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Local Journal Article – (Friday June 30th, 2000) 

 

Students Clamor for Bandwidth Optimization 

 

Washington – A group of three students today revealed their research findings to the 
Congressional Subcommittee on Bandwidth Regulation, sparking a flood of proposed legislation 
designed to boost the efficiency of the information economy.  
  
Since the dawn of the so-called Age of Information, the issues of bandwidth assignments and 
bandwidth usage have been pushed to the forefront.  As technology has progressed, novel means 
of transmitting information have come into widespread use, and now TV, radio, cellular phones, 
wireless modems, CBs, and many other factions vie for increasingly precious bandwidth.  As a 
result, there has been increasing pressure within the government to modify the slip-shod 
legislation surrounding the bandwidth industry. 
 
Since its inception, the Congressional Subcommittee on Bandwidth Regulation has sought ways 
to optimize bandwidth assignments, so that all available parts of the spectrum can be conserved 
for government, commercial and private use.  The Committee was initially formed in response to 
the public’s concerns surrounding the notorious HDTV “bandwidth heist,” that became a popular 
issue for the Dole campaign during last election.  
 
In 1996, with widespread support from his party, Dole promised to auction off the new HDTV 
broadcast spectrum, rather than give it away to television networks interested in converting to 
HDTV.  John McCain (R - AZ), the new front-runner in this year’s Republican primary and 
chairman of the Senate Commerce, Science and Transportation Committee, has estimated that 
this would bring in over $70 billion, which could help to reduce taxes. 
 
“The public airwaves are owned by the American people and managed by our government,” said 
an unnamed McCain staffer, “over the past few years we have seen a bipartisan effort to 
conserve this valuable resource effectively.” 
 
With all this hype surrounding the increasing importance of stretches the electromagnetic 
spectrum, the Committee began to review ways of optimizing the efficiency of current 
bandwidth assignments. 
 
“By optimizing the ways in which we currently regulate bandwidth, we can minimize incidences 
of spectral spreading,” commented committee chairwoman Jane Doe (D – NY).  “This will allow 
us to maximize the quality of information transmission without employing unnecessary portions 
of (the) spectrum.  Simply put, if we don’t waste what we have there will be more left over to 
sell, which could mean lower taxes.” 
 



Several months ago, the committee issued a challenge to the world’s mathematicians to find a 
method by which the United States can conserve its bandwidth efficiently.  Yesterday, three 
college-aged students stunned the world with their solution to a hypothetical problem analogous 
to assigning radio channel frequencies.  Their research revealed that certain patterns of frequency 
assignments can maximize efficiency while maintaining the quality of the signal. 
 
Furthermore, the students constructed models that will help the government discover what the 
optimum number of radio channels should be for a given area, depending on the likelihood of 
interference between channels.  These models have far-reaching implications that may effect the 
way the FCC assigns radio channels in the future. 
 
However much the model may optimize some of the portions of the spectrum – such as police 
frequencies, wireless modems, cellular phones, etc. – it is unlikely to expect that radio stations 
nationwide will be forced to change their frequencies in order to comply with these new 
efficiency standards.  Likewise, the frequencies used for satellite television will also be given 
some legislative leeway. 
 
“Are goal here isn’t to create problems by forcing our model of efficiency onto a market that has 
been functioning for decades,” commented one group member, “what we’re trying to do is help 
the government plan for future expansion so that bandwidth is conserved while maintaining 
quality of transmission.” 
 
In spite of the many benefits of such a system, there was some dissention the political ranks 
about whether or not such policies were worth implementing.”  
 
“While I agree that the patterns these kids have generates are quite beautiful from a mathematical 
standpoint,” commented Sen. Lasey Fair (R – TX) “I am not convinced that government 
regulation is necessary in an industry that tends to regulate itself.  After all, radio stations tend to 
space themselves out naturally, so that the listening public gets a better transmission.” 
 
Yet, most present disagreed with Senator Fair’s claims, stating that all popular stations seemed to 
have converged inexplicably on the upper side of the FM band, meaning that large portions of 
spectrum were going unused. 
 
“The economics of this are more complicated than meets the eye…” retorted Doe, “we are 
certainly going to recommend some legislation to optimize channel assignments on portions of 
the bandwidth that are already in use.  It goes without saying that all future assignments will 
follow along the lines of the patterns these kids have revealed to us.” 
 

 
 
 
 
 



Abstract 
 
 This paper is concerned with efficiently assigning bandwidth to radio transmitters, so as 
to avoid interference.  We assume that the area (city, state, etc) is divided into a honeycomb 
hexagonal grid, and that transmitters are placed at the centers of the hexagons, which have side 
length s.  The bandwidth assigned to a transmitter will be represented by a channel number.  To 
avoid interference, the following constraints must be met: two transmitters within 2s must be 
assigned channels that differ by at least 2, and transmitters within 4s must be assigned channels 
that differ by at least 1.  We seek to find the span of a network, which is the smallest integer, n, 
such that a proper assignment configuration exists on the grid that uses no channel higher than n. 
 We find that with these constraints, the span of a grid (indeed, the entire plane), is 9.  To 
prove this result, we must show that a proper assignment does not exist using number of at most 
8, and we must also demonstrate how the assignments can be made using the integers 1 through 
9.  We show that, in fact, there is a unique such pattern which meets the constraints. 
 We then generalize to the constraint that channels for transmitters within 2s must differ 
by at least k, while channels for transmitters within 4s must still differ by at least 1.  We prove 
that for k=1, the span is 7; for k=2, the span is 9 (our original case); for k=3, the span is 12; and 
for k>3, the span is 2k+7.  In each case, we show that the span cannot be smaller, and also give 
an example with that span.  Each example is a simple pattern that can be efficiently extended to 
grids of arbitrarily large size, and these patterns guarantee that the bandwidth used is the smallest 
possible. 
 We again generalize to the constraint that channels for transmitters within 2s must differ 
by at least k, while channels for transmitters within 4s must differ by at least m.  We demonstrate 
a minimum bound for the span, 1+2k+4m, and also provide an example with span 1+2k+6m.  
This example is again a simple pattern that can be efficiently extended to larger grids.  We also 
demonstrate that, though we have not proven that 1+2k+6m is the span, it is still an effective way 
to minimize the bandwidth used. 
 Thirdly, we generalize to 3 levels of interference, so that we have the constraints that 
channels for transmitters within 2s must differ by at least k, channels for transmitters within 4s 
must differ by at least m, and channels for transmitters within 6s must differ by at least n.  We 
demonstrate a method for building up this 3-level interference from an assignment configuration 
which is valid for a 2-layer interference.  We show that the span, for all k, m, and n, is less than 
1+2k+6m+18n, and we motivate that this is an efficient way to minimize bandwidth allocation. 
 In summary, we completely solve parts A,B, and C of the problem statement, as well as 
providing several efficient, useful, and beautiful generalizations of the problem.



I.  Introduction 
This paper has been written partly as a response to a series of questions, and partly as an 

account of research into the mathematical implications of our findings.  Since the questions are 

given in a real word context, it is necessary to translate the various terms and concepts therein 

into a parlance more conducive to a mathematical consideration of the problem.  The goal of this 

introduction is merely to acquaint the reader with the terms and assumptions of the following 

proofs, and to lighten the reading thereby.   

  

The Rules of the Game 

 

Parts A and B of this year’s question essentially provide us with planar surface divided 

into hexagonal units with sides of length s.  This quasi-hexagonal plane is not unlike a 

honeycomb in appearance, and so we have extended the metaphor by referring to the space 

within each hexagon as a “cell.”  Continuing, we are told that the units here represent the areas of 

land at the center of which radio tower may be placed which will transmit on a segment of the 

frequency spectrum, called a channel, which will be denoted by an integer.  Two rules are then 

imposed that effect how we can assign channels to the transmitters.  These rules seek to 

minimize interference cause by radio stations near one another operating on close frequencies.  

The first of these, which we call the “4s constraint,” states that no two towers broadcasting on 

the same channel can be within 4s of one another.  The second rule, the “2 s constraint,” states 

that no two can broadcast on adjacent channels, that is, the channel numbers must differ by at 

least 2.  What this translates to in terms of geometry is shown in Figure 1.  



As you can see, all the striped cells lie 

within 2s of the central cell, whereas all of the 

dotted cells and all the striped cells lie within 4s of 

the central cell.  For reasons that will become 

obvious later in the paper, we refer to the set of 

cells including the central cell and the striped cells 

as the “first concentric,” and the set of cells 

including the central cell, the striped cells and the 

dotted cells as the “second concentric.” 

Casting such rigorous geometry aside, it is perhaps easier to think of these rules as 

“jumps” on a board game.  If one begins with a certain number at a certain cell, then it should be 

impossible to hop one cell over to a cell with an adjacent channel.  Similarly, it ought to be 

impossible to make two hops and land on a cell with the same channel.  If any one of these rules 

are broken, then the channel assignments have failed to meet the specified criteria. 

 Like many graph theory problems, this one reduces to a form that is both simple, 

intriguing, even downright amusing to consider, and yet difficult to formalize or solve.  Thus, in 

the interest of brevity, the following sections use the more rigorous and abstract terms outlined 

above and assume a basic knowledge of the lengths and basic geometry outlined on the previous 

page. 

2s 3

s 21

3s 3

s 3
3s 

Figure 1 



II. The First Case. 

 In this section we analyze the case where transmitters within a distance of 4s must differ 

by at least 1 channel, and those within 2s must differ by at least 2 channels. Here we show that 

the span of the network is nine for both the finite grid in the problem statement and for the 

infinite plane; the answers to Requirements A and B are identical. 

 We begin by considering the “first concentric,” shown in Figure 1 by the central cell and 

the ring of striped cells surrounding it.  Since any cell of the first concentric is within 4s of all the 

others, each cell must be assigned a distinct integer in order to avoid violating the 4s constraint.  

Therefore, we quickly see that the span cannot be 7 or less.  A more careful examination reveals 

that the span cannot be 8.  If we assume that the span is 8 and consider three adjacent hexagons 

that share a common vertex, we find that only one cell can be assigned a 1 and only one cell can 

be assigned an 8.  Thus, the remaining cell must be assigned some number, n, between 2 and 7.  

Consider this last cell as the center of a first concentric.  Here, the 2s constraint dictates that the 

ring of 6 cells surrounding it cannot be assigned numbers n-1, n, or n+1.  Their assignments must 

also be distinct from one another, since all cells within the first concentric are within 4s of each 

other.  To make these cell assignments, we need six integers other than n-1, n, or n+1.  This 

means that the span cannot be less than the sum of 6 and 3, which is 9. Therefore, we cannot 

make proper channel assignments using only the integers 1 through 8, so the span must be at 

least 9. 

Can we prove that we can’t make a correct assignment with the numbers 1 through 9?  

After an excruciating attempt to prove this, we were forced into a pattern which shows a network 

with these numbers, as shown in Figure 2.  The central column in gray is the sequence 

1,3,5,7,9,2,4,6,8 repeated over and over.  The column to the right of it (dotted) is the same 



sequence, but shifted down 3 cells.  The striped column to the 

left of center is the same sequence shifted up 3 cells.  Repeat 

this process of shifting up or down indefinitely to the left and 

right.  Look at each 1 in the pattern (in black).  The column to 

the left of each “1” is always shifted up by 3, and the column to 

the right is always shifted down by 3.  Therefore each “1” must 

have the same neighbors.  The cells within a distance of 2s of 

the 1’s differ from it by at least 2, and those within 4s by at least 

1, so it meets the constraints.  Checking the neighbors of the 

other numbers 2 through 9 shows that they meet the constraints 

also.  This pattern can fill the grid supplied in the problem, or it 

can be extended arbitrarily far left and right and also up and 

down to cover the plane.  Appendix II demonstrates that this pattern is actually unique, not 

including rotations and reflections. 

 

Since we showed earlier that the highest number in an assignment satisfying the 

constraints must be greater that 8, and since we just showed an example where the integers 1 

through 9 work, the span must be exactly 9, both for this grid pictured and for arbitrarily large 

grids. 

5 
9 

7 
1 

6 

8 
3 

8 
3 

1 
4 

6 

6 
1 

8 
2 

7 

9 
4 

9 
4 

2 
5 

1 

3 
7 

2 

4 

6 

2 

9 

7 

9 

3 
8 

1 
5 

5 

3 
6 

2 

4 
8 7 

5 

Figure 2 



III. Generalization: Differing k 

 In Section II, we considered a network of transmitters subject to two specific constraints.  

In this section, we will maintain the constraint that transmitters within a distance 4s of one 

another cannot use the same channel.  However, we will generalize the second constraint, so that 

now transmitters within a distance 2s of one another must have the channels whose assignment 

numbers differ by k.  In Section II, we considered the case k = 2.  In this section, we explicitly 

show that for k =1, the span is 7, for k = 3, the span is 12, and in general, for k >3, the span is 2k 

+ 7.  

First, we find that for all k, 2k+5 is a lower bound for the span.  Suppose that we have a 

channel configuration that uses only 1 through 2k+4; this will lead to contradiction. Let A be the 

set of numbers {1,2,…,k} and B the set of numbers {k+5, k+2,…,2k+4}.  All numbers in A are 

within k of each other, as are all numbers in B. Consider three adjacent hexagons that share a 

common vertex.  At most one of these three can be assigned an element of A, and at most one 

can be assigned an element of B, so that the third must be assigned some channel, n, between 

k+1 and k+4.  Consider a first concentric in which the central cell has been assigned this integer 

n.  The 2s constraint dictates that the 6 adjoining cells cannot be assigned numbers n-k+1, n-

k+2,…, n+k-2, or n+k-1.  Their assignments must also be distinct from one another, since all 

cells within the first concentric are within 4s of each other.  To make these cell assignments, we 

need six integers other than n-k+1 through n+k-1.  This means we need 6 + (2k-1) = 2k+5 

integers.  Therefore, we cannot make proper channel assignments using only the integers 1 

through 2k+4, so the span must be at least 2k+5. 

 



Constraint: Any two transmitter within 2s of one another must operate on channels differing 

by k = 1. 

 When k = 1, the 2s constraint is subordinate to the 4s constraint.  That is, if transmitters 

within 4s of one another cannot have the same channel assignment, then certainly transmitters 

within 2s of one another also cannot have the same channel assignment. 

We just showed that the span must be at least 2k+5, which is 7 when k = 1.  In fact, we 

can complete the grid using a span of exactly seven.  As in Figure 2, the central column is a 

sequence of numbers repeated over and over, in this case the sequence 1,2,3,4,5,6,7.  Also, as in 

Figure 2, the  adjacent column on the right contains the same sequence shifted down 3 cells, and 

the adjacent column on the left contains the same sequence shifted up 3 cells. For example, the 1 

in the column to the right is between the 3 and 4 of the central column.  As in the k = 2 

constraint, every occurrence of each integer would have identical neighbors.  Using this pattern, 

we can construct a satisfactory network.  Moreover, since we have proved that the span must be 

greater than six, our explicit construction demonstrates that the span is exactly seven.  

 

Constraint: Any two transmitters within 2s of one another must operate on channels differing 

by k = 3. 

We now turn to k = 3, and will follow a similar line of reasoning.  We will show that no 

assignment exists that uses only 1 through 11, and then provide an example that works for 12, 

thereby demonstrating that the span is 12. 

 

Assertion A:  When k=3, the span must be greater than 11. 

 



Proof of A:  We prove our assertion by contradiction.  Let us assume that the span is eleven.  We 

will show that several channel numbers cannot appear, and use these facts for our final 

contradiction. 

 

Case A1: Assume that some transmitter is assigned channel 3. 

Consider a first concentric about a central cell assigned channel 3.  No transmitters in the first 

concentric can use the channel assignments 1,2,3,4, or 5, because they are all within a distance of 

2s from the center transmitter operating on 3. We are left with six viable channels, 6,7,8,9,10, 

and 11, all of which must be used in order to provide distinct assignments to the cells 

surrounding the center cell.  Clearly, channel 8 must be used somewhere in the first concentric.  

We must then use two of the five remaining channels (6,7,9,10,11) in two empty cells of the first 

concentric lying to either side of 8.  However this is not possible, since placing either 6,7,9 or 10 

in either of these cells would violate the 2s requirement (as 6,7,9,10 are all within 3 of 8).  It 

follows that no transmitter in the network may be assigned channel 3. 

 

Case A2: Assume that some transmitter is assigned channel 9. 

When we say that channel assignments, n and m, within a distance 2s of one another must differ 

by at least k, we are requiring that  

| n – m | ≥  k.  What this means is that if we changed all channel numbers m to (span + 1 – m) 

[where in this instance, span = 11], in effect flipping them, then  

| (12 – n) – (12 – m) | = | m – n | = | n – m | ≥  k.  Therefore the set of new channels functions 

identically under the 2s and 4s constraints.   Their channel numbers remain between 12 – 11 = 1 

and 12 – 1 = 11, so they form a correct channel assignment, and the span remains 11.  So if some 



transmitter is assigned channel 9, a flip produces a configuration with a channel 12 – 9 = 3, 

which we proved in Case A1 is impossible.  Therefore no transmitter can be assigned channel 9. 

 

Case A3: Assume that some transmitter is assigned channel 10. 

Consider the first concentric around a channel 10 (in gray), as shown in 

Figure 3.  No transmitters in these cells can use the channel assignments 

8,9,10, or 11 because they are all within a distance of 2s from the center 

transmitter operating on 10, and none can be assigned channel 3, as we 

showed in Case 1.  We are left with six usable channels, 1,2,4,5,6, and 7, 

all of which we must use, since six distinct channels are required to fill the concentric.  Channel 

4 must be assigned to one of the cells, as in the dotted cell in Figure 3, and the striped cells 

neighboring it must contain channels 1 and 7.  The 2s constraint requires that the cell with 

channel 5 can only be adjacent to the cells using channels 1 and 2, so the 5 and 2 must be added 

as shown above (in black).  However, we cannot assign channel 6 to the remaining cell, because 

that would violate the 2s requirement (since 7 –6 =1 < k).  It follows that no transmitter in the 

network may be assigned channel 10. 

 

Claim:  Any network of transmitters can be renumbered so that some transmitter operates 

on channel 1. 

 

Assume that there is a set of channels where no transmitter operates on channel 1.  If this is the 

case, then there is some least channel, a.  As in Case 2, we renumber every channel m, this time 

as m – a + 1.  This new numbering system preserves differences between channel assignments, 
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so it still satisfies the difference constraints.  Moreover, it is clear that our new numbering 

contains channel 1 and that all numbers in the new numbering system remain positive integers. 

We may then assume that some transmitter is assigned channel 1 (otherwise we perform 

the above operation.  Consider the first concentric around this channel 1.  No transmitters in 

these cells can use the channel assignments 1,2, or 3, because they are all within a distance of 2s 

from the center transmitter operating on 1, and none can be assigned channels 9 or 10, as we 

showed in Cases 2 and 3. We are left with six usable channels, 4,5,6,7,8, and 11, all of which we 

must use since six distinct channels are required to fill the first concentric. Channel 6 must be 

assigned to one of the cells, but there are not two numbers remaining in the list (4,5,7,8,11) 

which differ from 6 by more than k=3. Therefore, it is impossible to complete the concentric in a 

way that satisfies the 2s constraint.  This contradicts our assumption that we could assign 

channels using numbers between 1 and 11.  This implies that when k=3, the span must be greater 

than 11.   

 

Assertion B:  When k =3, the span is 12. 

 

Proof B:  Having shown that the span must be greater than 11, we prove this assertion by 

demonstrating a working network with a span of 12.  As was the case for k=1 and k=2, there 

exists a sequence of integers that, when applied in a series of adjacent, offset columns, can 

produce a satisfactory network on an infinite plane (as in Figure 2 for k=2).  The central column 

for k=3 is the sequence 1,8,3,10,5,12,7,2,9,4,11,6 repeated over and over.  The adjacent column 

to one side is the same sequence shifted down 4, and the adjacent column to the other side is the 

sequence shifted up 4.  As before, this pattern can be repeated indefinitely, and since the 



neighborhood of each number is exactly the same, we can check to see that the conditions are 

met.  Therefore, for k=3, the span is 12. 

 

Constraint: Any two transmitter within 2s of one another must operate on channels differing 

by k > 3. 

 We will prove that for k>3, the span is exactly 2k+7.  We must first prove that no 

assignment with the channels 1 through 2k+6 satisfies the constraints.  This proof requires a 

detailed analysis, which we present in Appendix I.  We must also show that there is a 

configuration of channels with span 2k+7 satisfying the 

constraints.  Figure 4 shows our solution.  The same 

rhombus pattern is repeated over and over, tiling the 

plane (for example the dotted, striped, and gray 

parallelograms are all identical copies).  This rhombus 

consists of the numbers 1, 2, 3, k+3, k+4, k+5, 2k+5, 

2k+6, and 2k+7.  As before, the neighborhood of each 1 

is identical, and we can see that it satisfies the 

constraints, as do the neighborhoods of the other 8 cells.  

Therefore we have that 2k+7 is the span for all k>3. 

 

In conclusion, we have determined the span exactly for all integers k.  For k=1, it is 7.  For k=2, 

it is 9.  For k=3, it is 12.  For all k>3, it is 2k+7.  In addition, for each k we have explicitly stated 

an assignment pattern which meets the conditions and has all channels ≤ the span, and in each 

k+3 
2k+7 

k+4 
2k+6 

k+5 

2k+5 
3 

2 

1 

k+3 
2k+7 

k+4 
2k+6 

k+5 

2k+5 
3 

2 

1 

k+3 
2k+7 

k+4 
2k+6 

k+5 

2k+5 
3 

2 

1 

k+3 
2k+7 

k+4 
2k+6 

k+5 

2k+5 
3 

2 

1 

Figure 4 



case it is a simple repetition of a small sequence or shape over an arbitrarily large area, making it 

an efficient method of assigning channels for any grid. 

 

IV.   More Generalizations 

We have already proven generalizations for conditions where transmitters within 2s of 

one another must have channels k apart.  However, we have not yet considered variations on the 

4s constraint. In this section, we construct the generalization that transmitters 4s apart must have 

channels m apart, where m does not exceed k.  While we have not determined exactly what the 

span is in this general case, we have deduced some bounds on it.  Here, we show that for any 

given network, 1+2k+4m is the smallest possible span by showing it is impossible to make 

assignments using less than 1+2k+4m as the maximum channel.  We will also show that 

1+2k+6m is the largest possible span by providing a configuration that accomplishes this. 

First, assume that we can make correct assignments using only channels 1 through 

2k+4m.  Let A be the set of numbers {1,2,…,k} and B the set of numbers {k+4m+1, 

k+4m+2,…,2k+4m}.  All numbers in A are within k of each other, as are all numbers in B.  

Consider three cells that share a common vertex.  At most one of these three can be assigned an 

element of A, and at most one can be assigned an element of B, so the third must be assigned 

some channel, n, between k+1 and k+4m.  Consider the first concentric about this central cell 

with channel n.  We need 7 numbers to make enough assignments to fill this first concentric 

(including the central cell, n).  We label these in increasing order: x1,x2,…,x7. 

 

Case 1: n is x2, x3, x4, x5, or x6. 



Since all of these transmitters are within 4s of each other, each of the gaps between x1 and x2, 

between x2 and x3, etc., must contain at least m-1 numbers, and two of these six gaps (the two 

around n), must contain at least k-1 numbers.  Summing up the seven channels in the first 

concentric and the channels in the gap, we need 7 + 4*(m-1)+2*(k-1)=1+2k+4m channels, which 

contradicts our earlier assumption that we could make the assignments using only 2k+4m. 

 

Case 2: n is x1. 

This means that n is the smallest of the numbers.  We still have one gap of size k-1 (between n 

and x2), and the rest of size m-1.  Furthermore, since n is chosen so that it is at least k+1, there 

are k channels below it.  Therefore we need k + 7 + 1*(k-1) + 5*(m-1) = 2k+5m>2k+4m, which 

contradicts our assumption. 

 

Case 3: n is x7 

This is the same as n=x1, except n was chosen to be at most k+4m.  Therefore we need at least a 

span of 1+2k+4m channels to make correct assignments. 

 

 We now show how we can make the assignments 

using only the integers between 1 and 1+2k+6m.  A 

generalized network that satisfies these variable constraints is 

given in Figure 5.  This is analogous to the k>3 case 

discussed in Section III.  This time we have a rhombus that 

tiles the plane, with channels assignments 1, 1+m, 1+2m, 

1+k+2m, 1+k+3m, 1+k+4m, 1+2k+4m, 1+2k+5m, and 
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1+2k+6m.  As before, we can check the neighborhood of each channel to make sure that it 

satisfies the constraints across all values of m and k. 

 In order to determine whether or not 1+2k+6m is a good upper bound for the span, 

consider how much smaller the actual span could be.  We proved earlier in this section that there 

is a minimum bound of 1+2k+4m, so our value cannot be more than (1+2k+6m)-(1+2k+4m)=2m 

higher than the actual span.  Furthermore, setting m=1, 1+2k+6m = 2k+7, which is exactly the 

span for k>3 (as shown in Section III), so for this specific value of m it is generating the 

minimum possible assignment configuration.  Most importantly, the pattern we offer in this 

section provides a surprisingly efficient way to generate assignments for any sized grid, based on 

k and m: one need simply to construct a rhombus of nine hexagons and tile the grid.  In 

summary, though we have not proven that the span is 1+2k+6m, it appears to be an effective 

method of approximation. 



 V. More Layers of Interference 

 

Having analyzed cases with two levels of interference, we consider what happens if there 

are three levels of interference.  Assume that the channel assignments for transmitters within a 

distance of 2s must differ by k, which we refer to as the “2sk constraint.”  Also, assume that 

channel assignments within 4s of one another must differ by m, which we refer to as the “4sm 

constraint.”  Finally, assume that channel assignments within 6s of one another must differ by n, 

which we will call the “6sn constraint,” and also require n≤m≤k.  In this section we construct a 

method for deriving assignments that satisfying these conditions.  We will build up this 

assignment from a 2- level interference assignment with the constraints that channels for 

transmitters within a distance of less than 2s must differ by m assignments (the “2sm constraint”) 

and those within a distance of 4s must differ by n assignments (the “4sn constraint”). 

Figure 6 shows a triangular lattice that results from drawing lines between centers of all 

adjacent hexagons, while Figure 7 shows a triangular lattice which connects only some of the 

Figure 6 

Figure 7 



cells.  Notice that Figure 7 looks identical to Figure 6, but on a larger scale. 

Regarding Figure 7 the dotted cells are within 4s of the central gray cell, but more than 2s 

away.  The striped cells are within 6s of the central cell but more than 4s away.  Suppose we 

have an assignment that satisfies both the 2sm and the 4sn constraints.  If we assign these 

channels to the vertices of this lattice above, they will now meet the 4sm and 6sn constraints. 

 Figure 8 shows how we can 

overlap three lattices (light gray, dark 

gray, and black) such that all hexagons 

are on a vertex of one of the three 

lattices.  Suppose we have a 

configuration of assignments using the 

integers 1 through L that satisfy the 2sm 

and the 4sn constraints.  Then we can 

label the cells on the light gray lattice 

following that assignment with the 

integers 1 to L.  We label the cells on the dark gray lattice with the integers k+L to k+2L-1 

(simply by adding k+L-1 to each channel following the same assignment).  We label the cells on 

the black lattice with the integers 2k+2L-1 to 2k+3L-2 (by adding 2k+L-2 to each channel). 

Because of our labeling, if we take two cell on lattices of different colors, their channels 

are at least k apart.  If two cells are on the same color lattice, the distance between them is over 

2s; if it is under 4s, then their channels are m apart, and if it is under 6s, then their channels are n 

apart.  Therefore our assignment meets the 2sk, 4sm, and 6sn constraints, and its maximum 

integer is 2k+3L-2. 

Figure 8 
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 Figure 9 gives a practical example of 

this method.  Suppose we are seeking a 

configuration that satisfies the constraints that 

channel assignments for transmitters within a 

distance 2s of one another must differ by at 

least 3, that those within 4s of one another must 

differ by at least 2, and that those within 6s of 

one another must differ by at least 1.  We will 

use the configuration derived in Section II (the 

2s2 and 4s1 constraints) which uses 9 integers.  

The gray vertices in Figure 9 use the integers 1 through 9, the dotted integers 12 through 20, and 

the striped 23 through 31. 

We can now apply this process to get an assignment configuration which satisfies the 

2sk, 4sm, and 6sn constraints, for arbitrary k, m, and n.  We demonstrate in Section IV that there 

exists an assignment configuration satisfying the 2sm and 4sn requirements whose maximum 

integer is 1+ 2m + 6n.  Using the above method, we can then obtain a configuration which 

satisfies the 2sk, 4sm, and 6sm requirements, and its largest integer (substituting 1+2m+6n for L) 

will be 2k + 3*(1+2m+6n)-2 = 1+2k+6m+18n. 

A question we might have is whether this method produces efficient configurations, i.e., 

whether the maximum integer it obtains is close to the actual span.  While we have no proof with 

regards to its accuracy, we will suggest why it is an efficient method.  We use the method to 

move from the 2- layer interference to the 3- layer interference, but we could have used it to move 

from 1 layer to 2 layers.  So let’s use this method to generate an assignment configuration with 

Figure 9 



2sk and 4s1 constraints  (the constraints that we analyzed in Section III).  We begin by finding 

the span when the only constraint is the 2s1 constraint (i.e., that adjacent cells must have 

different channels).  This is clearly accomplished by the sequence 1,2,3 repeated in a central 

column, shifted down two in the adjacent column to the right, and shifted up two in the adjacent 

column to the left. 

If we use our method to construct a configuration with 2sk and 4s1 constraints, its 

maximum channel assignment (substituting L=3) would be 2k+3*3-2 = 2k+7.  This is what we 

proved to be the span for k>3.  Therefore our method generates a 2-layer interference from a 1-

layer interference efficiently.  It is reasonable that it generates 3- layers from 2 fairly efficiently. 

 It is possible to expand to even higher layers of interference using our model.  For 

example, in Figure 10, the striped dots are all between 9s and 6s of the gray cell.  A 3- layer 

interference assignment configuration on the lattice gray, dotted and striped cells can produce an 

assignment configuration on the whole grid, with constraints for 2s, 4s, 6s, and 9s. 

Figure 10 



Appendix 1: 

This context of this appendix is Section III in the paper.  Our constraints are that when two 

transmitters are within a distance of 2s, their channels must differ by at least k, and when they 

are within 4s, their channels must differ by at least 1.  We will prove that when k>3, the span 

must be at least 2k+7.  What follows is a lengthy sequence of claims and 

cases, which will lead us to this result.  Assume that a channel 

configuration exists whose maximum number is 2k+6.  We will make 

heavy use of Figure 11.  For specific cases, channel a will be assigned to 

the center of the first concentric in gray.  Other channels b through f will be 

assigned in the figure, and in each case a contradiction will be reached. 

 

Claim:  Consider the first concentric around a transmitter operating on channel a, where a is 

either 1,2,3.  In general, the 2s constraint limits the possible channels used in the first concentric 

to those contained in the set S(a) = {k+a … k+4, k+5, 2k, 2k+1, 2k+2, …, 2k+6}. 

We must show it impossible for elements of the form k+n, where either n<a or 5<n<k, to be 

assigned to the first concentric.  Clearly, if n<a, then |k+n – a| < |k+a-a| = |k| = k, which would 

violate the 2s constraint with respect to a.  If n>5, we must further examine the first concentric 

with d=k+n. 

For b and c to satisfy the 2s condition with a, they must be greater than k+a, while to satisfy the 

same condition with d=k+n, they must be less than n which is less than k, or else greater than 

2k+n which is greater than 2k+5 (since 5<n<k).  Since the span is 2k+6, there is only one 

number possibly satisfying all requirements, namely 2k+6.  Since b and c cannot both be 2k+6, 

(by the 4s constraint), no channel of the form k+n, where 5<n<k can be used in the first 

b 
d 

c 
a 

e 
g 

f 

Figure 11 



concentric.  Thus, the only allowed channels in the first concentric around a are in the set S(a) = 

{k+a, …, k+4, k+5, 2k, 2k+1, 2k+2, … 2k+6}. 

 

Case One:  Assume that some transmitter uses channel 3. Consider the first concentric around 

the transmitter using a=3.  The channels which can be used in the remaining cells of the first 

concentric must be contained in the set S(3). 

We see that 2k+2 and 2k+3 can also not be used in this first concentric by the following 

reasoning, with a=3 and d=2k+2 or 2k+3 in Figure 11. 

 

Since a=3, both b and c are at least k+3.  If d= 2k+2, then b and c must be at most k+2 or at least 

3k+2.  Since k > 3, we have that 3k+2>2k+5, so there is only one such channel possible, namely 

2k+6.  Since both b and c cannot both be 2k+6, the first concentric must not contain 2k+2. If 

d=2k+3, the constraint on b and c from a=3 is again b and c >= k+3.  The constraints from 

d=2k+3 entail that b and c must be at most k+3 or at least 3k+3.  Since k > 3, we have that 

3k+3>2k+6, and there is only one possible channel, k+3.  Again, since b and c cannot be the 

same, we reach a contradiction, and so the first concentric cannot contain 2k+2 or 2k+3. 

The set of possible channels in the first concentric is now reduced to S(3) = {k+3, k+4, 

k+5, 2k, 2k+1, 2k+4, 2k+5, 2k+6}.  

  

SubCase 1: Assume k=4.  If k=4,then 2k = k +4 and 2k + 1 = k +5, so that there are only six 

distinct channels, k+2, k+4,k+5,2k+4,2k+5,2k+6, which all must be used in the first concentric.  

Let d=k+5 in Figure 11 (a is still 3), and we see that b and c can only be 2k+5 and 2k+6.  

Without loss of generality, b=2k+5 and c=2k+6.  If we trace the implications of this further, we 



notice that e and f are constrained to be distinct channel numbers of five or less, and the refore g 

is constrained to be greater than 2k+4.  However, since 2k+5 and 2k+6 are both within 4s of the 

cell with g and then the cell and we are assuming that 2k+6 is the highest channel, there is no 

possible assignment for g.  This contradiction implies that a constraint-satisfying first concentric 

cannot be formed around three when k=4. 

 

Subcase 2:  Assume that k>4.  We reexamine the set of possible channels in the first concentric, 

S(3) = {k+3, k+4, k+5, 2k, 2k+1, 2k+4, 2k+5, 2k+6}.  If d=2k+1, then b and c are constrained 

by a=3 and d=2k+1 so that they must each be greater than 2k+1+k, of which there is only one 

possibility, 2k+6.  Since b and c cannot both be 2k+6, 2k+1 may not be used in the first 

concentric.  If we examine the case where the a=3 and d=2k, we find that the implications are the 

same as those we encountered in Subcase I, and lead similarly to a contradiction that no number 

can be assigned to g.  We have now shown that neither 2k nor 2k+1 can be in the first concentric. 

 We are left with the set S = {k+3, k+4, k+5, 2k+4, 2k+5, 2k+6} out of which we must 

construct the first concentric.  Since there are six elements, we must use all of them in the 

concentric, and it is clear that if d= k+5, then b and c must be 2k+5 and 2k+6, producing the now 

familiar contradiction at g (see Subcase 1).  This implies that k+5 cannot be used in the first 

concentric, a contradiction, so for k>4 one cannot construct a constraint-satisfying first 

concentric around channel 3. 

 

Thus, channel 3 cannot be used in the grid.  In addition, we show in Section III of the paper that 

flipping the channel assignment m to assignment (2k+7)–m also produces a correct assignment.  



Therefore if 2k+4 were in the assignment, then flipping produces an assignment with (2k+7)-

(2k+4)=3, which cannot occur.  Therefore, channel 2k+4 is not used in the grid. 

 

Case Two: Now, assume that some transmitter uses channel 2. Consider the first concentric 

around the transmitter using a=2.  The channels which can be used in the remaining cells of the 

first concentric must be contained in the set S = {k+2, k+3, k+4, k+5, 2k, 2k+1, 2k+2, 2k+3, 

2k+5, 2k+6}  (noting that we removed 2k+4 because of the final result in Case One). Using the 

same types of logic constraints we can show the following (starting with a=2).  If d=2k+2, then 

without loss of generality b=2k+6 and c=k+2, so f=1, and this implies g=k+1, and now there is no 

possible assignment for e.  If d=2k+3, then without loss of generality b=k+3 and c=k+2, so f=1, 

and so e=3, and there is no possible assignment for g.  Since each leads to a contradiction, 

neither 2k+2 nor 2k+3 can be in the first concentric around 2. 

 

Subcase One:  Assume that k = 4.  If k =4, then 2k = k+4 and 2k + 1= k+5, and there are only six 

viable channels left for the first concentric, k+2, k+3, k+4, k+5, 2k+5, 2k+6.  We notice 

immediately that these six cannot be used in the first concentric without two of k+2, k+3, k+4, 

k+5, being adjacent to one another, which is not possible, so no constraint-satisfying first 

concentric can be formed. 

 

Subcase Two : Assume that k = 5.  If k =5, then 2k = k+5, and the possibilities for the first 

concentric are {k+2, k+3, k+4, k+5, 2k+1, 2k+5, 2k+6}.  Only 2k+6 is five channels away from 

2k+1 (and 2k+1 must have 2 neighbors in the ring), so 2k+1 is not usable.  There are then only 



six viable channels left for the first concentric, k+2, k+3, k+4, k+5, 2k+5, 2k+6, just as in 

Subcase One, so that it is again impossible to form a first concentric. 

Subcase Three:  Assume that k >5.  The possible channels for the first concentric are {k+2, k+3, 

k+4, k+5, 2k, 2k+1, 2k+5, 2k+6}.  Only 2k+6 could be k channels away from 2k, so 2k cannot 

be in the first concentric, and there are no usable channels k away from 2k+1, so it too is 

unusable in the first concentric.  We are left with the same final six channels as in Subcases One 

and Two, so that no first concentric is possible. 

 

We have thus demonstrated that for all k>4, channel 2 cannot be used.  Again, by flipping 

channel assignments as in Case 1 and in Section III of the paper, we can equally say that channel 

(2k+7)-2=2k+5 is also not usable. 

 

Case Three: Assume that some transmitter uses channel 1. Consider the first concentric around 

the transmitter using 1.  The channels which can be used in the remaining cells of the first 

concentric are S = {k+1,k+2, k+3, k+4, k+5, 2k, 2k+1, 2k+2, 2k+3, 2k+6}, since we have 

shown that 2k+4 and 2k+5 cannot be used in the channel assignments.  Following standard 

reasoning, suppose d=2k+2 (with a=1).   Then b and c are one of {2k+6,k+1,k+2}.  WOLOG, 

b=k+1 or k+2, and e might be 2 or 2k+6.  If e=2 and c=2k+6, f might be k+1 or k+2, but g 

couldn’t be anything.  If e=2 and c=k+1 or k+2, then f might be 2k+6, but then g couldn’t be 

anything.  If e=2k+6, then c=k+1 or k+2, f=2, and g can’t be anything.  Therefore 2k+2 cannot be 

in the first concentric.  If d=2k+3, then WOLOG b=k+2 and c=k+1, and so e=2, and there is no 

possible assignment for f.  Therefore neither 2k+2 nor 2k+3 can be in the first concentric. 

 



Since 2k+2 and 2k+3 are not usable channels in the first concentric, the set of possible channels 

is reduced to S = {k+1,k+2, k+3, k+4, k+5, 2k, 2k+1, 2k+6}.  We examine three subcases. 

 

Subcase One:  Let k = 4.  If k = 4, then 2k = k+4 and 2k+1 = k+5, so that there are only six 

distinct channels, k+1, k+2, k+3, k+4, k+5, 2k+6.  Since four of these, k+1, k+2, k+3, k+4, are 

all within k of one another, one cannot form the first concentric around channel 1 without 

violating the 2s constraint. 

 

Subcase Two:  Let k = 5. Then if d=2k = k+5 is in the first concentric, its only possible neighbor 

from the set S is 2k+6, which is impossible.  If d=2k+1, then WOLOG b=k+1 and c=2k+6, and 

there is no possible assignment for f. Therefore there are only six possible channels for the first 

concentric, k+1, k+2, k+3, k+4, k+5, 2k+6, which is the exact set which we found in Subcase 

One, so that again, we find that is impossible to form a constraint-satisfying first concentric. 

 

Subcase Three:  Let k > 5.  If k > 5, then for both d=2k and d=2k+1, there are not assignments 

for b and c which are distinct and differ from d by k or greater.  This leaves only six distinct 

channels, k+1, k+2, k+3, k+4, k+5, 2k+6, again the exact set in Subcases One and Two, so that 

again, we find that is impossible to form a constraint-satisfying first concentric. 

 

Thus, for all k > 4, it is impossible to form a first concentric using channel 1 as its center, which 

implies that 1 is not used at all in the network constructed with a span of 2k+6.  However, this is 

itself a contradiction.  As we discussed in the Section III, if 1 is not used, we can shift all of the 



channel assignments down the same amount until channel 1 is used.  All of this implies that, for 

arbitrary k > 4, 2k+6 is not the span of the network. 

 

This concludes our proof that the minimum span is 2k+7. 

 



Appendix II 

 

 In Section I, we used fairly simple arguments to disprove all spans less than nine given 

the 4s and 2s constraints.  Yet, because a span of nine satisfies both of these constraints in the 

first concentric in a variety of ways, new strategies must be formulated if we are to disprove a 

span of 9.  This Appendix constitutes an inductive proof that the most basic constraints are met 

by one and only one pattern with a span of 9. 

Since a span of 9 can satisfy both constraints within the first concentric, we consider all 

cells in the immediate proximity of the first concentric.  Doing so gives us the second concentric, 

which is effectively the first concentric surrounded by a ring of 12 cells.  All of the cells within 

the first concentric are within 4s of the central cell, but not necessarily within 4s of each other.   

In order to determine whether a span of 9 satisfies the constraints within the second 

concentric, one must consider all of the cases for which the 9 channels can be assigned to the 

first concentric that satisfy all constraints. We will look at the central cell, n, being the integers 2 

through 8.  The placement of the 1’s and 9’s will be determined by the assignments of the other 

channels.   

For example, setting n=5, we find that there are six sequences of numbers that satisfy the 

first concentric when configured clockwise about the central cell:  

 

5A  5B  5C  5D  5E  5F 

7,2,9,3,8,1  7,2,8,3,9,1 8,2,7,2,9,1 8,2,9,3,7,1 9,2,7,3,8,1 9,2,8,3,7,1 

 

 Setting n=4, we find that there are also six such sequences: 



 

4A  4B  4C  4D  4E  4F 

1,6,8,2,9,7 1,7,9,2,6,8 8,2,6,9,7,1 8,2,7,9,6,1 7,2,9,6,8,1 7,2,8,6,9,1 

 

 As proven in Section III, each case for n=4 is symmetric to a case for n=6, so that n=6 

need not be considered separately.  In fact, all cases for n=5-x share symmetry with those for 

n=5+x, so that we need only examine the cases n=2,3,4 and 5. Proceeding by this logic, we find 

that that there are six sequences that satisfy the first concentric for n=3: 

 

3A  3B  3C  3D  3E  3F 

1,6,8,5,9,7 1,8,5,7,9,6 1,7,9,6,8,5 1,9,6,8,5,7 1,5,7,9,6,8 1,7,5,9,6,8 

 

Setting n=2 or 8, however, we find that there are only two cases that satisfy the first 

concentric for each: 

2A  2B 

4,8,6,9,5,7 5,8,6,9,4,7 

 

Showing that no cases for any 2 values of n satisfy the constraints would prove that only 

7 channels can be used in the assignment. Since at least 8 of the 9 integers must be used in any 

first concentric, this would prove that a span of 9 is inadequate.  

Extending any of the channel assignment sequences given above to the second concentric 

reveals that the constraints caused by fixing values in the first concentric restricts the 

possibilities.  In most cases, it can be seen that an arrangement that satisfies all cons traints in the 



first concentric will violate constraints in the second concentric.  Proving that a given case can or 

cannot satisfy both constraints is an arduous process, so we do not show considerations for all 

twenty schemes shown above or the twenty other schemes that correspond by symmetry.  We 

will show two cases that exemplify the reasons that can cause a given channel assignment 

scheme to fail in the second concentric, so that the reader may evaluate our thought process.  For 

convenience, all of these examples have 5 as the central cell.   

The simplest of these is scheme 5A, which is depicted 

in Figure 12 at the center of a second concentric.  It is quite 

obvious that this scheme fails immediately, since no 

assignment can be made to the cell at the “l” cell using an 

integer less than 10.  This is because a 2, 4, 6 or 8 would 

violate the 2s constraint, while a 1,3,5,7 or 9 will violate the 4s 

constraint.  Clearly, this assignment scheme, which satisfies all 

constraints in the first concentric, fails miserably in the second concentric.  Many schemes fail 

for similar reasons or because assignments that must be made to adjacent cells in the second 

concentric impose similar restraints.  For example Scheme 5C, shown in Figure 13, fails for the 

same reasons, but by a much more complicated mechanism.  

If we begin by proceeding around the circle in a 

clockwise direction, beginning from  cell “a,” we realize 

that the following assignments are possible for each cell. 

 

a: 2,4,6,7 b: 4,6  c: 3,4  d: 3,4,6 

e: 3,4  f: 4,9  g: 4,6  h: 4,6 

i: 1,4  j: 1,6  k: 6,7  m: 6,7 
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At first glance, this arrangement appears to satisfy all constraints in the second 

concentric.  However, looking more carefully, we see that this is not true, and constraints are 

violated.  Since “e” must be either 3 or 4, clearly d can only be a 6.  This, in effect, causes a sort 

of logic cascade as we progress around the circle once more, beginning at cell “b,” which now 

must be 4, since it is within 4s of “d”, which must be six.   

 

d = 6 implies b = 4 implies c = 3 implies e = 4 implies f = 9 implies g = 6 implies h = 4 

implies i = 1 implies j = 6  

 

Finally, since j = 6 and i = 1, we find that there are no assignments of k that satisfy both 

constraints. 

 Clearly, evaluating each one of the schemes given in this section is most efficiently 

accomplished by an algorithm.  Such an algorithm would, by process of elimination, first 

determine whether or not there was a simple case of violation in the second concentric.  If there 

were no simple violations, one would then look at the outermost cells of the second concentric 

that share similar two possibilities and that are within 4s of each other.  Usually, this will lead to 

the kind of logic cascade shown in scheme 5B that will reveal flaws in the assignment scheme.  

Occasionally, no flaws will appear directly, but one will be left with three cells, each within 4s of 

the other with the same two possibilities between them.  Clearly, the scheme in this last case fails 

as well, because one needs an addition distinct integer to satisfy the constraints.  For similar, but 

more complex schemes, such as those discussed Sections III through V, where there are many 

schemes to consider, such an algorithm would be best executed by a computer. 



While most cases are eliminated as impossible, for n=2 or 8, we find that one of the two schemes 

for the first concentric satisfies all constraints in the first concentric.  Evaluating the cases for 

other numbers between 2 and 8 also reveals that every case but one fails for each value of n in 

the first concentric.  Specifically, these are schemes 2A, 3A, 4D and 5A.  

The beautiful thing about this collection of schemes taken together is that they can be 

superimposed upon one another in order to form the pattern given in Figure 1.  This larger 

scheme forces the placement of all of the channels from 1 through 9 in exactly one way (not 

counting reflections and rotations, of course).  From this, we can see that that a unique pattern 

emerges that satisfies all possibilities (shown in Section II). 

 

 

 


