bD−j = ∂P (1). (5)

Using the facts that Pick’s theorem holds and that j∂P (1) = ∂P (j), we have

Aj2 +
1

2
∂P (1) · j + 1 = Aj2 +

1

2
∂P (j) + 1

= fj(j)

= Aj2 + bj · j + cj ,
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and so
1

2
∂P (1) · j + 1 = bj · j + cj . (6)

Similarly,
1

2
∂P (1) · (D − j) + 1 = bD−j · (D − j) + cD−j . (7)

Multiplying Equation (6) by D − j and Equation (7) by j and adding together
(and then using Equations (4) and (5)),

∂P (1) · j · (D − j) + D = (bj + bD−j) · j · (D − j) + (D − j) · cj + j · cD−j

= ∂P (1) · j · (D − j) + D · cj ,

and so cj = 1. Substituting cj = 1 into Equation (6), we see that bj = 1
2∂P (1).

Therefore, for all n ∈ N,

iP (n) = An2 +
1

2
∂P (1)n + 1,

as desired.

Example 3.2. P is the triangle with vertices (0, 0), (D, 0), and (1, D−1
D

), for
some D ∈ N.

This is the example from Theorem 2.2 with denominator D for which the
Ehrhart quasi-polynomial is a polynomial. One can check that conditions 3a
and 3b are met.

Example 3.3. P is the triangle with vertices (− 1
2 ,− 1

2 ), ( 1
2 ,− 1

2 ), and (0, 3
2 ).

One can check that nP , for n ∈ N, satisfies 3a (Pick’s theorem), but not 3b.
Indeed, we have

iP (n) =

{

n2 + 1, if n is odd
n2 + n + 1, if n is even,

which is not a polynomial. This example disproves a conjecture of T. Zaslavsky
that the period of the coefficient of nk in the quasi-polynomial increases as
k decreases (in the example, the coefficients of n2 and n0 have period 1, but
the coefficient of n1 has period 2). A similar counterexample has been found
independently by D. Einstein.

Example 3.4. P is the triangle with vertices (0, 0), (1, 0), and (0, 1
2 ).

In this example, nP , for n ∈ N satisfies 3b, but not 3a. We have

iP (n) =

{

1
4n2 + n + 3

4 , if n is odd,
1
4n2 + n + 1, if n is even.
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