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been discussing, really provides the best and most comprehensive
picture of the physical world. In any case, it seems safe to say that
the problem of ‘“‘determinism in Nature” is no longer considered to
be a settled matter, as it was before the invention of quantum me-
chanics, and indeed, it will probably remain in an unresolved state
for some time to come.

45 MOTION OF A PARTICLE IN ONE DIMENSION

The foregoing development of the theory of quantum mechanics
has been carried out in terms of general observables associated with
a general one-dimensional system. We wish now to apply these re-
sults to the specific system of a mass m moving along the x-axis in a
potential field V(x)—a system which we discussed from the stand-
point of classical mechanics in Chapter 3. Experiments tell us that
our classical treatment of this system is entirely adequate for a “tan-
gible” particle moving over ‘‘visible” distances. However, experi-
ments also tell us that our classical description is not universally valid;
it fails, for example, to correctly describe the behavior of an electron
(mass >~ 10™ %7 gram) on a scale of the order of an atomic diameter
(distance= 10~ ® centimeter). Now, we can expect that the quantum
treatment of such a system will be valid in both cases; thus we expect
that, on the one hand, the quantum description will reduce to the
classical description in the macroscopic limit, and on the other hand
that it will account for such nonclassical phenomena as quantized
observables and the wave-particle duality in the microscopic limit.

In Sec. 4-ba we shall define and discuss the relevant observable
operators for a mass m moving on the x-axis in a potential field
V(x). In Sec. 4-5b we shall indicate how these operators lead to a dual-
istic ‘““wave-particle” behavior. In Sec. 4-5¢ we shall discuss the way in
which the classical description appears .as a limiting case of the
quantum description. Finally, in Sec. 4-5d we shall work out a simple
“gquantum mechanics problem” which is typical of those considered
in virtually all texts and courses on elementary quantum mechanics.

4-5a Formation of the Observable Operators
The Schrodinger Equations and the Position Probability

In classical mechanics, the system consisting of a particle moving
along the x-axis has two basic observables—namely, the “position™
x and the “momentum’ p. Many other observables can be expressed



86 The Theory of Quantum Mechanics

as functions of position and momentum; for example, the observables
“velocity” and ‘“‘energy” are given respectively by the functions
v =p/m and E = p?/2m + V(x). Now in quantum mechanics the
situation is very much the same: position and momentum are still
valid observables, as are also most well-behaved functions of position
and momentum. Our last postulate stipulates how we are to form
the appropriate operators to represent these observables.

Postulate 6. For a particle confined to the x-axis, the observ-
ables “‘position” and “momentum’ are represented respectively
by the operators

X=x (4-46)
and
P=-ih— (4-47)

Moreover, any observable which in classical mechanics is some
well-behaved function of position and momentum, f(x,p), i
represented in quantum mechanics by the operator f(X,P):

Q= f(x,p) implies A =f(XP)= f<x, ih £C> (4-48)

According to Egs. (4-46) and (4-47), the position operator X
and the momentum operator P are the operators which transform any
given function ¢(x) into the respective functions

[Xo(x)] = x - o(x)
and

do(x)
dx

[Po(x)] =-ih-

Probably the most important application of the rule (4-48) is the
formation of the “energy” or Hamiltonian operator H. Since the
energy in classical mechanics is given by Eq. (3-6b) [see also Eq.
(3-8)], then according to Postulate 6 we have

T = L D2 3
H = om P? + V(X) (4-49a)

or

. hz d2
= = e o "
H D ol Vi(x) (4-49Db)
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That is, the energy operator H transforms any given function ¢(x)
into the function

h? > o(x)
om  dx?

[Ho(x)] = + V(x)o(x)

The position, momentum and energy are not the only observ-
ables which the system under consideration might have in quantum
mechanics. There may be several other observables, some of them
having no analogues in classical mechanics, which characterize cer-
tain other attributes of the system. However, we shall confine our
discussion here to a description of the system solely in terms of the
three observables defined above.

Before examining some of the immediate consequences of the
foregoing expressions for X, P and H, it is well to make certain that
these three operators are Hermitian, as required by Postulate 2. We
recall that A is said to be an Hermitian operator if and only if
(¢1,A0,) = (Ag, ,) for any two H-vectors ¢, (x) and ¢, (x). It will
be left as an exercise for the reader to show that the position operator
in Eq. (4-46) satisfies this requirement [see Exercise 49]. To show
that the momentum operator in Eq. (4-47) is Hermitian, we proceed
as follows: Using the definition of the inner product in Eq. (2-32),
we have for any two J(-vectors ¢, (x) and ¢, (x)

doy
(91 ,P¢2) = f ¢1 (x) [Pd)z (x)]dx = f ¢1 (x) [ ¢x(x)]

=% L oF ()d [ (%)]

Integrating by parts, we obtain

A f_m 92 (x)d[qsi"(x)]}

Now, the first term on the right vanishes for the following reason:
We proved in Sec. 2-3 that the inner product of any two ¥ -vectors
¢, (x) and ¢, (x) exists in the sense that

(¢1,Pp,) =-ih {¢>f(x)¢2 (x) y

l(¢l ’¢2 )l =

L oF (%), (x)dx | <
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But this can be true only if both the real and imaginary parts of the
integrand, ¢7(x)¢, (x), approach zero as x— oo, Thus, the first term
on the right in the previous equation vanishes, and we are left with

* o *
@ bo)=in [ a0 | D) [ 222", ) a

e e
3 f_a, ["'h —¢dix)] Ppllan s L [Pg, (x)] *¢2 (x) dx

SO

(¢4 ,13¢2 Y= (13¢1 $2)
which proves that P is indeed an Hermitian operator.

Exercise 49. .
(a) Prove that the position operator X, as defined by Eq. (4-46),
is an Hermitian operator.
(b) In the same way, show that if f(x) is any well-behaved real
function of x, then the operator f(X) is an Hermitian
operator.

Finally, to show that the energy operator H in Eq. (4-49) is
Hermitian, we can proceed most simply as follows: We first observe
from Eq. (4-49a) thgtﬂ is the sum of two operators, namely the kinetic
energy operator, P?/2m, and the potential energy operator, V(X).
The second operator is Hermitian in consequence of part (b) of the
preceding exercise; for the first operator, we note that since P is
Hermitian, then

1 - 1 A o 1 .. X
<¢1 ’ %PZ ¢2> = % (¢,,PPg,) = %‘(Pfi’l Pos)

o1 1 -
= %(Pp(ﬁl $2) = (;n P2¢1 ,¢2>

Therefore, we see that the kinetic energy operator and the potential
energy operator are each Hermitian; the Hermiticity of H then fol-
lows from the theorem proved in Exercise 16 that the sum of two
Hermitian operators is itself Hermitian.

We have now postulated the precise forms for the position
operator X the momentum operatorP and the energy or Hamiltonian
operator H, and we have demonstrated that these operators are
Hermitian as required by Postulate 2. Let us next examine some of
the important consequences of so representing these observables by
these operators. We consider first the energy operator H.
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It will be recalled that the operator H was crucially involved in
our statement of Postulate 5. Indeed, with Eq. (4-49b), we find that
Egs. (4-25) and (4-26) take the following respective forms:¥

h* d?
" om dx?
h? 22

2m x>

(x) + V(x)n,(x) = Epny(x) (4-50)

W (x,t) + V(X)W (x,t) = ihg—t\ll(x,t) (4-51)

These two equations are the celebrated Schrodinger equations of
quantum mechanics: Eq. (4-50) is called the time-independent
Schrodinger equation, and Eq. (4-51) is called the time-dependent
Schrodinger equation. We showed in Sec. 4-4c that if the solutions
{nn(x)} and {E,} to the first equation can be found, then a general
solution V¥ (x,t) to the second equation can be written down im-
mediately, provided ¥ (x,0) is given [see Eq. (4-42)]. However, it is
very important, from a logical standpoint, not to confuse these two
equations. The time-independent Schrodinger equation (4-50) is
the eigenvalue equation for the energy operator, whereas the time-
dependent Schrodinger equation (4-51) is the fundamental time-
evolution equation for the state vector. This very basic distinction
between the two Schrodinger equations should not become obscured
by the similarities in their appearances or by the close relationship
between their solutions.

In classical mechanics we know that the motion of a particle in
a potential field V(x) is unaltered if we add to V(x) any constant C
[see part (a) of Exercise 21]. It is not difficult to show that this is
also true in quantum mechanics: If V(x) is replaced by V'(x)=
V(x) + C, then it follows from Egs. (4-49) that the new Hamiltonian
operator will be

H=H+C
where H is the Hamiltonian fo; V(x). If {n,(x)} and {E,} are the
eigenvectors and eigenvalues of H, then clearly

H'n, (x) = Hn, (x) + Cnp(x) = Enny, (x) + Cnyp(x) = (B, +C)np (x)

from which we may conclude that the eigenvectors and eigenvalues

of H' are
N (%) =1, (x)
n=12,...

E,=E, +C

TIn Eq. (4-51) we have written “0”’ instead of ‘“d’’ to emphasize that the
x-differentiation of ¥ (x,t) is to be performed treating ¢ as a constant, while the
t-differentiation of w(x,t) is to be performed treating x as a constant. See
footnote, p. 37.
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Now with H' as the Hamiltonian, the system will evolve in time ¢
from any given initial state ¥, (x) to the state

Vi) = ) (0, W) ), (x) = 5 (m, o )e En Oy ()
n=1 n=1
Using Eq. (2-20c), this is just

‘I/;(X) = e—iCt/h Z (nn3\y0)e_mnt/h nn(x) T e_iCt/h \I,t(x)

n=1

where ¥;(x) is what the state vector would have been if the system’s
Hamiltonian operator were H instead of H'. The essential point here
is that W;(x) differs from ¥,(x) only by a scalar factor of square
modulus unity; thus, according to Postulate 1, ¥;(x) and W¥,(x)
correspond to the same physical state. We see then that, in both
classical mechanics and quantum mechanics, an additive constant C
in the potential function has no effect on the motion of the system.
In classical mechanics this is a consequence of the fact that C, con-
sidered as a function of x, has zero derivative; in quantum mechanics,
on the other hand, this is evidently a consequence of the fact that C,
considered as a Hilbert space operator, has all functions as eigenfunc-
tions with itself as eigenvalue.

The finding of those functions {n, (x)} and numbers {E, } which
render Eq. (4-50) an identity—i.e., the solving of the time-indepen-
dent Schrodinger equation—is of special importance. Not only does
this yield the physically important “‘energy levels’ of the system,
E,,E,, ..., but, as mentioned above, it also provides us with an ex-
plicit representation for the time-varying state vector through
Eq. (4-42) [or equivalently, Eqgs. (4-44) and (4-45)]. Now in order
to solve Eq. (4-50), it is clearly necessary to specify a definite form
for the potential function, V(x). But having done this, one is then
usually faced with a very formidable exercise in the application of the
methods and techniques of differential equation theory; indeed,
Eq. (4-50) has been solved exactly only for a very few simple forms
for V(x).

As an example of the kinds of results one can expect, we shall
simply exhibit, but not derive, the energy eigenvectors and eigen-
values for the case

Vix) = % kx? (> 0)

The reader will recognize this as the potential function for the “har-
monic oscillator’—i.e., for a particle experiencing a spring force
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F(x)=-dV/dx =-kx, where k is the spring stiffness. Now, in
classical mechanics, we know that a solution to Newton’s equation
(3-3a) for this force function leads to the conclusion that the particle
oscillates sinusoidally about the origin with frequency » = w /27,
where w is defined by

w =\k/m

Furthermore, if A is the ‘“amplitude” of these oscillations (i.e., the
maximum value of x), then the energy of the system is
1
E, = 5 RA? %mw 2A? (classical harmonic oscillator)
(4-52a)

Since A can have any nonnegative value, then according to Eq. (4-52a)
the energy of this system in classical mechanics can have any value
greater than or equal to zero. To examine this problem from the
standpoint of quantum mechanics, we must evidently solve the time-
independent Schrodinger equation, which in this case takes the form
h* d? kx?
T —2_)7-1 W nn(x) + 77711 (.‘)C) = Ennn(x)

In terms of the quantity « defined above, it is found after consider-
able mathematical labor that the eigenvalues are

E, = <n +%)hw n=0,1,2, ... (quantum harmonic oscillator)
(4-52Db)

and the corresponding eigenvectors are given by

7 2n-1 mw, 2 MW, 3
n (x)=—(_l)— (L) 4 o 2n d h
T YNmern Ve L

We shall not offer any comment here upon the expression for the
energy eigenvectors of the harmonic oscillator, except to note that
they turn out to be pure real, and also that they can be shown to
satisfy the requisite conditions of orthonormality and completeness
in Eqgs. (4-2). With regard to the energy -eigenvalues in Eq. (4-52b),
we see that, in contrast to the situation in classical mechanics, the
allowed energy values are discrete rather than continuous, with a
separation between the levels of hw = h\/k/m; moreover, the lowest
energy level is not zero, but 2w /2. It is also interesting to note that
these energy levels are very similar to those which were postulated by
Planck for the radiating oscillators inside a constant temperature
cavity [see Chapter 1].
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We shall explore the relation between Eqgs. (4-52a) and (4-52b)
when we discuss the connection between classical and quantum
mechanics in Sec. 4-5c. In Sec. 4-5d we shall examine more closely
the details of solving the time-independent Schrodinger equation—but
for a potential function V(x) which is even simpler than that for the
harmonic oscillator. For now, we turn to a consideration of the
position and momentum eigenvalue equations.

The treatment of the eigenvalue equations for the position and
momentum operators presents problems of a rather peculiar nature.
Let x, denote an eigenvalue of X, and let 6, o(x) denote the corre-
sponding eigenvector; similarly, let p, and 6, (x) denote an eigenvalue
and eigenvector of P:

A xo(x) Xo xo(x)

PO, (x)=Dpob,, (x)

Substituting for X and P their specific forms, these eigenvalue equa-
tions read

X85y(%) = %08,,(%) (4-53)
. d _
—lhaﬁpo(x) =Pobp,(x) (4-54)

Exercise 50.

(a) Show from Eq. (4-53) that the function 6, (x) must have
the property that 6, (x) =0 for any x# x,, but that
8xo(%0) can have any value. [Hint: Write Eq. (4-53) as
(% - %00 (%) = 0.]

(b) Show that the function

0 po(x) = ePox/" (4-55)

satisfies Eq. (4-54). [Hint: Recall Exercise 7 and Eq. (2-20e).]

Now, it is obvious from Eq. (4-53) that any value for x, is as
good as any other value; similarly, we see from Eq. (4-55) that p, also
may have any value. Therefore, the eigenvalues of X and P are
continuously distributed over the entire real axis:

=TI s (4-56)
-0 I pg < too

This is an easily obtained, if not particularly exciting, conclusion
about the eigenvalues of X and P; however, we run into difficulties
when we come to consider the corresponding eigenvectors.
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With regard to the eigenvector 6, (x), we found in part (a) of
Exercise 50 that this function must vanish everywhere except at
x =X, and there it can have any value. Now such a function would
normally give zero when computing an expansion coefficient of the
kind in Eq. (4-6Db).

(axo,wt>=f 5% (1), (x) da

Indeed, the only way we can avoid the unacceptable conclusion that
all these expansion coefficients vanish, is to make 6 (x,) infinite in
such a way that its product with the infinitesimal dx, 6,  (x) dx, is a
finite number. A rigorous treatment of this highly unusual function
lies beyond the scope of this book, and in fact even transcends the
scope of ordinary calculus. The function &, (x) is usually written
8(x - %), and is called by physicists the Dirac delta function
(although it is not really a ‘“function” in the strict mathematical
sense). We shall discuss some of the properties of § (x - x, ), as well
as some of the important consequences of these properties, in
Sec. 4-6b.

At first glance, it might seem that the momentum eigenvectors
0p,(x) in Eq. (4-55) are free from any difficulties; however, this is
not so. When we compute the norm of 6, (x), we find by virtue of
Eq. (2-20d) that

(0pgr0p,) = J:: 10, (x) 2 dx=f

— oo

o

Ieipox/h IZ dx = J‘ 1-dx =

That is, there is no way in which the functions 6, (x) can be nor-
malized to unity, as required by Postulates 1 and 2.

The difficulties that we are witnessing with regard to the eigen-
vectors of the position and momentum operators can ultimately be
traced to the fact that these operators have continuously distributed
eigenvalues [see Eq. (4-56)]. It was precisely to avoid these difficul-
ties that we restricted our discussion in the previous sections to
operators with discretely distributed eigenvalues. In order to circum-
vent these difficulties, it is necessary to modify the definitions of
orthonormality and completeness, as these terms apply to eigenbasis
vectors associated with continuously distributed eigenvalues. We
shall discuss these modifications briefly in Sec. 4-6b; for now, though,
all we shall need to know is the following: The position eigenvector
8x,(x), which corresponds to the eigenvalue x,, is zero everywhere
except at x =x,, at which point it has an “infinite spike’’; the
momentum eigenvector 0, (x), which corresponds to the eigenvalue
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Do, 1s, apart from some “normalization constant,” equal to
exp (ipox/h).

Despite the above difficulties with the eigenvectors of the
position and momentum operators, it is possible to calculate the
expectation values of these observables in a very straightforward
manner, by means of the formula in Eq. (4-16):

Exercise 51. Using Eq. (4-16), show that the expectation values of
position and momentum in the state ¥ (x,t) are

(X, = f x| (x,t)|? dx (4-57a)

Py, =- zhf W (x t)“'(x 1) (4-58a)

Moreover, the uncertainties in position and momentum in the
state ¥ (x,tf) may be calqulated frgm Eq. (4-14) if we compute, in
addition, the quantities (X? ), and (P?),:

Exercise 52. Show that

(X2, = f x? W (x,t)? dx (4-57b)

(B2, =h? f

[Hmt For (P2)t, use the fact that, since P is Hermitian, then
(\Ij ts ) T (P\IJ t’P\Ijt) ]

In particular, Eqgs. (4-57) can easily be generalized: If f(x) is any
well-behaved, real function of x, then according to Postulate 6, f(x)
is an observable with operator f(X) = f(x). The expectation value of
this observable in the state ¥ (x,t) is, according to Eq. (4-17),

(4-58b)

aq:(x,t)rdx

(FXPe = (Vi f(X)Yy) = L WH(x,t) [F(x)¥ (x,8)] dx
or

(FXp, = j_w f o)W (x,0)]* dx (4-59a)

This last equation can be given a very interesting and useful
interpretation. We recall from Exercise 26 that, if f has a Taylor
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series expansion, then the operator f(A) has eigenvalues {f(A4,)},
where {A,} are the eigenvalues of A. Therefore, since X has eigen-
values {x} for all -oo < x < oo, then the operator f(X) has eigenvalues
{f(x)} for all -~ < x < o, Thus Eq. (4-59a) expresses (F(X), as a
sort of “weighted sum” of the possible f(X)-values. To bring this out
more explicitly, let us for the moment write Eq. (4-59a) as a discrete
sum: We partition the entire x-axis into subintervals Ax, ,Ax,, ...,
and we let x, denote an x-value inside the subinterval Ax; . Then if
we make the lengths of these subintervals infinitesimally small, we
may write by the very definition of the integral,

FRVe =) )W, Ax, (4-59b)
k
We now compare this with Eq. (2-8):

Fwp =) f(o)pw [2-8]
k

which gives the mean value of f(v) for a series of v}, -values distributed
with probabilities p,,. Equation (2-8) gives (f(v)) as a weighted sum
of the possible values f(v,), while Eq. (4-59b) gives (f(X)); as a
weighted sum of the possible values f(x;). Because f is an arbitrary
function, these considerations imply the correspondence

P «— l\l/(xk,t)lz Axy (4-60)

We note in particular that this correspondence is consistent with the
condition 2, p;, =1, since

Z |\I’(xk,t)|2 Axk = f |\Il(x,t)lz dx I (‘I/h‘llt) = 1
" —o0

Now Eq. (2-8) gives the mean value of f(v) because p,, is the prob-
ability that the particular value v, will be obtained in a random selec-
tion from the set of v-values; thus, the correspondence (4-60) implies
that |¥(x,t)I*Ax, is the probability that a value in the particular
interval Ax, will be obtained in a position measurement on the state
¥ (x,t). Returning to the integral expression for (f(X)); in Eq.
(4-569a), we conclude that:

|¥ (x,t)|? dx = the probability that a position measurement
on the state ¥ (x,t) will yield a value between
x and x + dx.
(4-61)
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It follows from this that the probability for a position measurement
on the state ¥ (x,t) to yield a value somewhere between x, and x, is

x2
P(xlyx2;t)=f I (x,8)|* dx (4-62)

*1

because this is just the “sum” of the probabilities for measuring a
value in any of the dx-intervals between x, and x, .

On account of Eq. (4-61), the quantity | ¥ (x,t)]? = ¥ F(x)¥ ,(x)
is called the position probability density function (the term “density”
is used because Eq. (4-61) implies that |¥(x,t)|* has units of prob-
ability per unit x). Although the state vector itself has no direct
physical significance, we see that its square modulus has a very deep
physical significance. This particular aspect of the state vector was
first recognized by Max Born, and is undoubtedly one of its most im-
portant and frequently used properties. However, it must be empha-
sized that Eq. (4-61) by no means exhausts all the physical implica-
tions of the state vector.

In order to understand fully the significance of the position
probability density function, we show in Fig. 4 a plot of |¥(x,t)|?
versus x for some hypothetical state ¥ (x,¢). If one were to make a
series of very many repeated measurements of the position on the
state W (x,t), and if the results were plotted as a frequency bar graph
over small, equal-size bins, then Eq. (4-61) implies that the shape of
this graph would follow the shape of the curve in Fig. 4, to within
random statistical fluctuations. Thus the curve in Fig. 4 is essentially
the same as the curve in Fig. 3, taking into account the fact that the
eigenvalues of X are continuously distributed over the entire real
axis. Since

f_ ¥ (2,0)17 dx = (¥, ,) = 1

then the area under the curve in Fig. 4 is unity.

Equation (4-62) implies that the area under the curve |¥(x,t)>
between x, and x,, shown shaded in Fig. 4, is equal to P(x,,x,;t),
the probability of finding the particle between x, and x,. We have
used the phrase “finding the particle’” in a special sense, and it is im-
portant that we understand precisely what we mean, and what we do
not mean, by it. According to our discussion in Sec. 4-3b, prior to
the position measurement we should not try to picture the particle as
“really” being either inside or outside the interval [x,,x, ], with the
position measurement ‘‘discovering” which of these two alternatives




4-5 Motion of a Particle in One Dimension 97

N’(x,t)lzﬂ

<§(\>t Xy X x

Fig. 4. A plot of the position probability density function I\If(x,t)l2 versus x for
a hypothetical state ¥ (x,t). The position expectation value and uncer-
tainty are indicated schematically. The total area under the curve is
unity, by virtue of the fact that (¥,,¥;) = 1; the shaded area under the
curve between x; and x, is numerically equal to P(x;,%2;t), the proba-
bility that a position measurement at time ¢ will yield a value between
x; and x,. We have drawn the curve as though l\I/(x,t)l2 were fairly
well localized in one region of the x-axis; however, it is important to
realize that the curve could very well consist of two or more widely sep-
arated humps. In such a case, AX; would be large, and (X); would not be
a particularly useful quantity:

is actually the case. For, if the state vector ¥ ,(x) does not coincide
with one of the position eigenvectors 6 , , (x)—as is obviously the case
in Fig. 4—then we may not speak of the particle as “having a posi-
tion” in the usual sense of this phrase. So when we say that
P(x,,x,;t) is “the probability of finding the particle somewhere
between x, and x,,” what we really mean is that P(x;,x,;t) is “the
probability that a position measurement on the state ¥ (x,t) will
develop a position value for the particle somewhere between x, and
x,.” It is all right to use the former phrase for brevity, provided we
keep in mind the latter, more explicit interpretation.

As time evolves, the state vector ¥,(x) changes, and the position
probability density curve in Fig. 4 will change its shape and position
in some more or less complicated way, subject to the condition that
the area under it remain equal to unity. In Sec. 4-5c we shall examine
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the behavior in time of <X),; for now, however, let us examine the
time variation of P(x,,x,;t). To this end, we first derive a formula
for the time-rate-of-change of P(x,,x,;t). We have from Eq. (4-62)

~dP(x X 't)—iszlll*(x )V (x,t)dx
dt 1.99%2y dt ’ ’

!

20 W
- [ e 2
e, at at

Using the time-dependent Schrodinger equation together with its
complex conjugate [note that V(x) is pure real],

LA N 0 %
ot 2m 9x?

+ VU *

it is not too difficult to eliminate the time derivatives in the above
equation to obtain

d ih [*2 R 02 Wk
il . =l * = _ <
di P(x, ,%,3t) 5 _[1 [q, 3z~ Y Py ]dx (4-63)

Exercise 563. Carry out the steps leading to Eq. (4-63).

The integral on the right-hand side of Eq. (4-63) can be explic-
itly evaluated by an integration-by-parts. Remembering that “0¥ /3 x”’
just means “dV¥ /dx with ¢ treated as a constant,” we have for the
first term in Eq. (4-63)

*2 52y J"‘z 9 [V *2 <a\p>
\I/* d = \I/*_ = d = %k =
f ax? dx <ax> i ‘[1 i ox

X1 X1

ov |*2 f’” ov
=y*k — = —d(¥*
0x ( )

0x

£ X1
SO

ekt ow |2 b *
AR iy 9 f L B
0x 0x e, 0x 0x

£ X1 1

A-similar expression holds for the second term in Eq. (4-63), except
that the roles of ¥ and W * are interchanged. When the expression
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for the second term is subtracted from that for the first term, the
integrals cancel, and we are left with

d ih v oWk | ¥2
= Pk — = =——cer
P(xlaxZat) m |: ax . ax xl]
Defining now the quantity S(x,t) by
in axp(x t) AW *(x, t)>
== *(x,t) ———— x,t) ——— 4-64
S <\If (5,0) - V() (4-64)
we obtain the final result
d
d—tP(xl,xz;t) =8(xy,t) - S(x3,t) (4-65)

In order to give a physical interpretation to this result, and in
particular to the quantity S(x,t), let us for the moment regard
Eq. (4-65) simply as a formula for the time-rate-of-change of the
shaded area in Fig. 4. Since the total area under the curve in Fig. 4
is always equal to unity, then any increase in the area inside [x,,x; ]
must be accompanied by an equal decrease in the area outside
[%,,x, ], and vice versa. Thus, it is reasonable to think of the change
in the shaded area in Fig. 4 as resulting from a “‘flow of area’ across
the two boundary lines at x, and x,. More specifically, suppose we
let R(x,t) denote the rate at which area is crossing the point x at
time ¢ in the positive x-direction, with the convention that an area
flow in the negative x-direction is specified by a negative value for
R(x,t). The quantity R(x,,t) + (-R(x,,t)) would then denote the
rate at which area is entering the interval [x,,x, ] at x, plus the rate
at which area is entering this interval at x, ; clearly, this is just the
net rate of increase of the area inside [x,,x, ], dP(x;,x,;t)/dt. We
now observe that Eq. (4-65) is precisely of this form; consequently,
we may interpret the quantity S(x,¢) as being the instantaneous rate
at which area or ‘‘position probability’ is crossing the point x in the
positive x-direction, with negative values for S(x,t) signifying a flow
of position probability in the negative x-direction. We call S(x,t) the
position probability current at the point x at time ¢.

With this interpretation of S(x,t), Eq. (4-65) is merely the state-
ment that the instantaneous rate of change of the probability for
finding the particle between x; and x,, is determined solely by the
instantaneous values of the position probability currents at x, and
X, ; if the current at x, is larger (smaller) than the current at x,, then
the probability of finding the particle between x;, and x, is increas-
ing (decreasing).
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Exercise 54.

(a) With the help of Eq. (2-13), show that the position proba-
bility current can also be written

S =2 tm (w20 2280 ) agey

which, incidently, shows that S(x,t) is pure real, as we
would expect.

(b) Suppose the potential function V(x) is such that the energy
eigenvectors {n,(x)} turn out to be pure real. For this
case, show that the position probability current vanishes
identically if the system is in a stationary state, ¥ ™) (x,t).

In most practical situations, the physicist deals with a large
number N of noninteracting particles, all subject to the same poten-
tial and all in the same state W (x,¢). In such a case, he often speaks
of there being N-P(x,,x,;t) particles inside the interval [x,%, ], and
N-S(x,t) particles per second crossing the point x in the positive
x-direction (or negative x-direction if S(x,t) < 0). Although these
statements are not literally correct within the framework of orthodox
quantum mechanics—for example, they would be meaningless for
N =1-no practical difficulty is encountered if one does not try to
single out specific ones of the particles as really being inside [x,,x, ],
or specific ones of the particles as really crossing the point x at time
t. But strictly speaking, |¥(x,t)|? is a position probability density,
not a particle density, and S(x,t) is a position probability current,
not a particle current. These considerations are illustrative of the
dramatic revision which quantum mechanics has effected with re-
spect to the familiar, classical concept of a “physical particle.” In
the next section we shall pursue this conceptual revision to what
might be called its logical extreme; in the section following that, we
shall show how quantum mechanics allows us to regain, in the macro-
scopic limit, our familiar classical description of a “‘particle” and its
dynamical behavior.

4-5b The Position-Momentum Uncertainty Relation
The Wave-Particle Duality

We shall now demonstrate that the postulates of quantum
mechanics imply that a particle moving along the x-axis can exhibit
the attributes of either a particle or a wave. In order to avoid confus-
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ing the “particle” of our system with the particle “property’ or
“attribute,” we shall adopt for our system an electron on the x-axis.

Suppose first that the state vector of the electron coincides
with one of the eigenvectors &, (x) of the position operator X.
According to our discussion in Sec. 4-3b, we may say in this case—
and only in this case—that the observable position ‘‘has the value x, ,”
or more simply that the electron ““is at the point x,.” Note that this
conclusion is entirely consistent with the spatially localized form of
the function &, (x): since this function has an infinite spike at
x = x, and vanishes everywhere else, then the position probability
density function |8x0(x)]2 clearly implies that a measurement of
position will necessarily find the electron at the point x =x,. Now
it must be emphasized that this property of “having a position” or
of “being spatially localized” is essentially the defining property of a
particle. And it is only when the state vector of the electron coin-
cides with one of these infinitely localized position eigenvectors
8, (x) that we can meaningfully assert that the electron ‘“has a
position’” and therefore ““is a particle.”

Suppose, on the other hand, that the state vector of the electron
coincides with one of the eigenvectors 6, (x) of the momentum
operator P. According to our discussion in Sec. 4-3b, we may say in
this case—and only in this case—that the observable momentum ‘‘has
the value p,,” or more simply that the electron ‘“is moving with
momentum p,.” Now, if we write down the explicit form of the
function 6, (x) in Eq. (4-55) [see Eq. (2-20a)],

i ol PoX . . | Pox
0p0(x) = ePox/h = COS[T] + i sin [_;z—]

we can see that this function is definitely not localized on the x-axis.
Instead, 0 ,,(x) is seen to have an infinite, periodic, spatial extension,
with fundamental period or ‘“‘wavelength”’

o = h/po (4-67)

Exercise 55. Show that 0, (x) is periodic in x with period Ny = h/p, .
[Hint: Prove that 6 , (x +Xo) = 0,,(x).]

Now the property of periodic spatial extension is essentially the
defining attribute of a wave, just as the property of sharp spatial local-
ization is the defining attribute of a particle. Therefore, when the
state vector of the electron coincides with the momentum eigen-
vector 0, (x)—i.e., when the electron has momentum p,—then the
electron is in a certain sense a wave, and can be said to ‘“have a wave-
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length” whose numerical value is given by Eq. (4-67). We note in
passing that this is essentially the same conclusion that physicists
were experimentally led to before the invention of quantum mechan-
ics [recall our discussion of Eq. (1-2)].F

We may summarize these results by saying that, when the state
vector of the electron coincides with an eigenvector of X, then the
electron has the attributes of (and therefore ‘“is’’) a particle; on the
other hand, when the state vector of the electron coincides with an
eigenvector of P, then the electron has the attributes of (and there-
fore ““is”’) a wave. The questions now arise, if the electron is in the
state 6, , (x), does it have any wave attributes, and if the electron is in
the state 0, (x), does it have any particle attributes? Logically, we
expect a negative answer to both questions, since the properties of
“sharp spatial localization” and ‘“‘periodic spatial extension” are
mutually exclusive properties.

To verify this conjecture, suppose first that the electron is in
the state ¥ ,(x) = 8 x,(x), and suppose we wish to calculate the expec-
tation value of the momentum. Following Eq. (4-58a), we write

2w T ds . (x)
(P, ih ‘[Dﬁfo(‘x)#dx

=(ds
=- ihf_j%d; (x)> (844 (x) - dix)

where we have used the fact that 8.4 (x) is real. Now, since 8, (x) =0
for all x # x,, the only contribution to the integral comes at x = x,;
here, the product 8, = dx is finite, but db ., /dx is undefined owing
to the radical discontinuity in 6o(x) at x =xo. Thus, (P), is essen-
tially undefined in the state ¥,(x) =04,(x). Let us suppose next
that the electron is in the state ¥,(x) = 0 p,(x), and suppose we wish
to calculate the position probability density function. According to
Eqgs. (4-61) and (2-20d), we have

[ ()I? = |04 (x)i2 = g0 2 =1

FIt should be pointed out that, although 0p0(x) is periodic in x, the cor-
responding position probability density function, |0p0(x ?2, is not periodic: as
we shall see shortly, the square modulus of 9p0(x) is simply a constant. How-
ever, the periodic nature of Gpo(x) can be rendered ‘“‘physically observable’’ by
causing a beam of electrons with momentum p, to interact with a suitable
apparatus, such as the crystal diffraction grating of the Davisson-Germer experi-
ment. An analysis of this “interaction,” which in itself is essentially a “measure-
ment’’ of momentum or wavelength, is too complicated for us to consider here.
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But this implies that a position measurement is equally likely to
yield any value for x.

These unusual conclusions may best be understood with the
help of the Compatibility Theorem and the Heisenberg Uncertainty
Principle. To this end, we first make the following simple calcula-
tion:

Exercise 56. Prove that the operators X and P, as defined in Postu-
late 6, satisfy the relation

XP - PX =in (4-68)

[Hint: Prove that, for any # -vector ¢(x), X[Po(x)] - P[Xo(x)] =
ih(x).]

So the position and momentum operators do not commute.

Therefore, the Compatibility Theorem tells us that position and

momentum are not ‘“‘compatible” or ‘“‘simultaneously measureable.”

Moreover, upon substituting Eq. (4-68) into the Heisenberg Uncer-
tainty Relation, we find

ST 5 B g
AX, - AP 2 3 (4-69)

Exercise 57. Derive Eq. (4-69).

The above inequality is known as the position-momentum un-
certainty relation; it is obviously very similar in form to the time-
energy uncertainty relation in Eq. (4-36), although it must be noted
that the quantity T, in Eq. (4-36) is not to be regarded as an un-
certainty in some sort of ‘“time operator.” According to Eq. (4-69),
the more precisely the position of the electron is defined (i.e., the
smaller AX, is), the less precisely the momentum of the electron is
defined (i.e., the larger AP, must be)—and vice versa. Indeed, if the
electron can be said to ‘“have a position” (i.e., if AX, =0), then it
cannot be said to ‘“have a momentum” (i.e., APt must be infinite)—
and of course vice versa. Therefore we see that, although quantum
mechanics allows an electron to possess ‘“‘particle” attributes and
“wave” attributes, it expressly forbids the electron from being a
particle and a wave simultaneously.

In light of these conclusions, we can understand the so-called
wave-particle duality of Nature by the following chain of reasoning:

If we measure the position of an electron, then regardless of the
state vector of the electron just prior to the measurement, immedi-
ately after the measurement it will coincide with one of the position
eigenvectors, 5, (x) [by Postulate 4]. We will then have AX =0 [by
Exercise 33], so that the position of the electron is well-defined and
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can be said to “have a value.” Evidently, the position measurement
has endowed the state vector of the electron with the property of
sharp spatial localization, so that the electron may truly be regarded
as a ‘“‘particle.”” However, the electron then has no wavelike attri-
butes: for since AX =0 then Eq. (4-69) requires that AP = e, which
means that the electron cannot be said to ‘“have a momentum or
wavelength.” Thus, the measurement of the observable “‘position”
has developed the particle nature of the electron, but it has at the
same time destroyed the wave nature of the electron.

Exercise 58. Rewrite the preceding paragraph, except start out with
the phrase, “If we measure the momentum or wavelength of an
electron, then . ..”

The wave-particle duality of Nature, when viewed from the
standpoint of classical mechanics, represented a genuine paradox;
however, it should be clear from our discussion here that this
phenomenon emerges as a very logical consequence of the basic
tenets of quantum mechanics. Historically, the duality was one of
the chief motivations for seeking an alternative to classical mechanics.
From a modern point of view, the existence in Nature of the wave-
particle duality provides strong evidence for the validity of the entire
quantum theory.

The real source of the wave-particle duality is evidently the
strict incompatibility of position and momentum. A full apprecia-
tion of this incompatibility is essential for a proper understanding of
many results in quantum mechanics. The following exercise provides
a case in point.

Exercise 59. Consider a particle of mass m in an harmonic oscillator

potential, V(x) = kx? /2= mw? x? /2.

(a) Suppose the particle is a classical particle with total energy
E. Show that a position measurement cannot find the
particle outside the interval - V2E/mw? < x <V 2E/mw?.
[Hint: Recall the discussion of Fig. 2.]

(b) Suppose the particle is a quantum particle with total energy
E,. Show that a position measurement can find the parti-
cle outside the interval - vV 2E, /mw? < x <V 2E, /mw?.
[Hint: Since the particle has total energy E,,, it must be in
the stationary state n,(x) exp (-iE,t/h), where n,(x) and
E, were written down for the harmonic oscillator in Sec.
4-5a. Show, without performing any detailed calculations,
that the position probability density function for this sta-
tionary state does not vanish identically outside the inter-
val in question.]
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The phenomenon described in part (b) of the above exercise is
not peculiar to the harmonic oscillator potential alone; it is found to
occur for nearly all potentials of a similar “concave-up’ shape. From
a classical point of view, however, this phenomenon seems quite
paradoxical: if the particle can be found at points where V(x) > E,
does not this imply the patently untenable conclusion that the ki-
netic energy is negative? To understand why this reasoning is falla-
cious from a quantum viewpoint, let us consider the five observables,
position, momentum, kinetic energy, potential energy, and total
energy. Of the five corresponding operators, X, P, P?/2m, V(X),
and P?/2m + V(X), straightforward calculations ut1hz1ng Eq. (4-68)
reveal that two and only two pairs commute; more specifically the
only commuting pairs of operators are P and P?/2m, and, for any
reasonable function V, X and V(X) [see Exercise 36]. It follows
from the Compatibility Theorem that momentum and kinetic energy
are compatible, as are also position and potential energy; however,
position and kinetic energy are not compatible, momentum and
potential energy are not compatible, and the total energy is not
compatible with any of the other observables.f To verify these
incompatibilities, we need only observe the great dissimilarities
among the position/potential energy eigenvectors {5, (x)}, the mo-
mentum/kinetic energy eigenvectors {0, 0(x)}, and, for the harmonic
oscillator, the total energy eigenvectors {n,(x)}. In view of these
incompatibilities we may evidently refute the classical objection, that
an harmonic oscillator would have to have a negative kinetic energy
if its position were such that its potential energy exceeded its total
energy, simply by observing that the oscillator cannot be said to
“have values” for all these variables simultaneously. If the oscillator
“has energy E, ,” it cannot sensibly be said to ‘“have values” of posi-
tion and kinetic energy, because 7,(x) is not an eigenvector of
either the position operator or the kinetic energy operator; more-
over, if the position is measured, the state vector will thereby be
forced into one of the position eigenvectors 6, (x), and it will then
be impossible to ascribe to the oscillator either a kinetic energy or a
total energy. Thus we see that, because of the fundamental incom-
patibility between position and momentum, an harmonic oscillator
can have either a position or a kinetic energy or a total energy, but
not any two of these simultaneously; moreover, whatever value may
actually be realized for one of these observables at any particular
time will necessarily be one of the legitimate eigenvalues of the re-
spective operator—namely, x, or p3 /2m or (n + 1/2) hw.

TAn exception to this last statement arises if V(x) = constant, in whlch
case the kinetic and total energies are essentially the same.
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As the reader pursues his study of quantum mechanics he will
constantly feel the urge to try to understand or “see through”
quantum phenomena in terms of common-sense classical concepts.
Most of the nonorthodox views of quantum mechanics try, in varying
degrees, to do just this. The orthodox view, which we have taken
here, must be regarded as rather radical in this respect: it asserts, or
at least strongly suggests, that there is no adequate interpretation of
quantum mechanics via purely classical notions, and that the message
which Nature is trying to get across to us is s1mply that such classical
ways of thinking do not apply to the microscopic physical world. If
we accept this view, then we would evidently be better employed in
trying to “see through” classical mechanics in terms of the concepts
of quantum mechanics. This, in short, will be our goal in the next
section.

4-5¢ The Ehrenfest Equations
The Classical Limit of Quantum Mechanics

We have seen that quantum mechanics must be used instead of
classical mechanics when one deals with the microscopic physical
world. However, this does not mean that we should discard the
classical theory altogether; for if we can be certain of anything at all
in physics, it is that classical mechanics correctly and efficiently
describes many aspects of the macroscopic physical world. There-
fore, if quantum mechanics is indeed a more comprehensive theory
of physical phenomena than classical mechanics, then it is incumbent
upon the former to reduce to rather than replace the latter in the
macroscopic limit.

In order to demonstrate that quantum mechanics does satisfy
this requirement, it is sufficient to show that, for any observable @
which has a classical analogue:

(i) In the macroscopic limit, any discreteness in the eigenvalues
of A is not noticeable. o

(ii) In the macroscopic limit, the uncertainty in @, AA,, is in
practice so small in comparison with the expectation value of @,
(A)t, that we can for all practical purposes say that @ has the value
(A3,.”

(iii) In the macroscopic limit, the time evolution equation for
(A)t coincides with the classical equation of motion for @ (¢).

Clearly, if these three requirements are fulfilled, then a measurement
of @ will in effect always yield the value (A),, and moreover this
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“value of @” will evolve continuously with time according to the
laws of classical mechanics.

Unfortunately, we shall not be able to give rigorous, general
proofs of the first two requirements; however, we will at least be able
to see that they are quite plausible. Let us consider first requirement
(i). We have seen in Sec. 4-5a that the position and momentum
operators already possess continuously distributed eigenvalues; how-
ever, the energy operator is often found to have discrete eigenvalues.
For example, in Sec. 4-5a we mentioned (without proof) that for the
linear harmonic oscillator potential, V(x) = kx? /2 = mw?x? /2, the
energy eigenvalues are given by [see Eq. (4-52b)]

E, =<n+é>hw n=0,1,25..:
Therefore, the relative spacing of the energy levels around the value
E, is

Eniy- E, _ hw 1

En <n * 1) h ) n+ s
e 2
Evidently, this relative spacing will be small if n is large, in which case

it is approximately 1/n. Now, classically such a particle would oscil-
late sinusoidally about the origin with frequency

v=w/2n

and could do so with any of the energies [see Eq. (4-52a)]
E, = %msz2 A>0

Now in the macroscopic limit we know that this last equation is es-
sentially valid; since the quantum expression is presumed to be
universally valid, then the quantum number » must be such that

E,=E,

1 1 (m
=)= == A?
pr3)=3 )

Exercise 60.
(a) Show that, for a 1 gram particle oscillating with frequency
3 cycles per second and amplitude 1 centimeter, n is
roughly 10%?®. Thus, conclude that the relative spacing
between neighboring quantum energy levels is so small that

2 macroscopic limit
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it could never be detected experimentally. [Use & = 1.054
X 10727 erg - sec.]

(b) Repeat this calculation for an electron (m =~ 10727 gram)
oscillating with a frequency on the order of visible light
(v = 10" cps) and amplitude on the order of an atomic
diameter (A ~107® cm). Would quantum effects be
noticeable in this case?

(c) For the system of part (a), show that the lowest energy
level, corresponding to n =0, is so small on the macro-
scopic scale that it could not be experimentally distin-
guished from the classical minimum of zero.

The results of the preceding exercise are in many respects typi-
cal of most potentials encountered in quantum mechanics: Owing to
the smallness of 72, macroscopic energies necessarily correspond to
large values of the quantum number 7, and this in turn implies a rela-
tive spacing between the nearby levels which is so small that the dis-
crete values appear to be continuous. Only when one enters the
atomic or subatomic realms does the spacing between the levels be-
come significant.

We consider next requirement (ii). We found in the preceding
section that position and momentum are not compatible observables;
in fact, according to Eq. (4-69),

AX, - AP,

v
Do | S

so it impossible for position and momentum to simultaneously have
exactly defined values. However, let us get some idea of just how
stringent this limitation is from a macroscopic point of view. Note
first that if the particle has a momentum uncertainty of AP,, then it
will have a velocity uncertainty of AV, = AP,/m.t Therefore the
uncertainties in position and velocity must always satisfy

o L
8K, AV, 2 o (4-70)

Exercise 61.
(a) Show that a 1-gram particle can have its position defined
to within 0.001 micron and its velocity defined to within
0.001 micron per century, and yet the uncertainty relation
in Eq. (4-70) would not be violated. [Note: 1 micron =
10 cm, and 1 year = 3 X 107 sec.]

tSince v =p/m in classical mechanics, then Postulate 6 implies that the

quantum velocity operator is just V= %f’
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(b) For an electron (mass= 10" 27 gram) confined to an inter-
val on the order of an atomic diameter (distance
~ 10"® cm), what is the minimum value for the uncer-
tainty in the velocity? Would.it make sense in this case
to speak of the velocity of the electron as “having a
value?”’” [Note for comparison that 1 cm/sec is roughly
equal to 2 X 1072 mile per hour.]

We can see from part (a) of this exercise that it is quite possible,
at least from the standpoint of the Uncertainty Principle alone, for a
macroscopic particle to have its position and its momentum simul-
taneously defined with great precision. Again, we see that the reason
for this is the extreme smallness of the constant %: Since 7 is practi-
cally zero on the macroscopic scale, then Eq. (4-68) implies that X
and P approximately commute, so that position and momentum are
approximately compatible. It is thus possible for the state of a
macroscopic particle to be such that the “widths” of the position
and momentum distribution curves, AX, and AP,, are simultaneously
so small in comparison with macroscopic values that there is a nil
probability of measuring for x and p values which differ significantly
from the “peak” values, (X), and (P),. In such a case, we would be
quite justified in saying that the particle at time ¢ is at the point
x(t) =(X); and is moving with momentum p(¢)=(P);,. This, of
course, is just requirement (ii).

The preceding observations have not “proved” that quantum
mechanics satisfies requirements (i) and (ii), but they do illustrate
fairly well what the general situation is: The observable operators
which seem to be required to account for the experimentally ob-
served behavior of real microscopic systems, are found to be such that
the universal constant 7 controls both the spacing between adjacent
eigenvalues,

Aps1 - Ay =N

as well as the amount by which two incompatible observables “miss”’
being compatible,
AB-BA=h, AA-AB>Hh

Thus it may be said that the nonclassical features of quantum
mechanics owe their existance to the fact that % is finite and not
zero.¥ But since from a macroscopic point of view h appears to be

tThe reader who has had some contact with Special Relativity will
notice an intriguing analogy here: Relativistic effects are pronounced only when
one deals with velocities that are on the order of the velocity of light, c¢; thus it

may be said that the unique features of relativity owe their existence to the fact
that c is finite and not infinite.



110 The Theory of Quantum Mechanics

zero, then here all eigenvalues appear to be continuous and all ob-
servables appear to be compatible—and these are just the requirements
(i) and (ii).

We turn finally to consider requirement (iii). ' We have previously
shown that (H), is always constant in time [see Exercise 43], so it is
obviously true that the expectation value of the energy satisfies its
classical equation of motion [see Exercise 22]. Let us examine the
time-dependence of the expectation values of position and momentum.

The general equation of motion for the expectation value of any
observable was derived in Sec. 4-4b and is given by Eq. (4-34). From
this equation, it is clear that

d a0 M s Tea

2p X0 =7 (¥, [HX - XH] ¥ ) (4-71a)
and

L3 (P =—i(qf [HP - PH] ¥ ,) (4-T1Db)

dt t h ts t .

Now the right-hand sides of these equations can be evaluated expli-
citly by making use of the expression for H in Eq. (4-49a):

Exercise 62. Prove that

HX - XH =- ihr%P (4-72a)
and
HP - PH = - inF(X) (4-72Db)
where, in the last equation, the function F(x) is defined by
d
F(x)=- o V(x)

SO that by Egs. (3-2) and (4 %) F(X) is the force operator.
[Hint: First show that X commutes with V(X) while P commutes
with P? /2m, so that

HX - XH o (P2 X- XP?)
and
HP - PH = V(X)P- PV(X)
The right-hand side of the first relation is most easily reduced by

applying the operator equation (4-68); the right-hangi side of
the second relation may be reduced by inserting V(X) = V(x)
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and P = - ih(d/dx), and then calculating the effect of the result-
ing operator on some arbitrary function ¢(x).]

When Egs. (4-72) are inserted into Egs. (4-71), we immediately
obtain the results

i B
= 4 %, = — @ (4-73a)
d - N
= B = FX), (4-73b)

Equations (4-73) are known as Ehrenfest’s equations. It must
be emphasized that these equations are quite general and involve no
approximations. The first Ehrenfest equation says that (P, and
d(X),/dt are related in precisely the same way as the classical momen-
tum p and velocity dx/dt [see Eq. (3-3b)]. The second equation,
however, is a bit subtle; by means of the first equation, we can write

it as
d d L
— = F
at <mdt (X)t> (F(X));
or
> 1 <

Now this equation is almost identical to Newton’s second law,
Eq. (3-3a):

% = —rlﬁF(x) [3-3a]
It would be exactly identical to Newton’s second law if and only if
(F(X), = F((X)) (4-75a)
for in this case Eq. (4-74) would read
i Xy, = lF((X)t) (4-75b)
dt* m

which is the same as Newton’s second law provided we identify
(X, with x(t). In other words, if Eq. (4-75a) holds, then (X), will
evolve with time in exactly the same way as the position function
x(t) does in classical mechanics. Since we have also shown that
(P), is related to <X)t in the same way that p(¢) is related to x(t), then
we could conclude that quantum mechanics ‘‘corresponds to”
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classical mechanics in the sense that the time evolutions of (X)t and
(P); coincide with the time evolutions of x(t) and p(t), respectively.
We repeat, though, that this conclusion hinges on the validity of
Eq. (4-75a).

Exercise 63. Show that Eq. (4-75a) does hold for the special cases
F(x) =0, F(x) =k, F(x) = kx, where k is any real number; thus
conclude that, for these three cases, (X), and (P), obey the usual
classical equations of motion. On the other hand, show that
Eq. (4-75a) is not an identity for the case F(x) = x2 .

Now, except for the three cases noted in the above exercise,
Eq. (4-75a) is not generally valid. The essential reason for this
is the same as the reason why (X2>t is not generally equal to
(X} —namely, the “width” of the position distribution curve

AX, =V(X?), - (X)?
is not always zero [see Fig. 4]. Thus, for state vectors which have a
significant dispersion in position, Eq. (4-75b) is not valid for arbi-
trary force fields F(x), and we must be content with Eq. (4-74).

Suppose, however, we pass to the macroscopic limit; here, accord-
ing to requirement (ii), the width of the position distribution curve
will be so small that a series of repeated measurements of the position
will yield x-values which are all virtually indistinguishable from the
value (X)t. In such a case, it clearly makes no difference whether
we evaluate the average of the F(x)-values—i.e., calculate (F(X)),—
or evaluate F for the average of the x-values—i.e., calculate F((X),)—
since we will obtain the same result either way. Therefore, in the
macroscopic limit Eqs. (4-75) do hold for arbitrary force functions
F(x), so that, by the foregoing arguments, requirement (iii) is indeed
satisfied for the position and momentum observables.

The general relationship which exists between classical mechanics
and quantum mechanics is usually referred to as the Correspondence
Principle. Like so many other things in quantum mechanics, the Cor-
respondence Principle is a very deep and many faceted subject, and
we certainly have not exhausted it here. Much of the original think-
ing on this matter was done by Niels Bohr.

The fundamental connection between the time evolutions of the
classical and quantum states was evidently established via the Ehren-
fest equations. The fact that these equations fell out of our for-
malism so simply is certainly a satisfying result, and one which the
reader may have found rather surprising. However, it should be
noted that we really built this result into quantum mechanics in
Postulate 6, when we in effect used classical mechanics to tell us
what to write down for the Hamiltonian operator H. In a sense, then,
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we have not completely relegated classical mechanics to the status of
a mere ‘“special case” of quantum mechanics. For this reason, it is
not altogether clear just what the precise logical relationship is
between classical and quantum mechanics. We shall terminate our
discussion of this matter with the broad observation that we our-
selves, as the ultimate observers of any physical system, are essen-
tially classical objects, in that our senses can directly perceive only
macroscopic phenomena (e.g., dial readings, instrument settings,
etc.). This fact probably places severe restrictions not only on what
things we can perceive about a microscopic system, but also on how
we interpret what we perceive. As a result, it is highly questionable
if we shall ever be able to discard completely the ‘“‘crutch” of
classical mechanics on the microscopic level.

4-5d A Problem

For a given physical system, it is always important to find the
eigenvectors {n, (x)} and eigenvalues {E,} of the Hamiltonian oper-
ator H. There are two reasons for this. First, the numbers E,,
E,, ... provide us with the allowed energy levels of the system, and
these are always of great practical use in describing the system. Sec-
ondly, a knowledge of the functions {n, (x)} and the numbers {E,}
permit us to write down at once the solution to the time-evolution
problem; thus, from the given initial state vector ¥, (x), we merely
calculate the set of complex numbers

(nn,‘l’o)z f n;’f(x)‘l’o(x)dx n=152s OSCRD (4-763)
which determines the expansion of ¥, (x) in the energy eigenbasis,
To@)= ) (14, ¥0)nn (%) (4-76D)
n=1

and we then have at once an expression for the state vector ¥ ,(x) at
any time t > 0 [see Eq. (4-42)]:

V(@)= ) (0, 0)e En g, (x) (4-76¢)

n=1

For a quantum system which has a classical analogue, it is clear
that the finding of the energy eigenvectors and eigenvalues is equiva-
lent to solving the time-independent Schrodinger equation for the
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system’s potential function V(x) [see Eq. (4-50)]:

h?* d?

om dx? nn(x) + V(x)nn(x)—Ennn(x) (4'77)
It would therefore seem a logical next step in our discussion of quan-
tum mechanics to undertake a detailed examination of the general
properties of this equation, and to obtain the specific solutions for
various “physically important” potential functions. However, this
usually turns out to be a complicated and laborious enterprise: Exact
solutions to the Schrodinger equation can be found for only a few
simple forms for V(x), and even these usually require considerable
mathematical expertise. For more complicated potentials, it is
necessary to resort to various approximation techniques, of which
there are a wide variety with varying conditions of applicability.
Some of these approximation techniques are quite involved, and al-
most constitute separate disciplines in their own right.

For these reasons, we shall not delve into the broad problem of
solving, either exactly or approximately, the Schrodinger equation
for various physical systems. The serious student of physics will
find this problem treated exhaustively in existing textbooks on quan-
tum mechanics; indeed, the solution of the Schrodinger equation is
usually the major concern of the standard textbooks. In a sense, the
aim of this book has not been to solve the Schrodinger equation, but
rather to place it in the context of a broad (if somewhat simplified)
theoretical framework. It is hoped that this will provide the student
with an over-all perspective of quantum mechanics before he becomes
immersed in the complexities of its many applications.

Nevertheless, we cannot in good conscience refrain from work-
ing out at least one ‘“quantum mechanics problem”—if only to
demonstrate that the rather abstract formalism which we have de-
veloped in these pages can indeed by applied to a concrete situation.
To this end, we shall consider the relatively simple system of a par-
ticle of mass m in a one-dimensional “infinite square well,”” which is
the name given by physicists to the potential field defined by

Vi) = {0 for |x| < L/2

o for |x|> L/2 (§:78)

From the standpoint of classical mechanics, the motion of a
particle in this potential field can be understood as follows: Inside
the well, -L/2 <x < L/2, the particle experiences no force since
F=-dV/dx = 0, so it moves with a constant momentum, p,. When
the particle strikes the “impenetrable wall” at x =+L/2, it ex-
periences an infinite force in the negative x-direction,
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F(+L/2)=- i =-o0
dx | 2

which, however, acts for only an infinitesimal time interval; the ef-
fect of this impulse is simply to turn the particle around so that its
momentum becomes -p,, for this is the only way for the energy of
the particle to be conserved. Similarly, when the particle strikes the
back wall at a time L/v, = Lm/p, later, its direction of motion is
again reversed. Clearly, if the initial state [x,,po] is specified, then
it is possible to find the state [x(¢),p(t)] at any later time . Es-
sentially, though, the particle just bounces back and forth between
the walls of the well with a period of 2Lm/p,, its momentum as-
suming only the two values +p, and -p,. The energy of the particle
is just

E =p}/2m (4-79)

and can clearly assume any value greater than or equal to zero, de-
pending entirely upon the initial value p, .

To treat this problem from the standpoint of quantum mechan-
ics, we must first solve the time-independent Schrédinger equa-
tion (4-77) for the potential function given in Eq. (4-78). Owing to
the way in which this potential function is defined, the Schrodinger
equation takes different forms for the two regions |x|> L/2 and
lx| < Lj2:

L hZ "

Ix|>§ LT ynnn(x)“"“ 'nn(x)=Ennn(x) (4-803')
L h2 "

lxl < 9 E inhy N (%) = Epn, (%) (4-80b)

The function n,(x) will thus have two pieces, one for “outside’ the
well, which satisfies Eq. (4-80a), and one for ““inside” the well, which
satisfies Eq. (4-80b). Clearly, the only solutions to the outside equa-
tion are

n,(x)=0 for Ix|>§ (4-81)

Therefore we need consider only the “inside’ equation, (4-80b).
Now, it can be shown that the infinite jump-discontinuities in V(x)
at x =-L/2 and x = +L/2 render the solutions to the Schrodinger
equation nondifferentiable but still continuous at these two points.
Thus, the inside and outside pieces of n, (x) must join at x = +L/2,
but will generally do so with a “kink.” In view of Eq. (4-81), the re-
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quirement that the inside solutions must connect with the outside
solutions implies that these inside solutions must satisfy the boundary
conditions

Nn(-L/2)=n,(+L/2)=0 (4-82)

Our problem, then, is to find those functions 7, (x) and numbers E,,
which satisfy the differential equation (4-80b) and the boundary
conditions (4-82). In accordance with Eq. (4-2a), we may expect the
functions {n, (x)} to form an orthonormal set:

L/2
(Rl ) = f nk @m.(x)dx=0, m#n  (4-83a)
-L/2

Lj2
(Mnsnn) = f Inn (x)1? dx =1 (4-83b)
-L/2

Exercise 64.
(a) Show that the two functions A,cosk,x and B,sin k,x
satisfy Eq. (4-80b), provided k,, = /2mE,, /h.
(b) Show that the boundary conditions (4-82) permit solu-
tions of the form A, cos k,x only if k,L/2 = nn/2, where

n=1, 3, 5,.... Show that solutions of the form
B, sin k,, x are admissible only if k, L/2 = nn/2, where n = 2,
4,6, . ...

(¢) On the basis of parts (a) and (b), show that the energy
eigenvalues for the infinite square well are

2 h?

" SmL?

n® n=1,93,... (4-84)

and the corresponding energy eigenvectors are

] / % cos % x n=13,5,... (4-85a)

nn(x) =
2 nm
= sin — =2,4,6,... 4-85b
ﬂsm 7% 2, ( )

where the constants A, and B, have been chosen in such a
way that Eq. (4-83b) is satisfied. Verify that the functions
in Eqgs. (4-85) satisfy Egs. (4-83a). Hint: For checking
the orthonormality conditions, the following identities will
be helpful:
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(d)

(e)

®

(g)

(h)

al2 : al2
. onmx . mnx nnx mnx
sin— - sin ——dx = COsS — - COS dx
a a

a a

al2 -a/2

={O form+#n
a/2 form=n

al2
. nnx mnx
sin—— - cosa— dx=0

al2

a
Show that the relative spacing of the energy levels around
the value E,, is
En+1—En =2n+1:g
E, n? n

For a one gram particle moving with velocity 1 cm/sec in a
well of length 1 cm, we expect the classical formula for the
energy to be correct. Calculate the quantum number n for
this case. Would the nearby relative spacings make the
energy levels appear discrete or continuous? Would the
minimum energy level E, be significantly different from
zero on this macroscopic scale?

An electron inside a medium weight atom can have energies
on the order of 1 kev=1.6X 107 erg. Calculate the
quantum number n for an electron (m = 10727 gram) with
an approximate energy of 1 kev, inside a 1 Angstrom well
(L =10"% cm). Would the nearby relative spacings make
the energy levels appear discrete or continuous? Would
the minimum energy level E; be significantly different
from zero on this microscopic scale?

Of the three observables, position, momentum, and total
energy, if the particle can be said to “have a value” for
one, can it be said to ‘“have a value” for either of the
other two? [Hint: Contrast the forms of the eigenbases
{844 (x)}, {05, (x)}and {n, (x)}.]

Show that the uncertainty in the momentum of any mass
particle in an infinite square well can never be smaller than
h/2L.

Exercise 65. Suppose a measurement of the energy at time ¢=0
yields the number E,, .

(2)

Write down the expression for ¥, (x) for t > 0. What is the
position probability density function at any time t? Sketch
rough graphs of the position probability density function
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for the three cases n =1, 2 and 3, and notice that, for a
given value of n, there are places in the well where the
particle can never be found.

Calculate (X), and (P),. Discuss your answers from the
standpoint of the concept of the ‘‘stationary state.” De-
scribe the shape of the energy distribution curve at time t.
Show that when the particle ‘hasenergy E, ”’ then the un-
certainties in position and momentum are

el o
2V3

Is the position-momentum uncertainty relation satisfied?
Is the time-energy uncertainty relation satisfied?

hmn

5 6 s
A X, 1_7T27 and APt=—L= 2mkE,

Exercise 66. Suppose the initial state vector is

(2)

()

V3 1

Wg(x) == 11 (x )+ 55 (%)
2 2

What is ¥,(x)? If the energy of the system is measured at

time ¢, what values can be obtained, and what are their re-

spective probabilities? Using Egs. (4-11) and (4-12), show

that

7th? | 7
4

omL?| 4 and AH,=[

y 252 133
(H)t=[ s ]i

2mL?*| 4

Prove .that the evolution time of any observable cannot be
less than (4mL? /3+/37%h).

Show that the position probability density and the position
probability current are given respectively by

3 1 2 E, - E,
W, (x)|? =1 n1(x) +— 13 (x) +\/———n, (x)n2 (x) cos [Tt]

4 2

V3

h
S(x,t) = iy

' , ol By =1E4q
<771 (x)ma(x) - n1 (x)n3 (x)> sin [T}t

Show that the period of oscillation of the density and cur-
rent are on the order of the evolution time minimum as es-
timated in part (a). Evaluate the position probability den-
sity and current at the points x =0, x =L/4, x =L/3,
x =12,
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(c) Show that the expectation value of the position at time ¢ is

L/2
Xy, =§ {f xny (XM, (x)dx} cos [E2 i t}

“Ln h

(163 >L 3n%h
'< 92 ) g % [ZmLz]t

Notice that (X), in this case is sinusoidal in time with ampli-
tude = 0.3(L/2); by contrast, the classical position func-
tion x(t) has a sawtooth shape when plotted against ¢, with
amplitude L/2.

(d) From either Eq. (4-58a) or (more easily) Eq. (4-73a), show
that the expectation value of the momentum at time ¢ is

X -4 1 . |:31r2h
2mL?

_~4hn =8
(P)t—\/_gLsm omL? t] <\/2_1ﬂ

2
) vV 2m(H) sin [M t}
where, in the last step, we have made use of the expression
for (H) in part (a). Notice that (Is)t in this case is sinusoidal
in time with amplitude = 0.56v 2m(H); by contrast, the
classical momentum function p(t) has a square-wave shape
when plotted against ¢, with amplitude v/ 2mE.

4-6 EXTENSIONS OF THE THEORY

At various stages in our presentation of the theory of quantum
mechanics we imposed certain simplifying restrictions so that the
main ideas would not be obscured by considerations of slightly
lesser importance. It seems appropriate to conclude our development
by discussing very briefly how the remouval of some of these restric-
tions will affect our simplified picture of quantum mechanics. It
must be emphasized that the following discussion is not meant to be
as detailed as that in the previous sections. Our purpose now is
merely to get a rough idea of what is involved in obtaining a more
general theory, and to thereby establish a bridge to the reader’s future
studies in quantum mechanics.
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4-6a Systems with More Than One Degree of Freedom

The first major restriction which we imposed was that the
physical system have only one degree of freedom. We labeled this
degree of freedom by the variable or ‘“coordinate” x. Now, most
systems of interest in physics have more than one degree of freedom.
For example, a particle in real space will have three degrees of free-
dom corresponding to its position (i.e., x,y,z or r,0,¢), and it may
also have additional degrees of freedom due to its orientation or to
some internal structure; again, a system consisting of two particles
with no other attributes will generally have six degrees of freedom,
which can be labelled by the six coordinates x,, yi, 2,, X5, ¥2, 25.

It is not difficult, at least from a formal standpoint, to adapt
our treatment of a system with one degree of freedom to a system
with n degrees of freedom. To do this, we first associate with each
degree of freedom a so-called ‘“‘generalized coordinate” q;. The set
of generalized coordinates q,, q,, ..., q, may consist of cartesian
coordinates, angles, and in general any group of variables which, when
taken together, specify the “configuration” of the system in the same
way that x specifies the configuration of a particle in one dimension.
Having done this, we then set up a Hilbert space for the system. The
vectors in this Hilbert space are all those complex functions ¢ of n
real variables q,, q,, . . ., @, which satisfy [see Eq. (2-35)]

f—Jlslf(qm-.-,qn)l2 dq, - -dg, <e (4-86)

Here, the integrations are to be carried out over the full ranges of the
various coordinates q;. From this point on, the development of the
properties of the Hilbert space is identical to that given in Secs. 2-3
and 2-4, except that the single variable x is everywhere replaced
by the n variables q,,...,q,. Thus, for example, the definition of
the inner product in Eq. (2-32) becomes

(lPl,\lfz)E J._f WT(QU oh (5 ,qn)kbz(fh, sfele ,Qn)dql e dqn
(4-87)

The possible state vectors of the system are, as before, all the
normed vectors in ¥; we write the state vector at time ¢ as
‘Ilt(ql, e e ’qn) or \'I"(qla LCNOR) qn;t)

Now, in advanced treatments of classical mechanics, there is de-
veloped a well-defined procedure for associating with any “‘general-
ized coordinate” q; a ‘“‘generalized momentum” p;. We shall not go
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into this procedure here, but we might just mention by way of ex-
ample that, if q; = x then p; turns out to be p, =mv,, and ifg; =6
then p; turns out to be the angular momentum associated with the
rotation of 8. In any case, the two sets of variables {q;} and {p;}
form the basic observables of both the classical description and the
quantum description. In direct analogy with Eqgs. (4-46) and (4-47),
we postulate that the quantum operators corresponding to q; and p;
are

% X )

Q=q; and P,=-ih— (4-88)
0qi

and, moreover, that the operator corresponding to any observable

f(@1,P1,- -, qn,pn) is [see Eq. (4-48)]

0 0
,—.h 300y n,_-h 3
f<q1 ih o Qo1 aqn> (4-89)

Asin Eqgs. (4-68) and (4-69), the above definitions for Q,— and P,- imply
that

Qif)i ¥ PiQi =ih (4-90)
so that, by the Heisenberg Uncertainty Principle,
. % h
AQ; - AP 2 3 (4-91)

Although Q; and P; do not commute with each other, they do com-
mute with all the rest of the Q/s and P/s. In particular, this implies by
the Compatibility Theorem that the generalized coordinates are all
simultaneously measureable. By the same sort of arguments used to
derive Eq. (4-61), it can be shown that the quantity

¥e(qi,...,9,)1% dq, -~ - dg, (4-92)

is the probability that a simultaneous measurement of all the coordi-
nates at time ¢ will yield a value for q, in the interval (q¢,,q9; +dq;),
and a value for g, in the interval (q,,q, +dq,), . . ., and a value for
q, in the interval (g,,q9, +dq,).

For the important case of a simple particle in three dimensions,
we can write the state vector as V¥ ,(x,y,2) = ¥(x,y,2;t). Since the
classical Hamiltonian function is now

1
H(xay,27pxapyapz) o 2—rﬁ(p3c +p§' +p§) + V(x,y,z)

then replacing the variable x by the operator x, the variable p, by
the operator - ih (9/9x), etc., we obtain in analogy with Eqs. (4-50)
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and (4-51) the time-independent and the time-dependent Schrodinger
equations:
h2 [ d 2 F) 2 d 2

+—+— +V =F
ax2 ay’l azz]nn(x9y9z) (x,y9z)nn(x,yvz) nnn(x’ysz)

(4-93)

2m

w2 [ 52 52 52 :|
+ —+— 1) + :
2m l:axz ayz azz \Ij(xay’zat) V(x,y,z)\I/(x,y,z,t)
0
= iha\ll(x,y,z;t) (4-94)

Thus, for example if one solves Eq (4-93) for the Coulomb potential,
Vix,y,2) =

, one obtains for the eigenvalues {E, }

just the “Bohr energy levels” for the hydrogen atom. Of course, one
also obtains, through the associated eigenvectors {n, (x)}, much more
information about the hydrogen atom than was available via the old
Bohr theory.

When we extend our treatment of a particle from one dimension
to three dimensions, we find that another important observable comes
into play: In classical mechanics, a particle at the position r with
momentum p has an ‘“angular momentum about the origin’—or, as
we shall prefer to say, an orbital angular momentum—given by
2 =r X p. In component form, this means that

Qx =YP. - RDy, Qy =2Px - XpP;, Qz =XPy ~ YPx (4'95)

Therefore, according to the generalized form of Postulate 6, the

quantum operator for the observable £, is

~ Y, - 2B, =-ih < b zi> (4-96)
¢ q yaz oy

Analogous expressmns follow for L and L,. Now from these defini-

tions of L., L, and Lz, along w1th the commutatlon relations

XP, - P, X = m YP P Y =ih, and ZP, - P,Z =ih, it is fairly
straightforward to establish the followmg commutation relations
among the three orbital angular momentum component operators:

L.L, - L,L, =inL,
L,L, - Lz L, = inL, (4-97)
B, L% LD, =ik,
Exercise 67. Derive the first of Eqgs. (4-97). Note that the other
two can be obtained by cyclically permuting the indices.
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One then generalizes and calls any three operators which satisfy the
above commutation relations the ‘“components of an angular momen-
tum operator.” The general treatment of angular momentum in
quantum mechanics is somewhat involved. However, a great many
important physical phenomena find their interpretations in terms of
the various properties of angular momentum operators.

4-6b Some Remarks on Continuous Eigenvalues

Our development of the theory of quantum mechanics in the
first four sections of this chapter was restricted to observables with
discretely distributed eigenvalues. However, in Sec. 4-5a we had to
abandon this restriction to some extent, since the position and mo-
mentum operators of Postulate 6 were found to have continuously
distributed eigenvalues. In connection with this, we encountered
some unusual mathematical difficulties associated with the eigenbasis
vectors {5, 0(x)} and {6, ,(x)} of these two operators [see the dis-
cussion following Exercise 50]. Similar difficulties arise in the
general treatment of operators with continuously distributed eigen-
values. The handling of these difficulties is somewhat involved, but
pivots mainly upon the so-called Dirac delta function, §(x - x,),
highly unusual entity which just happens to coincide with the posi-
tion eigenvector 8, (x).

We remarked in our discussion of &, (x) in Sec. 4-5a that this
function should vanish for x # x,, but that §,  (x,) should be in-
finite in such a way that its product with the infinitesimal dx be
finite. In fact, the actual definition of the Dirac delta function is
such that

84, (%0)dx = 5(0)dx = 1

More specifically, the Dirac delta function & (x - x,) is defined by the
following two relations:

§(x-x9)=0 forx+# x, (4-98a)

b
f 8(x- x9)dx=1 foranya<x, <b (4-98b)

a

Exercise 68. Using these defining properties of the Dirac delta func-
tion, derive the following two properties:

5(x-x0)=6(x0 - x) (4-99)
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f(x) = f_w f(x')s (x' - x)dax' (4-100)

[Hint: To establish Eq. (4-100), multiply the arbitrary function
value f(x) by 1 =[8(x' - x)dx’', move f(x) inside the x'-integral,
and then given an argument for replacing the f(x) by f(x').]

We recall that, for an observable operator A whose eigenvalues
and eigenvectors can be labeled by a discrete index n,

Aa,(x)=A,a,(x) (4-101a)

the eigenvectors {a,(x)} must form an orthonormal basis in the Hil-
bert space:

(ap,an") =8pn'  forall n,n' (4-101b)
o(x) = Z(an ,0)a,(x)  forall ¢(x) in ¥ (4-101c)

Now for the case in which the eigenvalues and eigenvectors of A
must be labeled by a continuous index v,

Aa, (x) = A(v)a,(x) (4-102a)

it is necessary to modify somewhat our definition of an orthonormal
basis set. Specifically, Eq. (4-101b) is modified by replacing the
Kronecker delta symbol §,, by the Dirac delta function §(a - b),

(ap,a,r)=8@w-v") forallv,n' (4-102b)

and Eq. (4-101c) is modified by replacing the sum over the discrete
index n by an integral over the continuous index »,

o(x) = f(a,,,d))a,,(x)du for all ¢(x) in ¥ (4-102c)

Finally, the rule in Postulate 3, that |(a,,¥,)|* gives the probability
of measuring the discrete value A, in the state ¥ ,(x), takes the fol-
lowing form for the case of continuous eigenvalues: If @ is measured
on the state V,(x), the probability of obtaining a value between
A()and A(v +dv) is |(a,,¥,)|* dv.

The mathematical transition from Eq. (4-101c) to Eq. (4-102¢)
is a rather natural one; however, the transition from Eq. (4-101b) to
Eq. (4-102b) is not altogether obvious at first sight. In order to
understand why we write §(v - »') in Eq. (4-102b) rather than
just §,,, let us make the following calculation: let us write out ex-
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plicitly the definition of the quantity (a,’,¢), and then insert
for ¢(x) the expansion in Eq. (4-102c). We have

oo

(01,9) = f_ma;“' (x)p(x) dax = f oy (x) U(av,may(x)vadx

Interchanging the order of the x- and v-integrations, we obtain

(apr,0) = J(ava¢) [»J_:., a;k' (x)a,,(x)dle dv = j(av,‘p) (00 rya)dv

Now the quantity (a,,p) is a complex number which depends on the
index », or in other words, («,,¢$) is some arbitrary complex function
of the real variable v; writing this function ¢(»), the last equation be-
comes

o) = f o0 ittty

Clearly, if (a,7,a,) =8,,, then the integral on the right would vanish,
thereby rendering the equation incorrect. Indeed, the only way for
this equation to hold true for any arbitrary function c¢(v) is for
(ayr, @) to be the Dirac delta function 6 (»' - »), in which case the
equation is simply an instance of Eq. (4-100). We see then that, if we
want Eq. (4-102c) to be valid for all functions ¢(x), we are essentially
forced to require the functions {a,(x)} to satisfy Eq. (4-102b). As
an example, the position and momentum eigenvectors are supposed
to satisfy

(5g, )85, )=8(xy — x3) - 0<x;,x; <o  (4-103a)

X127Xx)

and
(0p,,05,)=8(p1 - P;) - =<p,p, <o (4-103b)

Exercise 69. Using the definition of the inner product, along with
Eq. (4-100), prove that the position eigenvectors do indeed
satisfy the modified orthonormality relation in Eq. (4-103a).
[Hint: Remember that §, (x) = 8(x - X, ) is pure real.]

We cannot discuss here all the ramifications of these generali-
zations for continuous eigenvalues. In particular, Eq. (4-103b), and
the precise relationship between the functions 6, (x) and 6, (x), can
be fully appreciated only in the context of an area of mathematics
known as Fourier analysis. However, there is one important con-
sequence of all this that perhaps should be brought out. It will be re-
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called that any ¥ -vector ¢(x) may be said to have ‘‘components”
(ans0) "mw=1,2,... (4-104a)

relative to a given or orthonormal basis set {a, (x)}, just as any & ;-
vector v has components

e, Vv n=1,2,and 3 (4-104Db)

relative to a given orthonormal basis set e, , e,, e; [see Egs. (2-29¢)
and (2-39c¢)]. Thus any vector in 3 can be ‘“‘represented’ relative to
a given orthonormal basis by an «-typle of complex numabers, in the
same sense that any vector in &; can be represented relative to a
given orthonormal basis by a triplet of real numbers. Evidently, the
components of ¢(x) relative to the continuous eigenbasis {a,(x)}
will be labelled by the continuous index v, (a,,p). In particular, let
us calculate the components of ¢(x) relative to the position eigen-
basis, {6,(x)}.

Exercise 70. Using the definition of the inner product, along with
Eq. (4-100), prove that

(6,,0) =) -o<p<e (4-105)

Therefore, relative to the eigenbasis of the position operator X,
a given vector ¢(x)—i.e., a given function ¢ of x—has components
which are just the set of all the values of this function c,=¢(v).
In this sense we may say that any vector ¢(x) in ¥ “‘represents itself”
with respect to the position eigenbasis. Indeed, the expansion of
¢(x) in the position eigenbasis {§,(x)} is, according to Egs. (4-102c)
and (4-105),

o(x) = [w (60,9)6,(x)dv = Lﬂ ¢(v)8(x - v)dv  (4-106)

which is evidently nothing more than Eq. (4-100).

Equation (4-105) provides us with an interesting interpretation
of the definition of the inner product, Eq. (2-32), as the following
exercise demonstrates.

Exercise 71. In Exercise 13 we derived Eq. (2-40a), which gives the
inner product of two H-vectors in terms of their components
relative to a given orthonormal basis {¢;(x)} . If we take for
{e;(x)} the position eigenbasis {5, (x)}, and if we replace the sum
over the discrete index n by an integral over the continuous in-
dex v, show that Eq. (2-40a) takes the form of our original def-
inition of the inner product in Eq. (2-32). [Hint: In Eq. (2-40a),
recall that ¢; = (¢;, ¢ ) and d; = (€;,9).]
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Finally, we should note that, in accordance with the previously
mentioned interpretation of |(a,,¥,)|> dv as being a measurement
probability, the quantity |(5,,¥,)i*> dv is evidently supposed to repre-
sent the probability of measuring for the position a value between v
and v+dv. But, by Eq. (4-105), we see that

1(8,,¥,)I>dv =|¥,(»)* dv

so we have recovered the ‘“Born interpretation’ of the state vector
in Eq. (4-61).

As the reader may have sensed, our definition and use of the
symbol §(x - x,) plays “fast and loose’ with the laws of calculus.
A rigorous treatment of the Dirac delta function requires a rather
lengthy sojourn into an area of mathematics known as Distribution
Theory; our treatment here is illustrative of the more “intuitive”
approach taken by most standard textbooks on quantum mechanics,
and the reader is referred to any of these books for a more detailed
analysis of the Dirac delta function.

4-6¢c The Problem of Degeneracy

We wish now to discuss the effects of removing the restriction
in Eq. (4-9) that the eigenvalues of an observable operator be unequal
or nondegenerate. To this end, let us examine the simple case in
which a certain eigenvalue of an observable operator A is doubly
degenerate; more specifically, we suppose that the eigenvectors
a; (x) and a, (x) correspond to the same eigenvalue A ,,, but that no
other eigenvector of A has this eigenvalue:

Al =A2 =A12, but Ai#:AIZ fOI‘lZ3 (4'107)
This circumstance will necessitate modifications in both Postulates 3
and 4. As indicated in our discussion just preceding Eq. (4-9), the re-

quired modification of Postulate 3 is merely a straightforward appli-
cation of the ‘“‘addition rule” for probabilities in Eq. (2-3a):

Postulate 3'. If the eigenvalues of A satisfy Eq. (4-107), and if @
is measured on the state ¥ ,(x), then the probability for obtain-
ing the eigenvalue A, is |[(a, V)| + [(ay,¥,)[%.

Of somewhat more interest is the modified form of Postulate 4, which
reads as follows:

Postulate 4'. If the eigenvalues of A satisfy Eq. (4-107), and if a
measurement of @ on the state ¥ ,(x) yields the eigenvalue A, ,
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then the state vector of the system immediately after the mea-
surement is given by

= (a1,¥ )y (x) + (2, Wi)as (X) (4-108)
Ve, ¥o)l* + [(az, ¥ o)l

Wiy, (%)

This last equation may appear strange at first, but it actually has a
very simple interpretation: We can write the state vector immediately
before the measurement as [see Eq. (4-6a)]

)= {(al W )ag (x) + (ar, ¥y ), (x)} + Z (07, W) ()

In view of this, we see that Postulate 4’ merely asserts that a measure-
ment of @ with the result A,, essentially “wipes out” that portion of
V¥ ,(x) corresponding to eigenvalues other than A,,, but “passes un-
distorted” the parts of the state vector which belong to the eigen-
value A,,. The denominator in the above expression for ¥, L, (%) 18
merely to make the vector properly normalized.

Exercise 72. Prove that the vector ¥, \, (%) has unit norm.

It should be noted that the form of Postulate 4 which we pre-
sented in Sec. 4-3b is just a special case of Postulate 4'; for if the
eigenvalues of A are nondegenerate, then by Postulate 4', a measure-
ment of @ with the result A, will leave the system in the state

¥t () =Tt o )

l(al ,\Pt)l

But since the complex number multiplying a, (x) obviously has unit
modulus, then \Ifhl(x) may be said to coincide with «;(x) in the
sense allowed by Postulate 1. This is just the statement of Postu-
late 4 in Sec. 4-3b.

In developing the various consequences of these more general
forms of the two “measurement postulates,” the following simple
theorem plays a key role.

Exercise 73. Prove that, if «, (x) and a,(x) are eigenvectors of A
belonging to the same cigenvalue, then any linear combination of
these two vectors, ¢; a; (x) + ¢, a4 (x), is also an eigenvector of A
belonging to this eigenvalue. [Hint: Using the linearity of A, ex-
amine the effect of A acting on the linear combination. ]

Since ¥} , (x) in Postulate 4' is evidently a linear combination
of a, (x) and «a, (x), then one consequence of the foregoing theorem
is that the following statement is generally valid: A measurement of
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@ forces the state vector of the system into an eigenvector of A be-
longing to the eigenvalue obtained in the measurement. If the eigen-
value measured is nondegenerate, then there is only one correspond-
ing eigenvector, and it is with this eigenvector that the state vector
will coincide after the measurement. However, if the eigenvalue
measured is degenerate, then there are infinitely many corresponding
eigenvectors (i.e., all possible linear combinations of the “standard”
eigenvectors), and it is necessary to know the state vector of the sys-
tem before the measurement in order to determine unambiguously
the state vector after the measurement.

A second consequence of Postulates 3' and 4, and the theorem
of Exercise 73, is that the Compatibility Theorem which we pre-
sented in Sec. 4-3c remains valid as stated. However, the possibility
of degenerate eigenvalues confers upon the Compatibility Theorem a
new importance, which we shall now attempt to explain:

Suppose again that the eigenvectors «; (x) and «,(x) of the
observable operator A correspond to the same eigenvalue A;,. Then
according to Exercise 73, the two vectorsa,; (x) and a, (x) defined by

oy (x) =crog(x) +crap(x)

and
0, (x) = cya; (x) + caay(x)

where ¢,, ¢,, ¢3 and ¢, are any complex numbers, are also eigen-
vectors of A belonging to the eigenvalue A, ; in addition, it is clear
that these two eigenvectors are orthogonal to all the other eigen-
vectors a;(x), asz(x),.... Now, it is possible to choose the c;-
numbers in such a way that a, (x) and a, (x) have unit norms and are
orthogonal to each other; in fact, there are infinitely many ways of
doing this. We can see this most easily if we take as an analogy a
three-dimensional vector space in which the basis vectors e; and e,
are respectively identified with the eigenvectors a, (x) and «, (x),
while the basis vector e; represents all the other eigenvectors a; (x),
a4 (x), ..., all of which are orthogonal to the first two vectors. In
this analogy, e, and e, are eigenvectors belonging to the eigenvalue
A;,; but, according to Exercise 73, any vector in the plane formed by
e; and e, is also an eigenvector of A with this same eigenvalue. This
being the case, we need not tie ourselves down to the orthonormal
pair e; and e,, but we may evidently use any pair €, and €, which
differs from e, and e, by a simple rotation about the e;-axis; for
such a pair would belong to the same eigenvalue of A as e, and e,,
and moreover, the vectors €, , €, and e; would clearly constitute an
orthonormal basis set. In a similar way, we can always replace o, (x)
and a, (x) with any one of an infinite number of orthonormal pairs
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a; (x) and &, (x) in the “plane” of a; (x) and a, (x); from the point of
view of the operator A, it makes no difference at all whether we
choose for its eigenbasis the orthonormal set o, (x), o, (x), a3(x), . . .
or the orthonormal set &, (x), @, (x), a3 (x),....

With this point understood, suppose we now introduce a second
observable operator B which commutes with A. According to the
Compatibility Theorem, A and B possess a common eigenbasis.
However, this is not to say that every eigenvector of A in the “plane”
of a; (x) and «, (x) is necessarily an eigenvector of B as well; all we
can conclude from the Compatibility Theorem is that at least two
eigenvectors in this plane, say &, (x) and &, (x), are orthonormal
eigenvectors of B. Now, if it should happen that @, (x) and &, (x) do
not correspond to the same eigenvalue of B, then they will in fact be
the only eigenvectors of B in the plane of a, (x) and &, (x).T Conse-
quently, the common eigenbasis {¢, (x)} will necessarily contain
®; (x)and &, (x) and not o, (x) and a, (x). In a manner of speaking,
the introduction of the compatible observable ® has ‘‘resolved’ the
ambiguity of which of the infinitely many pairs of A, -eigenvectors
“ought” to be used; at the same time, of course, it is likely that other
ambiguities in either the A eigenvectors or the B eigenvectors become
similarly resolved.

Now, it is clear that the introduction of the compatible observ-
able B may not completely resolve all degeneracies; that is, there may
still be “subspaces” of two or even more dimensions such that all vec-
tors in any one of these subspaces are eigenvectors belonging to the
same eigenvalue of A and the same eigenvalue of B. In such a case, we
must search for a third observable @ whose operator C commutes with
both A and B, and which further reduces the number of de-
generacies.I We continue in this way until we obtain what is called a
complete set of compatible observables,@ ,®,..., F. The corre-
sponding operators, A, B, ..., F all commute in pairs, and possess a
common eigenbasis {¢, (x)} which has the following special property:
each eigenvector of the set {¢,(x)} corresponds to a unique set of
eigenvalues of the operators A, B, . .., F. In other words, any two of
the eigenvectors ¢,, (x) and ¢, (x) belong to different eigenvalues
of at least one of these operators. This, in fact, is just the defining
condition for a complete set of compatible observables. It is a basic

+This follows from the theorem proved in Exercise 18: Two eigenvectors
of a Hermitian operator belonging to unequal eigenvalues must be orthogonal.

£We emphasize “both” here, because given that A and B commute, then
the fact that C commutes with A does not guarantee that C comimutes with B as
well. As an example, one can show from Egs. (4-88) that the operator
LI+ Lf, + L2 commutes with both L, and L,, even though L, and L, clearly
do not commute with each other.
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assumption of quantum mechanics that every physical system
possesses at least one such set of observables.

The concept of a complete set of compatible observables leads
us to another important concept, namely, that of a ‘“maximal
measurement.” We recall that, for the case of nondegenerate eigen-
values, Postulate 4 tells us that a measurement of a single observable is
sufficient to ‘“‘prepare a state’—i.e., to force the system into a state
vector which is known, even though the state vector just prior to the
measurement was unknown. However, when degenerate eigenvalues
are involved, we cannot make this statement; for, if the measurement
should yield a degenerate eigenvalue, then Postulate 4’ clearly implies
that the resulting state vector cannot be uniquely determined unless
the initial state vector is known. How, then, can we ‘“prepare a state”
when degenerate eigenvalues are involved? The answer to this ques-
tion is simply that we must simultaneously measure all the observables
of a complete, compatible set. The performance of these simul-
taneous or successive measurements, which will not “‘interfere’” with
one another since the observables are by definition compatible, will
necessarily leave the state vector of the system coincident with a
vector which is at once an eigenvector of all the operators A,

B,..., F—ie., with one of the simultaneous eigenbasis vectors
{¢,(x)}. Since the observables are ‘“complete,” we then need only
examine the eigenvalues A;, B;, ..., F}, obtained in these measure-

ments to pinpoint precisely which one of the common eigenvectors
the state vector of the system has been forced into. The preparation
of a state by simultaneously measuring all of the observables of a
complete, compatible set is called a maximal measurement of the sys-
tem. It is clear that a single measurement of an observable whose
eigenvalues are completely nondegenerate is already a maximal
measurement.

The presence of degenerate eigenvalues can be directly observed
in a variety of laboratory experiments. For example, the Hamil-
tonian operator for a number of electrons in the pure Coulomb field
of an atomic nucleus is found to commute with the angular momen-
tum operator, but to be highly degenerate; in other words, it is found
that many of the common energy/angular momentum eigenbasis
vectors will correspond to the same eigenvalue of the energy operator,
but different eigenvalues of the angular momentum operator. If an
external magnetic field is impressed upon the atom, the Hamiltonian
operator will be altered, because the classical Hamiltonian function
will now contain terms describing the interaction energy between the
electrons and the external field. Now, under certain conditions, the
new Hamiltonian operator will still commute with the angular mo-
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mentum operator, but it will not be so highly degenerate. Thus a set
of angular momentum eigenvalues which previously corresponded to
the same energy eigenvalue will now correspond to different energy
eigenvalues. The result is termed a ‘‘splitting of the energy levels,”
and the effects can be observed and quantitatively accounted for in
spectroscopic studies in the laboratory.

Let us summarize now the important modifications to our
theory which are necessitated by the presence of degenerate eigen-
values: Postulate 3 is modified, but in a very obvious way. Postu-
late 4 is modified in such a way as to suggest that an ideal measurement
is analogous to sending the state vector of the system through a
“filter,” which passes undistorted all those components of the state
vector which belong to the measured eigenvalue, but which com-
pletely cuts out all the other components. The Compatibility Theo-
rem remains intact, but a unique choice for the vectors of the com-
mon eigenbasis set {¢, (x)} requires the specification of a ‘“‘complete
set of compatible observables.” In order for the measurement process
to yield a state vector which is known even though the state vector
just prior to the measurement is not known—i.e., in order to ‘“prepare
a state”—it is necessary to make a ‘“‘maximal measurement’’; this is
simply a set of simultaneous measurements of all the members of a
complete set of compatible observables, and it results in a precisely
known state, irrespective of the initial state, simply because each of
the common eigenbasis vectors {¢, (x)} corresponds to a unique set
of eigenvalues for these observables.

4-6d Concluding Remarks

In closing, we might recall that the theory of quantum mechanics
given here is restricted to systems which are nonrelativistic. In other
words, we have presented a theory which is valid only for systems
which contain velocities that are much less than the velocity of light,
¢, or equivalently, for systems which contain particles whose energies
are much less than their rest-mass energies, mc*. We remarked in
Sec. 4-5¢ that our ‘“‘common sense’’ ideas about the physical world
are for a world in which # = 0 and ¢ = «. In point of fact, the real
world is a world in which # is finite but very small, while c is finite
but very large. Of course, the terms “very small”” and ‘“‘very large” are
relative to our customary units of length, mass and time (e.g., the mks
units). Now, by simply redefining these units, it is actually possible
to obtain a system of units in which

h=c=1 (4-109)
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The set of units defined by Eqgs. (4-109) are called the natural units.
Recent experiments in the physics of ‘“‘elementary particles’ (e.g.,
protons, electrons, photons, muons, kaons, neutrinos, etc.) have indi-
cated that the fundamental processes in the universe seem to take
place on the scale of the natural units. These processes must there-
fore be treated within the framework of relativistic quantum
mechanics, or quantum field theory as it is also called. Even the
most cursory discussion of this presumably ‘“ultimate theory’’ is far
beyond the scope of this book. This is partly because the theory is
very complicated, and partly because it has not yet been put into a
completely consistent and fully understood form.

Broadly speaking, ordinary nonrelativistic quantum mechanics
has provided us with a reasonably complete conceptual and quantita-
tive understanding of atomic physics and chemistry; that is, it has
been able to explain with remarkable precision the properties of the
elements of the periodic table, and thus the properties of all sub-
stances which can be formed from these elements. It is hoped that
someday relativistic quantum mechanics will be able to afford a
similar understanding of the many elementary particles, and of the
fundamental mechanisms by which these elementary particles inter-
act with each other to form the various atomic nuclei. It may well be
that, in its final form, relativistic quantum theory will be as different
from ordinary quantum mechanics, as ordinary quantum mechanics
is from classical mechanics. Nevertheless, the nonrelativistic theory
of quantum mechanics has and will continue to have a very large
range of validity, and it will undoubtedly long stand as one of the
most inventive and successful achievements of the human intellect.
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