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Abstract. Directed and undirected graphical models, also called Bayesian networks

and Markov random fields, respectively, are important statistical tools in a wide vari-

ety of fields, ranging from computational biology to probabilistic artificial intelligence.

We give an upper bound on the number of inference functions of any graphical model.

This bound is polynomial on the size of the model, for a fixed number of parameters.

We also show that our bound is tight up to a constant factor, by constructing a family

of hidden Markov models whose number of inference functions agrees asymptotically

with the upper bound. This paper elaborates and expands on results of the first

author from [3].
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1. Introduction

Many statistical models seek, given a set of observed data, to find the hidden (unob-

served) data which best explains these observations. In this paper we consider graphical

models (both directed and undirected), a broad class that includes many useful models,

such as hidden Markov models (HMMs), pairwise-hidden Markov models, hidden tree

models, Markov random fields, and some language models (background on graphical

models will be given in Section 2.1). These graphical models relate the hidden and

observed data probabilistically, and a natural problem is to determine, given a partic-

ular observation, what is the most likely hidden data (which is called the explanation).

These models rely on parameters that are the probabilities relating the hidden and

observed data. Any fixed values of the parameters determine a way to assign an expla-

nation to each possible observation. This gives us a map, called an inference function,

from observations to explanations. We will define an “inference function” precisely in

Definition 8.
1
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An example of an inference function is the popular “Did you mean” feature from

google1 which could be implemented as a hidden Markov model, where the observed

data is what we type into the computer, and the hidden data is what we were meaning

to type. Graphical models are frequently used in these sorts of probabilistic approaches

to machine learning, pattern recognition, and artificial intelligence (see [8] for an in-

troduction).

Inference functions for graphical models are also important in computational biology

[12, Section 1.5], from where we originally drew inspiration for this paper. For ex-

ample, consider the gene-finding functions, which were discussed in [14, Section 5].

These inference functions (corresponding to a particular HMM) are used to identify

gene structures in DNA sequences. An observation in such a model is a sequence of

nucleotides in the alphabet Σ′ = {A, C, G, T}, and an explanation is a sequence of 1’s

and 0’s which indicate whether the particular nucleotide is in a gene or is not. We seek

to use the information in the observed data (which we can find via DNA sequencing) to

decide on the hidden information of which nucleotides are part of genes (which is hard

to figure out directly). Another class of examples is that of sequence alignment models

[12, Section 2.2]. In such models, an inference function is a map from a pair of DNA

sequences to an optimal alignment of those sequences. If we change the parameters of

the model, which alignments are optimal may change, and so the inference functions

may change.

A surprising conclusion of this paper is that there cannot be too many different infer-

ence functions, though the parameters may vary continuously over all possible choices.

For example, in the homogeneous binary HMM of length 5 (see Section 2.1 for some

definitions; they are not important at the moment), the observed data is a binary se-

quence of length 5, and the explanation will also be a binary sequence of length 5. At

first glance, there are

3232 = 1 461 501 637 330 902 918 203 684 832 716 283 019 655 932 542 976

1For example, if we search for “grafical modl” (http://www.google.com/search?q=grafical+modl),

we are kindly asked “Did you mean: graphical model?”
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possible maps from observed sequences to explanations. In fact, Christophe Weibel has

computed that only 5266 of these possible maps are actually inference functions [16].

Indeed, for an arbitrary graphical model, the number of possible maps from observed

sequences to explanations is, at first glance, doubly exponential in the size of the

model. The following theorem, which we call the Few Inference Functions Theorem,

states that, if we fix the number of parameters, the number of inference functions is

actually bounded by a polynomial in the size of the model.

Theorem 1 (The Few Inference Functions Theorem). Let d be a fixed positive integer.

Consider a graphical model with d parameters (see Definitions 3 and 5 for directed and

undirected graphs, respectively). Let M be the complexity of the graphical model, where

complexity is given by Definitions 4 and 6, respectively. Then, the number of inference

functions of the model is O(Md(d−1)).

As we shall see, the complexity of a graphical model is often linear in the number of

vertices or edges of the underlying graph.

The Few Inference Functions Theorem for the particular case of undirected graphical

models appears in [3]. Here we extend it to the case of directed graphical models, and

we prove that the bound is asymptotically sharp up to a constant factor.

Different inference functions represent different criteria to decide what is the most

likely explanation for each observation. A bound on the number of inference functions

is important because it indicates how badly a model may respond to changes in the

parameter values (which are generally known with very little certainty and only guessed

at). Also, the polynomial bound given in Section 3 suggests that it might be feasible to

precompute all the inference functions of a given graphical model, which would yield

an efficient way to provide an explanation for each given observation.

This polynomial bound with exponent d(d− 1) is asymptotically sharp for a sequence

alignment model with 2 parameters that is actually used in computational biology.

This example is given in [3, Section 9.3], and, in that case, the bound is quadratic on

the length of the input DNA sequences.

This paper is structured as follows. In Section 2 we introduce some preliminaries about

graphical models and inference functions, as well as some facts about polytopes. In
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Section 3 we prove Theorem 1. The main ideas in that section appeared in [3]. In

Section 4 we prove that our upper bound on the number of inference functions of a

graphical model is sharp, up to a constant factor, by constructing a family of HMMs

whose number of inference functions asymptotically matches the bound. We conclude

with a few remarks and possible directions for further research.

2. Preliminaries

2.1. Graphical models. A statistical model is a family of joint probability distribu-

tions for a collection of discrete random variables W = (W1, . . . ,Wm), where each Wi

takes on values in some finite state space Σi. A graphical model is represented by a

graph where each vertex vi corresponds to a random variable Wi. The edges of the

graph represent the dependencies between the variables. There are two major classes

of graphical models depending on whether G is a directed or an undirected graph.

We start by discussing directed graphical models, also called Bayesian networks, which

are those represented by a finite directed acyclic graph G. Each vertex vi has an

associated probability map

(1) pi :


 ∏

j: vj a parent of vi

Σj


 −→ [0, 1]|Σi|.

Given the states of each Wj such that vj is a parent of vi, the probability that vi has a

given state is independent of all other vertices that are not descendants of vi, and this

map pi gives that probability. In particular, we have the equality

Prob(W = ρ) =
∏

i

Prob (Wi = ρi, given that Wj = ρj for all parents vj of vi)

=
∏

i

(
[pi (ρj1 , . . . , ρjk

)]ρi

)
,

where vji
, . . . , vjk

are the parents of vi. Sources in the digraph (which have no parents)

are generally given the uniform probability distribution on their states, though more

general distributions are possible. See [12, Section 1.5] for general background on

graphical models.
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Example 2. The hidden Markov model (HMM) is a model with random variables

X = (X1, . . . , Xn) and Y = (Y1, . . . , Yn). Edges go from Xi to Xi+1 and from Xi to Yi.

X X X

Y Y Y

1 2 3

1 2 3

Figure 1. The graph of an HMM for n = 3.

Generally, each Xi has the same state space Σ and each Yi has the same state space

Σ′. An HMM is called homogeneous if the pXi
, for 1 ≤ i ≤ n, are identical and the

pYi
are identical. In this case, the pXi

each correspond to the same |Σ| × |Σ| matrix

T = (tij) (the transition matrix ) and the pYi
each correspond to the same |Σ| × |Σ′|

matrix S = (sij) (the emission matrix).

In the example, we have partitioned the variables into two sets. In general graphical

models, we also have two kinds of variables: observed variables Y = (Y1, Y2, . . . , Yn)

and hidden variables X = (X1, X2, . . . , Xq). Generally, the observed variables are the

sinks of the directed graph, and the hidden variables are the other vertices, but this

does not need to be the case. To simplify the notation, we make the assumption, which

is often the case in practice, that all the observed variables take their values in the same

finite alphabet Σ′, and that all the hidden variables are on the finite alphabet Σ.

Notice that for given Σ and Σ′ the homogeneous HMMs in this example depend only

on a fixed set of parameters, tij and sij, even as n gets large. These are the sorts of

models we are interested in.

Definition 3. A directed graphical model with d parameters, θ1, . . . , θd, is a directed

graphical model such that each probability [pi (ρj1 , . . . , ρjk
)]ρi

in (1) is a monomial in

θ1, . . . , θd.

In what follows we denote by E the number of edges of the underlying graph of a

graphical model, by n the number of observed random variables, and by q the number
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of hidden random variables. The observations, then, are sequences in (Σ′)n and the

explanations are sequences in Σq. Let l = |Σ| and l′ = |Σ′|.

For each observation τ and hidden variables h, Prob (X = h, Y = τ) is a monomial

fh,τ in the parameters θ1, . . . , θd. Then for each observation τ ∈ (Σ′)n, the observed

probability Prob(Y = τ) is the sum over all hidden data h of Prob (X = h, Y = τ),

and so Prob(Y = τ) is the polynomial fτ =
∑

h fh,τ in the parameters θ1, . . . , θd.

Definition 4. The complexity, M , of a directed graphical model is the maximum, over

all τ , of the degree of the polynomial fτ .

In many graphical models, M will be a linear function of n, the number of observed

variables. For example, in the homogeneous HMM, M = E = 2n− 1.

Note that we have not assumed that the appropriate probabilities sum to 1. It turns out

that the analysis is much easier if we do not place that restriction on our probabilities.

At the end of the analysis, these restrictions may be added if desired (there are many

models in use, however, which never place that restriction; these can no longer be

properly called “probabilistic” models, but in fact belong to a more general class of

“scoring” models which our analysis also encompasses).

The other class of graphical models are those that are represented by an undirected

graph. They are called undirected graphical models and are also known as Markov

random fields. As for directed models, the vertices of the graph G correspond to the

random variables, but the joint probability is now represented as a product of local

functions defined on the maximal cliques of the graph, instead of transition probabilities

pi defined on the edges.

Recall that a clique of a graph is a set of vertices with the property that there is an

edge between any two of them. A clique is maximal if it cannot be extended to include

additional vertices without losing the property of being a clique (see Figure 2).

Each maximal clique C of the graph G has an associated potential function

(2) ψC :


 ∏

j: vj∈C

Σj


 −→ R.



THE NUMBER OF INFERENCE FUNCTIONS 7

6

v

v

v v

v

v1

3

4

5

2

Figure 2. An undirected graph with maximal cliques {v1, v2}, {v2, v3},
{v2, v4, v5}, {v3, v6}, and {v5, v6}.

Given the states ρj of each Wj such that vj is a vertex in the clique C, if we denote by

ρC the vector of such states, then ψC(ρC) is a nonnegative real number. We denote by

C the set of all maximal cliques C.

Then, the joint probability distribution of all the variables Wi is given by

Prob(W = ρ) =
1

Z

∏
C∈C

ψC(ρC),

where Z is the normalization factor

Z =
∑

ρ

∏
C∈C

ψC(ρC),

obtained by summing over all assignments of values to the variables ρ.

The value of the function ψC(ρC) for each possible choice of the states ρi is given by

the parameters of the model. We will be interested in models in which the set of

parameters is fixed, even as the size of the graph gets large.

Definition 5. An undirected graphical model with d parameters, θ1, . . . , θd, is an

undirected graphical model such that each probability ψC(ρC) in (2) is a monomial in

θ1, . . . , θd.

As in the case of directed models, the variables can be partitioned into observed vari-

ables Y = (Y1, Y2, . . . , Yn) (which can be assumed to take their values in the same

finite alphabet Σ′) and hidden variables X = (X1, X2, . . . , Xq) (which can be assumed

to be on the finite alphabet Σ). For each observation τ and hidden variables h,

Z · Prob (X = h, Y = τ) is a monomial fh,τ in the parameters θ1, . . . , θd. Then for

each observation τ ∈ (Σ′)n, the observed probability Prob(Y = τ) is the sum over
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all hidden data h of Prob (X = h, Y = τ), and so Z · Prob(Y = τ) is the polynomial

fτ =
∑

h fh,τ in the parameters θ1, . . . , θd.

Definition 6. The complexity, M , of an undirected graphical model is the maximum,

over all τ , of the degree of the polynomial fτ .

It is usually the case for undirected models, as in directed, that M is a linear function

of n.

2.2. Inference functions. For fixed values of the parameters, the basic inference

problem is to determine, for each given observation τ , a value h ∈ Σq of the hidden

data that maximizes Prob(X = h
∣∣ Y = τ). A solution to this optimization problem is

denoted ĥ and is called an explanation of the observation τ . Each choice of parameter

values (θ1, θ2, . . . , θd) defines an inference function τ 7→ ĥ from the set of observations

(Σ′)n to the set of explanations Σq.

Example 7. Consider the binary homogeneous HMM with n=3 (see Example 2) with

hidden states Σ = {A,B} and observed states Σ′ = {0, 1}. Suppose the transition

matrix and emission matrix are
.6 .4

.4 .6


 and


.6 .4

.4 .6


 ,

respectively, and that the source X1 has the uniform probability distribution.

If, for example, the string 010 is observed (Y1 = 0, Y2 = 1, Y3 = 0), then the most

likely values of the hidden variables are AAA, with

Prob(X = AAA,Y = 010) = .5 · .6 · .6 · .4 · .6 · .6 = 0.02592.

Therefore our inference function should map 010 to AAA. On the other hand, if the

string 011 is observed, then there are actually two possibilities for the explanation:

ABB and BBB are equally likely and are also more likely than any other string of

hidden variables. One possible solution is to say that the inference function maps 011

to the set of all possible explanations, that is, 011 7→ {ABB, BBB}. Repeating this

process for each possible string of observed values, we get the inference function given

by
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000 7→ {AAA} 100 7→ {AAA,BAA}
001 7→ {AAA, AAB} 101 7→ {BBB}
010 7→ {AAA} 110 7→ {BBA, BBB}
011 7→ {ABB,BBB} 111 7→ {BBB}

For simplicity, we would like to pick only one such explanation for each possible ob-

served sequence, according to some consistent tie-breaking rule decided ahead of time

(this will not affect the results of the paper, merely ease exposition). For example, we

could pick the lexicographically first among the possibilities. This would give us the

inference function, Φ, mapping

000 7→ AAA 100 7→ AAA

001 7→ AAA 101 7→ BBB

010 7→ AAA 110 7→ BBA

011 7→ ABB 111 7→ BBB

In general, we fix an order of the hidden states Σ, that is, if Σ = {σ1, σ2, . . . , σl}, we

say that σ1 < σ2 < · · · < σl.

Definition 8. An inference function is a map Φ : (Σ′)n −→ Σq that assigns to each

observation τ ∈ (Σ′)n an explanation ĥ ∈ Σq that maximizes Prob(X = h
∣∣Y = τ).

For definiteness, if there is more than one such explanation, we define Φ(τ) to be the

minimum of all such ĥ in lexicographic order.

It is interesting to observe that the total number of maps (Σ′)n −→ Σq is (lq)(l′)n
=

lq(l
′)n

, which is doubly-exponential in the length n of the observations. However, the

vast majority of these maps are not inference functions for any values of the parameters.

Before our results, the best upper bound in the literature is an exponential bound given

in [15, Corollary 10]. Theorem 1 gives a polynomial upper bound on the number of

inference functions of a graphical model.

2.3. Polytopes. Here we review some facts about convex polytopes, and we introduce

some notation. Recall that a polytope is a bounded intersection of finitely many closed
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halfspaces, or equivalently, the convex hull of a finite set of points. For the basic

definitions about polytopes we refer the reader to [17].

Given a polynomial f(θ) =
∑N

i=1 θ
a1,i

1 θ
a2,i

2 · · · θad,i

d , its Newton polytope, denoted by

NP(f), is defined as the convex hull in Rd of the set of points {(a1,i, a2,i, . . . , ad,i) : i =

1, . . . , N}.

For example, if f(θ1, θ2) = 2θ3
1 + 3θ2

1θ
2
2 + θ1θ

2
2 + 3θ1 + 5θ4

2, then its Newton polytope

NP(f) is given in Figure 3.
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Figure 3. The Newton polytope of f(θ1, θ2) = 2θ3
1 + 3θ2

1θ
2
2 + θ1θ

2
2 + 3θ1 + 5θ4

2.

Given a polytope P ⊂ Rd and a vector w ∈ Rd, the set of all points in P at which the

linear functional x 7→ x ·w attains its maximum determines a face of P . It is denoted

(3) facew(P ) =
{

x ∈ P : x · w ≥ y · w for all y ∈ P
}
.

Faces of dimension 0 (consisting of a single point) are called vertices, and faces of

dimension 1 are called edges. If d is the dimension of the polytope, then faces of

dimension d− 1 are called facets.

Let P be a polytope and F a face of P . The normal cone of P at F is

NP (F ) =
{
w ∈ Rd : facew(P ) = F

}
.

The collection of all cones NP (F ) as F runs over all faces of P is denoted N (P ) and

is called the normal fan of P . Thus the normal fan N (P ) is a partition of Rd into

cones. The cones in N (P ) are in bijection with the faces of P , and if w ∈ NP (F ), then

the linear functional x · w is maximized on F . Figure 4 shows the normal fan of the

polytope from Figure 3.
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Figure 4. The normal fan of a polytope.

The Minkowski sum of two polytopes P and P ′ is defined as

P + P ′ := {x + x′ : x ∈ P, x′ ∈ P ′}.

Figure 5 shows an example in 2 dimensions. The Newton polytope of the map f :

Rd −→ R(l′)n
is defined as the Minkowski sum of the individual Newton polytopes of

its coordinates, namely NP(f) :=
∑

τ∈(Σ′)n NP(fτ ).

P + P’

P

P’

Figure 5. Two polytopes and their Minkowski sum.

The common refinement of two or more normal fans is the collection of cones ob-

tained as the intersection of a cone from each of the individual fans. For polytopes

P1, P2, . . . , Pk, the common refinement of their normal fans is denoted N (P1) ∧ · · · ∧
N (Pk). Figure 6 shows the normal fans for the polytopes P and P ′ from Figure 5,

together with the common refinement. Comparing N (P ) ∧ N (P ′) to the polytope

P +P ′ in Figure 5, we see an illustration of the well-known fact that the normal fan of

a Minkowski sum of polytopes is the common refinement of their individual fans (see

[17, Proposition 7.12] or [5, Lemma 2.1.5]). To be precise:

Lemma 9. N (P1 + · · ·+ Pk) = N (P1) ∧ · · · ∧ N (Pk).
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N(P)

N(P’)

N(P) N(P’)

Figure 6. The normal fans of the polytopes in Figure 5 and their

common refinement.

We finish with a result of Gritzmann and Sturmfels that will be useful later. It gives

a bound on the number of vertices of a Minkowski sum of polytopes.

Theorem 10 ([5]). Let P1, P2, . . . , Pk be polytopes in Rd, and let m denote the number

of non-parallel edges of P1, . . . , Pk. Then the number of vertices of P1 + · · ·+ Pk is at

most

2
d−1∑
j=0

(
m− 1

j

)
.

Note that this bound is independent of the number k of polytopes.

3. An upper bound on the number of inference functions

For fixed parameters, the inference problem of finding the explanation ĥ that maximizes

Prob(X = h|Y = τ) is equivalent to identifying the monomial fbh,τ = θ
a1,i

1 θ
a2,i

2 · · · θad,i

d

of fτ with maximum value. Since the logarithm is a monotonically increasing function,

the desired monomial also maximizes the quantity

log(θ
a1,i

1 θ
a2,i

2 · · · θad,i

d ) = a1,i log(θ1) + a2,i log(θ2) + · · ·+ ad,i log(θd)

= a1,iv1 + a2,iv2 + · · ·+ ad,ivd,

where we replace log(θi) with vi. This is equivalent to the fact that the corresponding

point (a1,i, a2,i, . . . , ad,i) maximizes the linear expression v1x1+· · ·+vdxd on the Newton

polytope NP(fτ ). Thus, the inference problem for fixed parameters becomes a linear

programming problem.
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Each choice of the parameters θ = (θ1, θ2, . . . , θd) determines an inference function. If

v = (v1, v2, . . . , vd) is the vector in Rd with coordinates vi = log(θi), then we denote

the corresponding inference function by

Φv : (Σ′)n −→ Σq.

For each observation τ ∈ (Σ′)n, its explanation Φv(τ) is given by the vertex of NP(fτ )

that is maximal in the direction of the vector v. Note that for certain values of the

parameters (if v is perpendicular to a positive-dimensional face of NP(fτ )) there may

be more than one vertex attaining the maximum. It is also possible that a single

point (a1,i, a2,i, . . . , ad,i) in the polytope corresponds to several different values of the

hidden data. In both cases, when there is more than one possible explanation attaining

the maximal probability, we pick the explanation according to Definition 8. This

simplification does not affect the asymptotic number of inference functions.

Different values of θ yield different directions v, which can result in distinct inference

functions. We are interested in bounding the number of different inference functions

that a graphical model can have. Theorem 1 gives an upper bound which is polynomial

in the size of the graphical model. In other words, extremely few of the lq(l
′)n

functions

(Σ′)n −→ Σq are actually inference functions.

Before proving Theorem 1, observe that usually M , the complexity of the graphical

model, is linear in n. For example, in the case of directed models, consider the common

situation where M is bounded by E, the number of edges of the underlying graph (this

happens when each edge “contributes” at most degree 1 to the monomials fh,τ , as in

the homogeneous HMM). In most graphical models of interest, E is a linear function

of n, so the bound becomes O(nd(d−1)). For example, the homogeneous HMM has

M = E = 2n− 1.

Also, in the case of undirected models, if each ψC(ρC) is a parameter of the model, then

fh,τ = Z · Prob (X = h, Y = τ) is a product of potential functions for each maximal

clique of the graph, so M is bounded by the number of maximal cliques, which in many

cases is also a linear function of the number of vertices of the graph. For example, this

is the situation in language models where each word depends on a fixed number of

previous words in the sentence.
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Proof of Theorem 1. In the first part of the proof we will reduce the problem of counting

inference functions to the enumeration of the vertices of a certain polytope. We have

seen that an inference function is specified by a choice of the parameters, which is

equivalent to choosing a vector v ∈ Rd. The function is denoted Φv : (Σ′)n −→ Σq,

and the explanation Φv(τ) of a given observation τ is determined by the vertex of

NP(fτ ) that is maximal in the direction of v. Thus, cones of the normal fan N (NP(fτ ))

correspond to sets of vectors v that give rise to the same explanation for the observation

τ . Non-maximal cones (i.e., those contained in another cone of higher dimension)

correspond to directions v for which more than one vertex is maximal. Since ties are

broken using a consistent rule, we disregard this case for simplicity. Thus, in what

follows we consider only maximal cones of the normal fan.

Let v′ = (v′1, v
′
2, . . . , v

′
d) be another vector corresponding to a different choice of pa-

rameters (see Figure 7). By the above reasoning, Φv(τ) = Φv′(τ) if and only if v

and v′ belong to the same cone of N (NP(fτ )). Thus, Φv and Φv′ are the same in-

ference function if and only if v and v′ belong to the same cone of N (NP(fτ )) for

all observations τ ∈ (Σ′)n. Consider the common refinement of all these normal fans,
∧

τ∈(Σ′)n N (NP(fτ )). Then, Φv and Φv′ are the same function exactly when v and v′

lie in the same cone of this common refinement.

This implies that the number of inference functions equals the number of cones in

∧

τ∈(Σ′)n

N (NP(fτ )).

By Lemma 9, this common refinement is the normal fan of NP(f) =
∑

τ∈(Σ′)n NP(fτ ),

the Minkowski sum of the polytopes NP(fτ ) for all observations τ . It follows that

enumerating inference functions is equivalent to counting vertices of NP(f). In the

remaining part of the proof we give an upper bound on the number of vertices of

NP(f).

Note that for each τ , the polytope NP(fτ ) is contained in the hypercube [0,M ]d, since

by definition of M , each parameter θi appears in fτ with exponent at most M . Also,

the vertices of NP(fτ ) have integral coordinates, because they are exponent vectors.

Polytopes whose vertices have integral coordinates are called lattice polytopes. It follows

that the edges of NP(fτ ) are given by vectors where each coordinate is an integer
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Figure 7. Two different inference functions, Φv (left column) and Φv′

(right column). Each row corresponds to a different observation. The

respective explanations are given by the marked vertices in each Newton

polytope.

between −M and M . There are only (2M +1)d such vectors, so this is an upper bound

on the number of different directions that the edges of the polytopes NP(fτ ) can have.

This property of the Newton polytopes of the coordinates of the model will allow us

to give an upper bound on the number of vertices of their Minkowski sum NP(f). The

last ingredient that we need is Theorem 10. In our case we have a sum of polytopes

NP(fτ ), one for each observation τ ∈ (Σ′)n, having at most (2M + 1)d non-parallel

edges in total. Hence, by Theorem 10, the number of vertices of NP(f) is at most

2
d−1∑
j=0

(
(2M + 1)d − 1

j

)
.

As M goes to infinity, the dominant term of this expression is

2d2−d+1

(d− 1)!
Md(d−1).

Thus, we get an O(Md(d−1)) upper bound on the number of inference functions of the

graphical model. ¤
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In the next section we will show that the bound given in Theorem 1 is tight up to a

constant factor.

4. A lower bound

As before, we fix d, the number of parameters in our model. The Few Inferences

Function Theorem tells us that the number of inference functions is bounded from

above by some function cMd(d−1), where c is a constant (depending only on d) and M

is the complexity of the model. Here we show that that bound is tight up to a constant,

by constructing a family of graphical models whose number of inference functions is

at least c′Md(d−1), where c′ is another constant. In fact, we will construct a family

of hidden Markov models with this property. To be precise, we have the following

theorem.

Theorem 11. Fix d. There is a constant c′ = c′(d) such that, given n ∈ Z+, there

exists an HMM of length n, with d parameters, 4d + 4 hidden states, and 2 observed

states, such that there are at least c′nd(d−1) distinct inference functions. (For this HMM,

M is a linear function of n, so this also gives us the lower bound in terms of M).

In Section 4.1 we prove Theorem 11. This proof requires several lemmas that we will

meet along the way, and these lemmas will be proved in Section 4.2. Lemma 15, which

is interesting in its own right as a statement in the geometry of numbers, is proved

in [4].

4.1. Proof of Theorem 11. Given n, we first construct the appropriate HMM, Mn,

using the following lemma.

Lemma 12. Given n ∈ Z+, there is an HMM, Mn, of length n, with d parameters,

4d + 4 hidden states, and 2 observed states, such that for any a ∈ Zd
+ with

∑
i ai < n,

there is an observed sequence which has one explanation if

a1 log(θ1) + · · ·+ ad log(θd) > 0

and another explanation if a1 log(θ1) + · · ·+ ad log(θd) < 0.
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This means that, for the HMM Mn, the decomposition of (log-)parameter space into

inference cones includes all of the hyperplanes {x : 〈a, x〉 = 0} such that a ∈ Zd
+

with
∑

i ai < n. Call the arrangement of these hyperplanes Hn. It suffices to show

that the arrangement Hn consists of at least c′nd(d−1) chambers (full dimensional cones

determined by the arrangement). There are c1n
d ways to choose one of the hyperplanes

from Hn, for some constant c1. Therefore there are cd−1
1 nd(d−1) ways to choose d− 1 of

the hyperplanes; their intersection is, in general, a 1-dimensional face of Hn (that is,

the intersection is a ray which is an extreme ray for the cones it is contained in). It

is quite possible that two different ways of choosing d − 1 hyperplanes give the same

extreme ray. The following lemma says that some constant fraction of these choices of

extreme rays are actually distinct.

Lemma 13. Fix d. Given n, let Hn be the hyperplane arrangement consisting of the

hyperplanes of the form {x : 〈a, x〉 = 0} with a ∈ Zd
+ and

∑
i ai < n. Then the number

of 1-dimensional faces of Hn is at least c2n
d(d−1), for some constant c2.

Each chamber will have a number of these extreme rays on its boundary. The following

lemma gives a constant bound on this number.

Lemma 14. Fix d. Given n, define Hn as above. Each chamber of Hn has at most

2d(d−1) extreme rays.

Conversely, each ray is an extreme ray for at least 1 chamber. Therefore there are at

least c2
2d(d−1) n

d(d−1) chambers, and Theorem 11 is proved. ¤

In proving Lemma 13, we will need one more lemma. This lemma is interesting in

its own right as a probabilistic statement about integer lattices, and so is proved in

a companion paper [4]. Given a set S ⊂ Zd of integer vectors, spanR(S) is a linear

subspace of Rd and spanR(S) ∩ Zd is a sublattice of Zd. We say that S is primitive if

S is a Z-basis for the lattice spanR(S) ∩ Zd. Equivalently, a set S is primitive if and

only if it may be extended to a Z-basis of all of Zd (see [9]).
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We imagine picking each vector in S uniformly at random from some large box in Rd.

As the size of the box approaches infinity, the following lemma will tell us that the

probability that S is primitive approaches

1

ζ(d)ζ(d− 1) · · · ζ(d−m + 1)
,

where |S| = m and ζ(a) is the Riemann Zeta function
∑∞

i=1
1
ia

.

Lemma 15 (from [4]). Let d and m be given, with m < d. For n ∈ Z+, 1 ≤ k ≤ m,

and 1 ≤ i ≤ d, let bn,k,i ∈ Z. For a given n, choose integers ski uniformly (and

independently) at random from the set bn,k,i ≤ ski ≤ bn,k,i + n. Let sk = (sk1, . . . , skd)

and let S = {s1, s2, . . . , sm}.

If |bn,k,i| is bounded by a polynomial in n, then, as n approaches infinity, the probability

that S is a primitive set approaches

1

ζ(d)ζ(d− 1) · · · ζ(d−m + 1)
,

where ζ(a) is the Riemann Zeta function
∑∞

i=1
1
ia

.

When m = 1, this lemma gives the probability that a d-tuple of integers are relatively

prime as 1
ζ(d)

. For m = 1, d = 2, this is a classic result in number theory (see [1]), and

for m = 1, d > 2, this was proven in [11]. Note also that, if m = d and we choose

S of size m, then the probability that S is primitive (i.e., that it is a basis for Zd)

approaches zero. This agrees with the lemma in the sense that we would expect the

probability to be
1

ζ(d)ζ(d− 1) · · · ζ(1)
,

but ζ(1) does not converge.

4.2. Proofs of Lemmas.

Proof of Lemma 12. Given d and n, define a length n HMM with parameters θ1, ..., θd,

as follows. The observed states will be S and C (for “start of block,” and “continuing

block,” respectively). The hidden states will be si, s′i, ci, and c′i, for 1 ≤ i ≤ d + 1

(think of si and s′i as “start of the ith block” and ci and c′i as “continuing the ith

block”).
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Here is the idea of what we want this HMM to do: if the observed sequence has S’s in

position 1, a1 + 1, a1 + a2 + 1, . . ., and a1 + · · ·+ ad + 1 and C’s elsewhere, then there

will be only two possibilities for the sequence of hidden states, either

t = s1 c1 · · · c1︸ ︷︷ ︸
a1−1

s2 c2 · · · c2︸ ︷︷ ︸
a2−1

· · · sd cd · · · cd︸ ︷︷ ︸
ad−1

sd+1 cd+1 · · · cd+1︸ ︷︷ ︸
n−a1−···−ad−1

or

t′ = s′1 c′1 · · · c′1︸ ︷︷ ︸
a1−1

s′2 c′2 · · · c′2︸ ︷︷ ︸
a2−1

· · · s′d c′d · · · c′d︸ ︷︷ ︸
ad−1

s′d+1 c′d+1 · · · c′d+1︸ ︷︷ ︸
n−a1−···−ad−1

.

We will also make sure that t has a priori probability θa1
1 · · · θad

d and t′ has a priori

probability 1. Then t is the explanation if a1 log(θ1) + · · ·+ ad log(θd) > 0 and t′ is the

explanation if a1 log(θ1)+ · · ·+ad log(θd) < 0. Remember that we are not constraining

our probability sums to be 1. A very similar HMM could be constructed that obeys

that constraint, if desired. To simplify notation it will be more convenient to treat

the transition probabilities as parameters that do not necessarily sum to one at each

vertex, even if this forces us to use the term “probability” somewhat loosely.

Here is how we set up the transitions/emmisions. Let si and s′i, for 1 ≤ i ≤ d + 1,

all emit S with probability 1 and C with probability 0. Let ci and c′i emit C with

probability 1 and S with probability 0. Let si, for 1 ≤ i ≤ d, transition to ci with

probability θi, transition to si+1 with probability θi, and transition to everything else

with probability 0. Let sd+1 transition to cd+1 with probability 1 and to everything

else with probability 0. Let s′i, for 1 ≤ i ≤ d, transition to c′i with probability 1, to s′i+1

with probability 1, and to everything else with probability 0. Let s′d+1 transition to

c′d+1 with probability 1 and to everything else with probability 0. Let ci, for 1 ≤ i ≤ d,

transition to ci with probability θi, to si+1 with probability θi, and to everything else

with probability 0. Let cd+1 transition to cd+1 with probability 1 and to everything

else with probability 0. Let c′i, for 1 ≤ i ≤ d, transition to c′i with probability 1, to

si+1 with probability 1, and to everything else with probability 0. Let c′d+1 transition

to c′d+1 with probability 1 and to everything else with probability 0.

Starting with the uniform probability distribution on the first hidden state, this does

exactly what we want it to: given the correct observed sequence, t and t′ are the only

explanations, with the correct probabilities. ¤
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Proof of Lemma 13. We are going to pick d−1 vectors a(1), . . . , a(d−1) which correspond

to the d− 1 hyperplanes {x : 〈a(i), x〉 = 0} that will intersect to give us extreme rays

of our chambers. We will restrict the region from which we pick each a(i) ∈ Zd. Let

b(i) = (1, 1, . . . , 1)− 1

2
ei,

for 1 ≤ i ≤ d − 1, where ei is the ith standard basis vector. Let s = 1
4d+4

. For

1 ≤ i ≤ d− 1, we will choose a(i) ∈ Zd such that

(4)
∥∥∥n

d
b(i) − a(i)

∥∥∥
∞

<
n

d
s.

Note that
∑

j a
(i)
j < n, so there are observed sequences which give us the hyperplanes

{x : 〈a(i), x〉 = 0}. Note also that there are (2s
d
)d(d−1)nd(d−1) choices for the (d−1)-tuple

of vectors (a(1), . . . , a(d−1)). To prove this lemma, we must then show that a positive

fraction of these actually give rise to distinct extreme rays
⋂d−1

i=1 {x : 〈a(i), x〉 = 0}.

First, we imagine choosing the a(i) uniformly at random in the range given by (4),

this probability distribution meets the condition in the statement of Lemma 15, as n

approaches infinity. Therefore, there is a positive probability that

(5) {a(i) : 1 ≤ i ≤ d− 1} form a basis for the lattice Zd ∩ span{a(i) : 1 ≤ i ≤ d− 1},

and this probability approaches

1

ζ(d)ζ(d− 1) · · · ζ(2)
.

Second, we look at all choices of a(i) ∈ Zd such that (4) and (5) hold. There are

c2n
d(d−1) of these, for some constant c2. We claim that these give distinct extreme rays

⋂d−1
i=1 {x : 〈a(i), x〉 = 0}. Indeed, say that a(i) and c(i) are both chosen such that (4)

and (5) hold and such that

d−1⋂
i=1

{x : 〈a(i), x〉 = 0} =
d−1⋂
i=1

{x : 〈c(i), x〉 = 0}.

We will argue that a(i) and c(i) are “so close” that they must actually be the same.

Let j, for 1 ≤ j ≤ d− 1 be given. We will prove that a(j) = c(j). Since

d−1⋂
i=1

{x : 〈a(i), x〉 = 0} ⊂ {x : 〈c(j), x〉 = 0},
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we know that c(j) is in span{a(i) : 1 ≤ i ≤ d− 1}, and therefore

c(j) ∈ Zd ∩ span{a(i) : 1 ≤ i ≤ d}.

Let g = c(j) − a(j). Then

‖g‖∞ < 2
n

d
s,

by Condition (4) for a(i) and c(i), and

g = α1a
(1) + · · ·+ αd−1a

(d−1),

for some αi ∈ Z, by Condition (5) for a(i). We must show that g = 0. By reordering

indices and possibly considering −g, we may assume that α1, . . . , αk ≥ 0, for some k,

αk+1, . . . , αd−1 ≤ 0, and |α1| is maximal over all |αi|, 1 ≤ i ≤ d− 1.

Examining the first coordinate of g, we have that

−2
n

d
s < g1

= α1a
(1)
1 + · · ·+ αd−1a

(d−1)
1

< α1
n

d
(b

(1)
1 + s) + · · ·+ αk

n

d
(b

(k)
1 + s) + αk+1

n

d
(b

(k+1)
1 − s) + · · ·+ αd−1

n

d
(b

(d−1)
1 − s)

=
n

d

[
α1 + · · ·+ αd−1 − 1

2
α1 + s(|α1|+ · · ·+ |αd−1|)

]
(using b(i) = (1, . . . , 1)− 1

2
ei)

≤ n

d

[
α1 + · · ·+ αd−1 − 1

2
α1 + (d− 1)sα1

]
.

Negating and dividing by n
d
,

(6) −(α1 + · · ·+ αd−1) +
1

2
α1 − (d− 1)sα1 < 2s.

Similarly, examining the (k + 1)-st coordinate of g, we have

2
n

d
s > gk+1

= α1a
(1)
k+1 + · · ·+ αd−1a

(d−1)
k+1

> α1
n

d
(b

(1)
k+1 − s) + · · ·+ αk

n

d
(b

(k)
k+1 − s) + αk+1

n

d
(b

(k+1)
k+1 + s) + · · ·+ αd−1

n

d
(b

(d−1)
k+1 + s)

=
n

d

[
α1 + · · ·+ αd−1 − 1

2
αk+1 − s(|α1|+ · · ·+ |αd−1|)

]

≥ n

d

[
α1 + · · ·+ αd−1 − 1

2
αk+1 − (d− 1)sα1

]
,
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and so

(7) (α1 + · · ·+ αd−1)− 1

2
αk+1 − (d− 1)sα1 < 2s.

Adding the equations (6) and (7),

1

2
α1 − 1

2
αk+1 − 2(d− 1)sα1 < 4s,

and so, since s = 1
4d+4

,

1

d + 1
α1 − 1

2
αk+1 <

1

d + 1
.

Therefore, since αk+1 ≤ 0, we have that α1 < 1 and so α1 = 0. Since |α1| was maximal

over all |αi|, we have that g = 0. Therefore a(j) = c(j), and the lemma follows. ¤

Proof of Lemma 14. Suppose N > 2d(d−1), and suppose a(i,j), for 1 ≤ i ≤ N and

1 ≤ j ≤ d− 1, are such that a(i,j) ∈ Zd
+,

∑d
k=1 a

(i,j)
k < n, and the N rays

r(i) =
d−1⋂
j=1

{x : 〈a(i,j), x〉 = 0}

are the extreme rays for some chamber. Then, since N > 2d(d−1), there are some i and

i′ such that

a
(i,j)
k ≡ a

(i′,j)
k mod 2,

for 1 ≤ j ≤ d − 1 and 1 ≤ k ≤ d (i.e., all of the coordinates in all of the vectors have

the same parity). Then let

c(j) =
a(i,j) + a(i′,j)

2
,

for 1 ≤ j ≤ d− 1. Then c(j) ∈ Zd
+ and

∑d
k=1 c

(j)
k < n, and the ray

r =
d−1⋂
j=1

{x : 〈c(j), x〉 = 0} =
r(i) + r(i′)

2

is in the chamber, which is a contradiction. ¤
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5. Final remarks

An interpretation of Theorem 1 is that the ability to change the values of the parameters

of a graphical model does not give as much freedom as it may appear. There is a very

large number of possible ways to assign an explanation to each observation. However,

only a tiny proportion of these come from a consistent method for choosing the most

probable explanation for a certain choice of parameters. Even though the parameters

can vary continuously, the number of different inference functions that can be obtained

is at most polynomial in the number of edges of the model, assuming that the number

of parameters is fixed.

Having shown that the number of inference functions of a graphical model is polynomial

in the size of the model, an interesting next step would be to find an efficient way to

precompute all the inference functions for given models. This would allow us to give

the answer (the explanation) to a query (an observation) very quickly. It follows

from this paper that it is computationally feasible to precompute the polytope NP(f),

whose vertices correspond to the inference functions. However, the difficulty arises

when we try to describe a particular inference function efficiently. The problem is

that the characterization of an inference function involves an exponential number of

observations.
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