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“Why are honeycombs hexagonal?” “Why did the HIV virus evolve its icosa-
hedral shape?” “How might the symmetry in a painting enhance its artistic
appeal?” Kristopher Tapp asks these questions in his preface, and assures
us that this book is a good place to start if we want to answer them; un-
derstanding symmetry groups and classifying possible symmetry types is a
“crucial prerequisite for addressing questions” such as these.

This book is designed for a Mathematics for Non-Majors style class: a
terminal course with no college-level prerequisites, which will attract students
from a broad variety of mathematical backgrounds and interest-levels. I have
not taught a course of this style, but I have enjoyed teaching a First Year
Seminar similarly dedicated to symmetry. We read about symmetry in the
artistic and natural worlds, we learn a little group theory, and I promise them
that the mathematics will provide insights into questions like the ones Tapp
asks in the preface.

By the end of the semester, I am crossing my fingers that the students
have forgotten my promise. Sure, group theory plays a crucial role in un-
derstanding modern physics, but the math gets too hard too quickly for my
students, so we rely on metaphors rather than Lie Algebras. Sure, one can
classify designs from various cultures as one of the 17 wallpaper symme-
try groups (see [7]), but understanding how that should inform a discussion
on aesthetics is difficult. Sure, we discuss chirality and its importance in
molecules and biology, but the mathematics is no deeper than understanding
the difference between your left and right hands.

Upon reading Tapp’s preface, I was crossing my fingers that he had fixed
this hole in my class. It is an excellent book, and I recommend it for someone
teaching a non-majors course on symmetry, but it does fall short in this
respect. Let me first tell you about my favorite chapter in the book, which
1s successful at finding this synergy between the mathematics of symmetry
and the natural world.



1 The Contest

Tapp draws us into Chapter 9 with a story: “All the farmers in the land
competed in a contest to design the least-perimeter fence enclosing a given
area.” Drama! We will be proving the Isoperimetric Inequality, that the
circle should be the contest winner. “Farmer Don won! His fence not only
beat the other farmers’ fences but it also beat all possible other fences.”
(Relax! Tapp soon comes clean that there is a major plot hole here.) T'll
condense the rest of the proof:

Consider a vertical line dividing Don’s fenced-in area into two pieces, L
and R, of equal area. Now examine two possible contenders in the contest:
the first is L together with its mirror image L', and the second is R with
its mirror image R'. These enclose the same area as Don’s fence, and since
we are told that neither beat his fence by having a shorter length, they
must all be tied. Therefore we can assume that the prize winning fence
has a vertical symmetry. Furthermore, the fence must meet this reflection
axis perpendicularly: if it didn’t, either L U L' or R U R’ would have an
inward ‘“notch” at this axis, and we could modify the fence to make it shorter
while enclosing more area. Repeating the process with a horizontal mirror
gives a winning fence with the symmetry of a rectangle, including 180 degree
rotational symmetry. Now take any line through the center of rotation. The
rotational symmetry implies that the line divides the area in half. The same
mirroring trick then shows that the line must meet the fence at right angles.

Since this is true for any line through the center, the only shape the fence
could have is a circle. In order to avoid calculus, Tapp can only sketch a
proof of this: we imagine tracing the fence with a compass that we can open
or close as needed to stay on the fence. Opening or closing the compass,
however, yields obtuse or acute angles between the fence and the radial line,
so we must keep the compass rigid, and we end up drawing a perfect circle.
Tapp admits that a full proof of this would require calculus, but hopes this
sketch is convincing. I'm convinced, and I think the students will be too.

The logical structure of the proof is nontrivial; this is real math, and it’s
helping us answer a real question. Soap bubbles are spheres — why? Answer:
if they had less symmetry than a sphere does, we would be able to exploit
that asymmetry to build a better bubble.



2 Engaging with Mathematics

I believe that a primary goal of a non-majors class should be to engage the
students. That’s almost an empty statement; it should be a goal of any
class to engage the students, as engagement is a prerequisite to learning, but
accomplishing this can be more challenging in a non-majors course. Some
students (alas) will not be excited about math for its own sake, but ideas
like the fence contest provide a hook: we see that mathematics helps us
understand interesting things, and hopefully we transition to realizing that
the mathematics itself is interesting.

It also helps that Tapp’s enthusiasm bleeds from the page; while I have
never met him and don’t know what he sounds like, I can hear the excitement
in his voice as the story captures me. What I find most admirable is how
rigorous Tapp makes the proof, while keeping it engaging, a task which could
be difficult given the intended audience. When there are important holes in
an argument, Tapp admits it, as he does here when he confesses that the
hardest part of the proof may be to show that there exists a winning fence
at all.

As important as engaging the students is, we want them engaged in the
right thing. What is that? In my First Year Seminar, I have the luxury
of the right thing being pretty much anything that gets them thinking crit-
ically. For example, we discuss E.H. Gombrich’s The Sense of Order [4],
which seeks to explain the aesthetics of repetitive symmetry patterns using
the psychology of perception. There is little mathematics here, which is ac-
ceptable for my class, but unacceptable for a Math for Non-Majors course;
students should be engaged in mathematics, indeed interesting mathematics.
This fence contest chapter does that perfectly. We assume that something is
minimal and explore the implications. We learn things that are true without
loss of generality (that Farmer Don’s winning fence has rectangular symme-
try). We prove by contradiction that the fence meets the radial lines at right
angles. We use local properties (that the compass can neither open nor close)
to prove global properties (the fence is a circle).

One more amendment to my desired outcome in this class: I want the
students actively engaged in interesting mathematics. I want students to see
mathematics as a process that they can participate in. Ironically, Tapp’s
proof is so lucid that it leaves little room for exploration, only admiration.
The exercises would be a good place for students to learn to explore, and there
are some good ones in this chapter. In general, I wish there were more (this



section has six short exercises, a mix of basic and challenging problems). In
particular, I'd like to see more in-depth, guided exercises that help students
understand the material and discover new ideas.

For example, Tapp has a good, basic question about a related optimiza-
tion problem: we want to figure out the shortest network of roads that can
connect four cities, situated at the vertices of a square; students must com-
pute total road lengths for an “X”, an “H”, and a “U” network. How about
an actual contest among the students? Start with only three points, on a
20 x 20 grid, and challenge students to connect them with as short a road
network as possible. Repeat with several different configurations. They will
discover for themselves an exciting and non-trivial fact: they should send
a road out from each point, and the three roads should meet at a center
point, making three 120 degree angles at the intersection. After students
have themselves discovered it for three points, the solution for four points
on a square (the network should be somewhere between an “H” and an“X”,
again with 120 degree angles all around) will be more motivated and inter-
esting. And now we'’re ready to talk about symmetry breaking: the solution
has less symmetry that the square, something Tapp had previously shown
the reader with soap bubbles.

3 The Rest of the Book

I picked my favorite chapter to discuss in depth, which comes right after
the heart of the book, the first eight chapters that build up the theory of
symmetry groups. In these, we develop some basic groups: cyclic, dihedral,
translation, and permutation groups (including alternating groups). We learn
about group isomorphisms and classify two-dimensional finite and wallpaper
groups. Finally, we classify three-dimensional finite groups, culminating in
understanding the symmetry groups of the Platonic solids.

This book doesn’t shy away from challenging proofs and concepts. It is
amazing to think how much students will have learned by the time they, for
example, can conceptualize the rotational symmetry group of the cube as
the permutation group acting on the four diagonals. Any time a proof can
be explained reasonably, it is (lucidly!). This includes many mathematically
interesting ideas, like using conjugation to understand why two congruent
shapes have isomorphic symmetry groups. Any time a proof has been left
out, I've looked one up and realized that it either involves too many new



concepts (showing that all permutations are either even or odd) or is too
tedious (classifying all wallpaper groups).

Chapters 10 and 11 introduce the real and rational numbers, leading up to
proving the uncountability of the reals. This is certainly beautiful material.
It is not, however, particularly tied to symmetry. If you want to cover this
material in your class, it is as well-presented as the rest of the book. If you
don’t want to cover it, you're in a bit of a bind: the book is fairly short, so
there isn’t much room to pick and choose in a semester course.

In the early chapters, Tapp admits that for a truly rigorous understanding
of symmetries and rigid motions, we’ll need to understand matrices. He
holds off until Chapter 12 to teach us this material. I'm surprised by the
delay; most students will have previously been exposed to matrices, trig, and
Euclidean space, and it seems like this material could be integrated into the
first half of the book.

4 Other Books

I have seen a couple other excellent books that could be used in a non-
majors course on symmetry. The first is Groups and Symmetry: A Guide to
Discovering Mathematics, by David Farmer [3]. The text of this book expects
less of the reader than Tapp’s; there are not as many hard theorems, concepts,
and proofs. It does discuss cyclic, dihedral, and permutation groups, but it
leaves out isomorphisms and three-dimensional groups. The exercises of this
book, on the other hand, expect more of the reader than Tapp’s book. In
fact, this book is really built on the exercises, which are interspersed among
definitions and discussion.

Here is an example of a challenging exercise in Farmer’s book: After seeing
many examples of symmetries of a horizontal, one-dimensional strip, students
are led through a classification of all possible symmetry types. Previously in
the chapter, the key fundamental symmetries (horizontal /vertical reflections,
180 degree rotation, and glide reflection) have been seen, and six of the seven
possible symmetry types have been shown — I think ... this is not easy stuff
to check! Students are guided to do two things simultaneously: list all of
the strip patterns they can, together with their fundamental symmetries,
and list rules for what combinations of fundamental symmetries are allowed
(a strip with a horizontal reflection always has a glide reflection; a strip
with horizontal and vertical reflections always has a 180 degree rotation).



Once these two lists are complete, we will see that we've come up with all
possibilities.

Clearly this is a hard problem. I expect it would take the entire class,
working together and with instructor guidance, to get it. But that’s part of
the point, seeing mathematics as a process of discovery, conjecturing, and
testing. There is also less rigor here than in Tapp’s book; for example, the
hardest thing to check is what has been swept under the rug: two strips
with, say, only glide reflections and vertical reflections must have the same
symmetry “type”. What “type” even means is left unsaid in Farmer’s book,
but it is explicit in Tapp’s: exactly the same Euclidean symmetry group after
translation and rescaling. I am willing to give up a little rigor for the joy of
discovery; my ideal textbook lies between Tapp’s and Farmer’s.

Another interesting book is Symmetry, Shape, and Space: An Introduc-
tion to Mathematics Through Geometry, by Kinsey and Moore [5]. This book
expects less of the reader in both the text and the exercises. In contrast to
Tapp’s and Farmer’s, this one is long, containing way more than enough
material for a semester. It covers symmetry in two and three dimensions,
adding chapters on tessellations and spirals that the other books lack. It
surveys many other topics, as well: constructions, curvature, graph theory,
and topology. It does not include any group theory, and generally is light
on theorems and proofs. It does, however, contain many great exercises, in-
tegrated into the sections, most with a geometric and hands-on emphasis.
This is a fun book that will engage students; depending on the student, it
may not push them enough.

And T have to mention The Symmetries of Things, by Conway, Burgiel,
and Goodman-Strauss [1]. This book is too challenging for a non-majors
course, but beautifully illustrated and written. Send students to it who want
enrichment beyond what the other books can offer, and read it yourself!

5 Conclusion

The Fence Contest was my favorite part of Tapp’s book. Interesting and
approachable mathematics of symmetry is used to prove something insightful
about the world. Not only does this context help draw the student in to
engage actively in the mathematics, but it helps them leave the course feeling
that the mathematical reasoning they have learned is important in their life.
There aren’t many more results like that in the book; the next best example



that I can think of is a proof that there are too many dimples on a golf ball
for them to be spaced out symmetrically.

This is unfortunate, I think. As Lynn Steen states [6, p:47] in his book
reviewing recent trends in quantitative literacy at the college level, “Almost
without exception, everyone who engages the issue of quantitative literacy
concludes that ‘in context’ is one of its defining features.” One of our goals
in a non-majors class is to help students reason formally and carefully, in the
hopes that they will be able to think more critically in their everyday lives.
We want students to be able to apply these reasoning skills in unfamiliar
contexts, which suggests we need to teach these skills in context, in the first
place. Otherwise, we risk them remembering symmetry groups as a fun game
they played, one time in college. “For students, context creates meaning” |6,
p:24].

I can’t fault Tapp’s book for this deficiency, because I have also failed
in finding similar material for my First Year Seminar on symmetry. If I
were teaching a non-majors class on symmetry groups, I would use this book
(supplemented by exercises from Farmer’s). I'm not sure that I want to teach
that class though. I love the abstractness of group theory. Will my students?
Maybe I'm selling them short, but there are books on other subjects that
inculcate mathematical reasoning just as well, while remaining more closely
tied to the real world. A textbook of the sort that I am excited about right
now is Networks, Crowds, and Markets: Reasoning about a Highly Connected
World, by Easley and Kleinberg [2], which uses graph theory to understand
social networks. That is a class I would prefer to teach.

Tapp’s pitch-perfect voice manages to be engaging on a page-by-page ba-
sis, which is tremendously important. I think the hope is that the inherent
concreteness of geometry — building dodecahedra, drawing a wallpaper pat-
tern, cutting out a triangle and flipping it over — will provide the necessary
broad engagement in the material. In the end, the instructor’s enthusiasm is
crucial; I'm sure Tapp’s excitement, so evident on the page, is equally intense
when he teaches the class, and if you are excited by teaching this material,
this book is a great choice.

I've yet to mention the first thing you will notice when you open the
book: the appearance. The font is large, the margins are small, and there
is colored text and graphics everywhere. Initially this was off-putting to me,
because it is different from almost any other math textbook. And I suspect
that tension is the rationale for the choice; it communicates to the student
that this is unlike the math textbooks they had in high school. Certainly, I
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quickly grew accustomed to it.

In conclusion, this is a textbook that doesn’t pull its punches. It is

challenging and rigorous, while being approachable. It would be a perfect
independent study for a young student who is excited about and somewhat
adept at math. It could be a great choice as a text for a class, as long as the
instructor is willing to work hard at helping the students get many of the
abstract details and is willing to supplement the exercises with their own.
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