CHAPTER

|
Introduction

Toward the end of the nineteenth century it seemed quite ap-
parent to all physicists that the general concepts of what we now call
“classical physics” were adequate to describe all physical phenomena.
Classical mechanics, first formulated by Isaac Newton in the late sev-
enteenth century, had by this time reached full bloom, and evidently
provided a completely valid framework for the treatment of the dy-
namics of material bodies. Complementing classical mechanics was
classical electrodynamics, finalized by James Clerk Maxwell in the
latter half of the nineteenth century, which described all the prop-
erties of the electromagnetic field, and which in particular gave an
intelligible account of the wave nature of light.

During the first quarter of the twentieth century, as physicists
turned from their successful treatment of the macroscopic world to
an examination of the microscopic world, a number of unexpected
difficulties arose. Broadly speaking, these difficulties fell into two
general categories.

First was the discovery of instances in nature in which certain
physical variables assumed only quantized or discrete values, in con-
trast to the continuum of values expected on the basis of classical
physics. For example, in order to explain the observed intensity
spectrum of electromagnetic radiation inside a constant-tempera-
ture cavity (so-called “black-body radiation”), Max Planck in 1900
found it necessary to permit each atomic oscillator in the walls of the
cavity to radiate energy only in the discrete amounts

hv, 2hv, 3hv, . . .

Here, v is the intrinsic frequency of the radiating oscillator (the cavity
walls were assumed to contain oscillators of all frequencies), and h
is a universal constant, now called Planck’s constant, with the value

h =6.625 X 1073 joule - sec (1-1)
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As another example, in order to account for the spectrum of radia-
tion emitted by excited hydrogen atoms, Niels Bohr in 1913 found it
necessary to permit the angular momentum of the orbital electrons
to have only the discrete values

h/2n, 2h/27, 3h/27, . . .

There were several other instances of such ‘“‘quantum effects” un-
covered in the early part of the twentieth century. In each case, the
quantization of the appropriate variable amounted to an ad hoc hy-
pothesis, and was without precedent in earlier applications of classi-
cal physics.

The second category of difficulties which beset classical physics,
as applied to the microscopic world, concerned the distinction be-
tween waves and particles. By 1900 it was generally believed that
light was a wave, while the electron was a particle. However, con-
cerning the nature of light, Albert Einstein in 1905 put forth his
theory of the photoelectric effect, which indicated that a light beam
of frequency v behaves as though it were a collection of particles,
each with an energy

€ =hv

Einstein’s hypothesis was a bold extrapolation of Planck’s theory of
blackbody radiation, but it was subsequently borne out in great de-
tail by precise experimental investigations of the photoelectric effect;
it received further dramatic support in 1923 when A. H. Compton
showed that these light particles, called ‘‘photons,” could actually
be bounced off electrons according to the usual rules of classical me-
chanics. Meanwhile, concerning the nature of the electron, C. Davis-
son and L. Germer showed in 1927 that, by scattering a beam of
electrons off a crystalline lattice of atoms, one could obtain diffrac-
tion patterns virtually identical to those which result from the crystal-
scattering of X-rays. In fact, they showed that a beam of electrons of
momentum p produced a diffraction pattern characteristic of a wave
with wavelength

A=h/p (1-2)

in exact agreement with the conjecture made three years earlier by
L. de Broglie. In short, light was found to behave sometimes as a
particle and sometimes as a wave, and the electron was found to be-
have sometimes as a particle and sometimes as a wave! These re-
sults evidently implied some sort of “wave-particle duality” in nature
which was quite unintelligible in terms of purely classical concepts.

It gradually became apparent during the first part of the twen-
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tieth century that these two difficulties—namely the quantization of
physical variables and the wave-particle paradox—bore the totally
unexpected message that the microscopic world was simply not in-
telligible in the context of classical physics, and that a radically dif-
ferent approach was needed. As it happened, such a new approach
was not long in coming: by 1930, through the efforts of W. Heisen-
berg, I. Schrodinger, M. Born, N. Bohr, P. A. M. Dirac, and many
other physicists, a bold new system of mechanics called ‘“‘quantum
mechanics” had been devised.

The basic tenets of quantum mechanics are in many respects
quite foreign to the concepts and attitudes of classical physics—so
much so that there were and still are many eminent physicists who
find some of these tenets philosophically unsatisfactory. Certainly
it would be presumptuous to assert absolutely that quantum me-
chanics, as currently formulated, is the only or even the best possi-
ble way of understanding physical phenomena. However, there is
no denying the fact that quantum mechanics, in its present form,
has been amazingly successful from an ‘‘operational” point of view;
that is, its predictions, no matter how unusual, have always been
very much in accord with experimental observations. This, of
course, is the reason for the acceptance of modern quantum theory
by the overwhelming majority of physicists today.

It is our intent in this book to give a concise, simplified ac-
count of the main theoretical structure of quantum mechanics. To
this end, we begin in Chapter 2 by presenting the “mathematical
language” of quantum mechanics, assuming on the part of the reader
mainly a reasonable grasp of elementary calculus. In Chapter 3 we
review briefly the essential features of classical mechanics, in order
that we may be able to readily compare and contrast the new with
the old. In Chapter 4 we develop, under several simplifying restric-
tions, the basic formalism of quantum mechanics. Our method of
presentation will be essentially ‘‘postulative-deductive’’; that is, we
shall lay out a number of postulates, and we shall try to derive,
develop, and synthesize the implications of these postulates into a
reasonably coherent theoretical framework. We shall emphasize
neither the historical evolution of quantum mechanics, nor the ap-
plications of the theory to the solutions of various types of problems.
Rather, we shall be chiefly concerned with understanding the struc-
ture and spirit of the theory itself. In particular, we shall try to see
how quantum mechanics manages to subsume under a single, self-
consistent point of view, the “common sense” of macroscopic
physics along with the “obvious paradoxes™ of microscopic physics.
Following our development of the general theory, we shall consider
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briefly its application to one simple idealized physical system, and
this we do merely in order to illustrate various aspects of the theory.
We conclude with a short discussion of how the removal of some of
the simplifying restrictions which we imposed upon our develop-
ment of quantum mechanics, can be expected to affect the overall
theory.

There are a liberal number of exercises sprinkled in with the
text. The majority of these exercises are not of the ‘“‘problem-
solving’’ variety; rather, their solutions tend to form an integral part
of the text. For this reason, most of the exercises cannot be
skipped over without severely impairing the entire presentation.

The fact that this book largely ignores the many applications of
quantum mechanics should not be taken to imply that these applica-
tions are irrelevant to the problem of understanding the theory. It
is true that the theory of quantum mechanics provides a conceptual
setting for the various applications, thereby interrelating these appli-
cations in a logically satisfying way; however, it is also true that
the specific applications of quantum mechanics provide concrete
examples of the highly abstract theory, thereby rendering the theory
intelligible and retainable. Thus a real understanding of quantum
mechanics can come only after both its theory and its applications
have been thoroughly studied, each in the light of the other. Since
this little book is confined to an elementary presentation of the
theory only, it obviously cannot carry the reader all the way to the
level of a full-fledged ‘‘quantum mechanician.”” However, it is hoped
that the use of this book as an introduction or supplement to the
more conventional textbooks and courses in quantum mechanics will
help to steady and lengthen the reader’s ‘“first steps’ in this journey.
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CHAPTER

2

The Mathematical Language
of Quantum Mechanics

Classical mechanics is formulated in terms of the mathematical
language of differential and integral calculus. For example, velocity
and acceleration are defined in terms of the derivative, work and im-
pulse are defined in terms of the integral, and the conservation princi-
ples of energy and momentum find their rigorous justifications in
certain elementary theorems of calculus. Quantum mechanics, too,
has a mathematical language—a language that involves not only
calculus but also several other branches of mathematics. In this
chapter we present, in as concise and elementary a way as we can,
those mathematical concepts (other than calculus) which are essential
to a meaningful understanding of quantum mechanics. The necessity
for achieving a reasonable degree of fluency in this mathematical
language is even greater in the case of quantum mechanics than classi-
cal mechanics; for quantum theory unfortunately does not readily
lend itself to nonmathematical clarifications in terms of notions
familiar to us from everyday experience. The reader is therefore
urged to gain a full understanding of the material presented in this
chapter before proceeding to the following chapters.

2-1 PROBABILITY AND STATISTICS

In order to develop several concepts of probability theory that
we shall need in our discussion of quantum mechanics, let us imagine
that we have a box which contains N balls, each marked with some
number which we denote generically by v. In general, the same
v-number may appear on more than one ball, and we let n;, be the
number of balls on which there appears the particular v-number v, .
The box of balls is therefore described by the two sets of numbers

5
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Uy, Uy, U3,...,and n,, n,, ny,.... Evidently, the integers {n,}
satisfy Z,n, = N.T

Suppose we select a ball at random from the box; what is the
probability p, that the selected ball will show the value v, ? Since
out of N possible selections, n, of these would yield the v-number
v, , we conclude that

By (2-1)
Thus if n, = 0 it would be impossible to select a ball showing v;,, and
we would have p, = 0; on the other hand, if n, =N it would be an
absolute certainty that the selected ball would show v,, and we
would have p, =1. In general, the numbers {p,} satisfy the con-
ditions

0<pp<1forallk (2-2a)
and

Z e =1 (2-2b)
k

Exercise 1. Prove Egs. (2-2).

Let us calculate the probability that a single random selection
from the box will yield a ball showing either v, or v;. Since out of N
possible selections, a total of (n, + n;) would yield one of these v-
numbers, we conclude that

n, +n;

N

p (either v, orvy;) = =pr *D; (2-3a)
In light of this result, we may view Eq. (2-2b) as simply stating that
it is an absolute certainty that a randomly selected ball will show
some v, number.

Suppose we now make two random selections, taking care to
return to the box the first ball selected before making the second
selection (thus, it is possible to pick the same ball both times).
What is the probability that the first ball will show the value v,, and
the second ball then show the value v;? There are n,, ways to select a
v, -ball, and for each of these ways there are n; ways to select a v;-ball;
thus, there are a total of n;, - n; ways to select first a v -ball and then
a v;-ball. However, there are N possible selections for the first ball,
and for each of these there are N possible second selections; thus,

tFor the sake of brevity, we shall often denote a set of entities a;, a;,
a3, ...by {ai}.
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there are a total of N - N possible double selections. We conclude
then that

: L
p (first v, then v;) = NN =Dp * Pj (2-3b)

Equations (2-3) form the basis for almost all considerations involving
probability theory.

Exercise 2. In the situation we have been discussing, suppose the
box contains N = 50 balls, each bearing some integer between 1
and 8; specifically, letting n, be the number of balls showing
the value v, =k, suppose that n, =3, n, =2, n; =5, n, = 8,
ns =13, ng =9, n; =6 and ng =4. Use the probability con-
cepts developed above to calculate the probability that the
numbers found on two random samplings will sum to 5. [Ans.:
68/2500]

Suppose now that we subject our box of N balls to M samplings;
that is, we select a ball at random from the box, record its v-number
and return it to the box a total of M times. We denote by v® the
v-value recorded on the ith sampling, and we make the following two
definitions: The mean or average of the v-values recorded is

M

Z N0)
i=1
= 2-4
) 7 (2-4)
and the root-mean-square (or rms) deviation of these values is
(2-5)

The definition of (v} is undoubtedly familiar and needs little
comment. It describes the way in which we would ordinarily com-
pute the “best value” of a series of measurements, or the “average
grade’ on a class quiz. The latter analogy is actually more appro-
priate to our discussion here, since we evidently do not wish to imply
that (v) has some truth or legitimacy beyond that of any of the indi-
vidual v®-values.

Less familiar, perhaps, than the definition of the mean value (v)
is the rms deviation Av. We see that to compute this quantity, we
first calculate the deviation from the mean, v® - (v), of each v-
number obtained; we next compute the average of the squares of
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these deviations (the squares are taken to keep the positive and nega-
tive deviations from canceling each other); and finally, to counteract
to some extent the squaring, we take the square root of this average.
Thus Av is the square root of the mean of the squares of the devia-
tions of the v®¥-values from (v). This quantity might also be called
the rms dispersion, since it evidently measures the extent to which
the v®-values are “dispersed” about (v). Of course, this is not the
only quantity which can be calculated to measure this dispersion; for
example, we could compute instead the average of the absolute values
of the deviations, | v'? - ()|. However, the quantity in Eq. (2-5) has
the advantage that it can be written in another often useful form.
Specifically, we see from Eq. (2-5) that

Mo e
Z [vD - 2® + v)?]

i=1

2 =
(Av) i
M M

)2 Z p®

_ =1 By i=1 +M<v>2
M M M

=(v?) - 2AvXv) + (V)?

Therefore,

Av =V (W?) - (V)? (2-6)

In words, the rms deviation of the v‘?-values is equal to the square
root of the difference between the average of the square and the
square of the average. It is to be noted that these two quantities are
not in general equal; indeed, a comparison of Egs. (2-5) and (2-6)
reveals that (v?) =(w? only if every v?-value coincides with (v).
Equation (2-6) tells us that the extent to which (v*) and (v»)* differ
provides us with a direct measure of the dispersion in the v”-values.

If we have a knowledge of the two sets of numbers {v,} and
{n, }, or equivalently {v,} and {p,}, it would seem that we ought to
be able to predict approximately what values would be obtained for
(v and Av. The key to making such a prediction is the following as-
sumption: since n, of the N balls have the number v, , then in M
random samplings of these balls we ought to obtain the value v,
approximately m, times, where m;, /M =n, /N. Thus, using Eq. (2-1),
the approximate number of times the value v, should appear in the
set of values vV, v . v®) jg

my =% M =p M
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With this, the sum in Eq. (2-4) can be written

iv(") = kav,z = Z(pkM)Uk
i=1 k k

and Eq. (2-4) becomes
=) prve (2-7)
k

Equation (2-7) expresses (v) as a ‘“weighted sum” of the possible v, -
values; the weight assigned to any particular value v, is just the prob-
ability of its occurrence, p, . It should be remarked that this value
for (v) is the ‘“‘theoretically expected” value; the ‘‘experimental”
value in Eq. (2-4) will generally differ somewhat from this theoretical
value owing to the randomness involved. However, in the limit of
very many experimental samplings (M — ), the value in Eq. (2-4)
may be expected to get arbitrarily close to the value in Eq. (2-7).

Equation (2-7) may be generalized quite easily, as the following
exercise shows.

Exercise 3. Let f be a given function of v, and let this function be
evaluated for each of the v®”-values. Prove that the average or
mean of the resulting set of f(v”)-values is

(fw) = ) Pe F(0r) (2-8)
k

[Note that by putting f(v) = v in Eq. (2-8), we obtain Eq. (2-7).]
By putting f(v) = v? in Eq. (2-8), we see that

W)= ) Ppvy?
k

Using this and Eq. (2-7), we may thus write Eq. (2-6) as

/e R

We now observe that Egs. (2-7) and (2-9) express the two basic quan-
tities (v) and Av wholly in terms of the numbers {v, } and{ p,}. Thus,
given a set of values v,, v,, ... distributed with probabilities p, ,
P2,..., Egs. (2-7) and (2-9) allow us to calculate the theoretically
expected mean and rms deviation to be obtained in any random
sampling of these v-values.
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Exercise 4. Consider the collection of numbered balls described in

Exercise 2.

(a) Calculate (v) and Av. [Ans.: (v) = 4.94 and Av = 1.8]

(b) Sketch a “frequency bar-graph’ of the expected results of
M =100 samplings [i.e., lay out the values v, on the
horizontal axis, and construct vertical “bars” to indicate
the number of times each v, -value should be obtained.]
Show on the graph by means of a vertical line the value (v).
Also, draw a horizontal line of length 2Av in such a way
that it indicates roughly the ‘“‘spread” or ‘‘dispersion’ of
the v-values about (v).

The foregoing exercise illustrates the overall significance of (v)
and Av. Certainly a complete description of the expected results of a
“multiple sampling” experiment requires the specification of all the
numbers (vy,p; ), (v2,02), (V3,P3), .... However, if we are asked to
describe the results with only two numbers, we would evidently do
well to state the values of (v) and Av: (v) is essentially a ‘‘collective
value” for the set of v-numbers, while Av (or the smallness thereof)
provides a quantitative measure of the degree to which it is actually
meaningful to so characterize the set of v-values by a single value.
These ideas will play a very important role in understanding certain
basic concepts in quantum mechanics.

2-2 COMPLEX NUMBERS

An understanding of quantum mechanics requires some knowl-
edge of a few elementary properties of complex numbers. For our
purposes, we may define a complex number ¢ as a quantity which
can be written

c=a+ib (2-10a)

Here a and b are ordinary real numbers, while the “number” i
satisfies
i =1 fory i=~"1 (2-10b)

The real number a is called the “‘real part” of ¢, and the real number
b is called the “imaginary part” of c:

a = Rec b=Imec (2-10c)

If b =0, then c is said to be a “pure real” number; if a = 0, then c is
said to be a “pure imaginary’ number. We write ¢ = 0 if and only if
a=b=0.
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Complex numbers can be added and multiplied. The rules for
carrying out these operations are the same as for ordinary real num-
bers, but taking account of Eq. (2-10b). Thus if ¢; =a, +ib; and
¢, =a, +ib,,then the sum of ¢; and ¢, is defined to be the complex
number

¢y te, =(a, +iby)+(a, +iby) =(a, ta,) +i(b, +b,) (2-11a)
and the product of ¢, times ¢, is defined to be the complex number
¢y ¢y =(ay tiby)-(a; +iby)=(a; a; - by by) +i(a; by, + b, ay)
(2-11b)

If ¢ is written in the form of Eq. (2-10a), then the complex
conjugate of c is defined to be the complex number

c*=a-ib (2-12)

Exercise 5. Prove the following properties of the complex conjugate:
+ o* — o%

() Ree=-%" Imc=¢ 2ic (2-13)

(b) ¢ is a pure real number if and only if ¢* =c. ¢ is a pure
imaginary number if and only if ¢* = -¢.

(c) c**=¢ (2-14a)
(c; +ey)*=cf +cF (2-14b)
(e1c;)¥ = CTC;: (2-14c¢)

The square modulus of c is denoted by |c|? and is defined to be
the product of ¢ times its complex conjugate:

leP? = c*c (2-15a)

The modulus of a complex number is just the positive square root of
its square modulus:

lel= ++/c¥e (2-15b)

Exercise 6. Prove the following properties of the modulus:

(a) lcI* =(Rec)* + (Ime)* or |c| =/ (Rec)® + (Imc)® (2-16)

(b) lcl = |Rec| and |c| > |Imc| (2-17)
(c) lereyl=leqlle,l (2-18a)
ley +eal Slerl + el (2-18b)

[Hint: Write ¢, =a, +ib, and ¢, =a, + ib, for part (c).]
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The square modulus of ¢ should not be confused with the
square of c. 1f ¢ =a +ib, then using Eq. (2-11b), we have

le|? =c*c=a* + b2
whereas
c? =cc=(a® - b*) +i(2adb)

Clearly, the square modulus is always a nonnegative real number,
while the square is in general complex. In fact, the distinction be-
tween the square and the square modulus disappears if and only if ¢
is pure real; in this case, the modulus becomes the absolute value.

It should be remarked that the complex number system can be
set up without making use of the ‘“number” v/-1. This is done by
initially defining a complex number ¢ to be an ordered pair of real
numbers (a,b), and then setting forth appropriate rules for algebrai-
cally manipulating these ordered pairs. For example, if ¢, = (a;,b,)
and ¢, = (a,,b,), then the sum ¢, +¢, would be defined as the
ordered pair (a; +a,,b, +b,), and the product ¢, - ¢, would be de-
fined as the ordered pair (a,a, - b, b,,a,b, +a,b,). The symbol i
can then be introduced as merely an ad hoc device to simplify these
rules; that is, by writing the ordered pair (a,b) as a + ib, we can ma-
nipulate complex numbers using the familiar rules of the algebra of
real numbers, with the additional rule that i* is always to be replaced
by -1. Although we shall always write a + ib instead of (a,b), the
reader should try to adopt this essentially ¢‘algebraic’’ attitude toward
complex numbers instead of the popular “mystical” attitude, which
is overly concerned with the square roots of negative real numbers.

In exact analogy with the foregoing, we can define a complex
function ¥ of a real variable x to be a function of the form

Y (x) = u(x) +iv(x) (2-19)

where u(x) and v(x) are ordinary real functions of the real variable x.
All the preceding equations concerning the complex number ¢ hold
for the complex function Y (x), provided that we replace Rec by
Rey (x) = u(x), and Imc by Imy(x) =v(x). Thus, for example, the
complex conjugate of Y (x) is Y *(x) = u(x) - iv(x), and the square
modulus of ¥ (x) is 1y (x)P = u? (x) + v? (x).

The complex function Y (x) can be differentiated and integrated
with respect to its argument x. The rules for carrying out these two
operations are just what one would expect:

d _d d
I V() = () + i u(x)
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fb Y (x)dx = fb u(x)dx +i fb v(x)dx

a a

and

We note that the derivative of Y (x) is a complex function of x,
whereas the definite integral of Y (x) is a complex number, in exact
analogy with the situation for real functions of x.

It should perhaps be mentioned that it is also possible to define
complex functions Yy of a complex variable z = x + iy. The situation
with respect to differentiation and integration then becomes rather
involved. However, in this book we shall require only a knowledge of
the comparatively simple properties of complex functions of a real
variable, as outlined above.

Exercise 7. The complex function e®** (k real) is defined by
e'** = cos kx + i sin kx (2-20a)

Prove from this definition that e** has the following properties:

(eikx )* = e—ikx (2-20b)
eif1x . gikax — gilki+ky)x (2-20c)
leikx l2 = 1 (2‘20d)

i iR% v (fs ikx
= = (ik) e (2-20e)
feikx dx = }I; eikx +C (2-20f)

[We sometimes will write exp (ikx) instead of e~ .]

2-3 HILBERT SPACE VECTORS

The language of quantum mechanics is mainly the language of a
branch of mathematics called ‘“‘vector spaces.” The reader is assumed
to be familiar with the elementary properties of ‘“ordinary vectors”
in three-dimensional Euclidean space (mathematicians denote this
space symbolically by &;). Actually, the notion of a vector space is
much more general than this. In fact, quantum mechanics is formu-
lated in terms of an infinite-dimensional vector space called a “Hilbert
space” (denoted symbolically by H); in ¥ the “vectors” are not
directed line segments, as in & 3, but rather are complex functions of
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real variables. A complete development of the mathematics of the
Hilbert space is beyond our reach here; however, at the expense of a
little mathematical rigor and generality, we shall find it possible to
come to a fairly good understanding of the Hilbert space by drawing
suitable analogies with the simpler, more familiar properties of & 5.
To this end, we shall begin our discussion of vectors in # by review-
ing some of the salient ideas concerning vectorsin & ;.

A ‘“‘vector” in &; can be defined as a directed line segment.
Thus, a vector v in &; possesses the properties of magnitude and
direction; the magnitude of v, written |v|, is the length of the line
segment, and the direction of v is the direction of travel from the
“tail”” of the line segment to the ‘“head” of the line segment.

Two operations common to all vector spaces are the operations
of scalar multiplication and vector addition. Scalars in & ; are simply
the set of all real numbers. The multiplication of a vector v by a
scalar r yields a new vector, written rv, whose direction is the same as
that of v but whose magnitude is [r| times the magnitude of v
(Irvl = |r| Iv]); negative scalar multipliers reverse the direction. The
addition of two vectors v, and v, yields a new vector, which is
written v, +v,; this vector is obtained by placing the tail of v, at
the head of v, , and then constructing the directed line segment from
the tail of v, to the head of v,. These two operations of scalar multi-
plication and vector addition allow us to form linear combinations of
vectors; thus, if v, and v, are any two vectors in &;, andr, andr,
are any two & ; -scalars (i.e., real numbers), then the ‘linear combina-
tion” ’

V=r,v, trv, (2-21)

is a well-defined vector in & 5.

Another important feature of many (but not all) vector spaces
is the existence of an operation called the inner product. In &, the
inner product of two vectors v; and v, is written v, * v,, and is cus-
tomarily called the “dot product” of v, and v,. By definition,

Vi * V3 = |V |vy| cos b, (2-22)

where 6,, is the angle between v, and v, when these two vectors are
placed tail-to-tail. Geometrically,v; - v,, can be thought of as the
product of the length of v, times the projected length |v,| cos8,, of
Vv, on v, or equivalently as the product of the length of v, times the
projected length |v; | cos 6, of v; onv,.

It is evident from Eq. (2-22) that the inner product of two
vectors is always a scalar (in this case, a real number). In particular,
the inner product of a vector with itself, called the norm of the



2-3 Hilbert Space Vectors 15

vector, is always a nonnegative real number:
Normofv=v-:-v=|v]> 20 (2-23)

It can be shown from Eq. (2-22) that the inner product in &,
satisfies the follpwing relations:

Vy "V TV V, (2-24a)
riVy * TV =1 Vy * v, (2-24Db)
(vi +vp) (V3 +va)=vy s vy +vy ~ vy tvy V3tV c vy (2-24c)

Vi * vy | § VATRETRATERD (2-244)

Exercise 8. Verify the foregoing relations.

Equation (2-24a) says that the inner product is cummutative.
Equations (2-24b) and (2-24c) show how the inner product behaves
with respect to the operations of scalar multiplication and vector
addition. Equation (2-24d) states a very fundamental property of
the inner product; this relation is often referred to as the Schwarz
inequality.

Two vectors are said to be orthogonal if they are perpendicular
to each other. Since cos(n/2) =0, then from Eq. (2-22) we can
write

v, and v, are orthogonal if and only if v, - v, =0 (2-25)

Indeed, we may adopt this as our definition of orthogonality, if we
agree to regard the null vector 0 as being orthogonal to any other
vector and also to itself.
We often deal with sets of vectors, v,, v,,... or more com-
pactly, {v;}. Concerning such sets we make the following definitions:
(i) The set {v;} is said to be orthonormal if and only if each
vector of the set is orthogonal to every other vector of the set, and
each vector of the set has unit norm. These properties can be ex-
pressed most succinctly through the use of the so-called “Kronecker
delta symbol,” §;, which is defined by
{0 ifi#j
6; = . (2-26)
1 ifi=j
Thus we have

{v;} is an orthonormal set if and only if v; - v; =§; (2-27)

(ii) The set {v;} is said to be complete if and only if any vector
in &; can be written as a linear combination of the vectors in {v;}. In
other words, {v;} is a complete set if and only if, for any vector v in
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&3, there exists at least one set of scalars {r;} such that v=2;rv;. It
turns out that, in &5, any set of three or more noncoplanar vectors
constitutes a complete set.

Of particular interest are those sets of vectors which are both
orthonormal and complete; such a set is called an orthonormal basis
set. In &, there are infinitely many different orthonormal basis sets
(they differ from one another by simple rotations), and all such sets
have exactly three vectors; for this reason, &, is said to be “three-
dimensional.” A specific orthonormal basis set in &; is usually
written as (x,y,z) or (i,j,k) or (e,,e,,e;); we shall use the latter
notation. Thus, we have from the orthonormality of the set {e;},

et e=5, (ij=123) (2-28)

Moreover, since {e;} is complete, then given any vector v we can find
scalarsr, ,r, and r; such that

3
v= Z rie; (2-29a)

i=1

Indeed, using Eqgs. (2-24) and (2-28), we see that

3 3 3
ej'Vzej' <Zrie,~) =Z r,-(ej'el-)=Zr,~6ij=r‘j (2'29b)

i=1 i=1 i=1

That is, the expansion coefficients or components r; of v in the
orthonormal basis {e;} are just the scalars e; - v. Therefore, we can
write Eq. (2-29a) as

v= Z (e V)e: (2-29¢)
=1
an equation which may be regarded as an identity for all vin & 5, and
all orthonormal basis sets {e;}. The import of Eq. (2-29c¢) is illus-
trated in Fig. 1.

Exercise 9. If two & ;-vectors a and b have components {¢;} and {b;}
relative to a given basis (e, ,e,,e; ), prove that

3
a-b=Y ab; (2-30a)
i=1

and in particular that

3
a-a=) a} (2-30b)
i=1

[Hint: Make use of Egs. (2-24) and (2-28).]
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Fig. 1. Illustrating the expansion of an arbitrary vector v in an
orthonormal basis set e;, e;, e3. The inner product
(e; * v) is just the projected length or ‘“component” of v in
the direction of 3ei; therefore, v can be written as the

vector sum v = Z (e; * v)e;.
i=1

The preceding discussion of vectors in &3 is by no means com-
plete, but it is extensive enough for our purposes. We shall now show
how these vector concepts in & ; carry over into the Hilbert space ¥ .

We define a vector in 3 to be a complex function ¢ of a single
real variable x [see Eq. (2-19)]. In other words, a vector in ¥ is a
rule of correspondence which assigns to each real number x a com-
plex number Y (x). To be precise, we should mention that not all
such functions are truly vectors in #, but only those functions that
satisfy a certain condition; we shall state and discuss this condition
later [see Eq. (2-35)].

The scalars in 3 are by definition the set of all complex num-
bers. This is to be contrasted with the situation in & ;, where the
scalars are the set of all real numbers.

The two operations of ‘“scalar multiplication” and ‘‘vector ad-
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dition” are defined in accordance with the usual rules for adding and
multiplying complex quantities [see Egs. (2-11a) and (2-11b)]. Thus,
if Y, (x) and Y, (x) are any two vectors in J(, and ¢, and ¢, are any
two ¥ -scalars (i.e., any two complex numbers), then the ‘“linear com-
bination”’

V(x)=ciy(x) tey,(x) (2-31)

is a well-defined vector in 3. T
In 3 the inner product of two vectors y,(x) and ¢, (x) is
written (y,,¥, ), and is defined by

Wi Wa)= fw(xwz (x)dx (2-32)

Thus to calculate (y,,y,), we multiply ¥, (x) by the complex con-
jugate of Y, (x), and integrate the result over all values of x. This
quantity is sometimes referred to as the “overlap” of ¥, (x) and
¥, (x), since it is in some loose sense a measure of the extent to
which these two functions match or complement each other over the
x-axis.

Exercise 10. Write y;(x) = u;(x) +ivj(x), for j=1 and j=2, and
show explicitly that (¢ ,,y,) is an ¥ -scalar. Note in particular
that if x had not been integrated over in Eq. (2-32) then
(¥ 1,¥,) would not have been an ¥ -scalar.

The fact that (y,,y,) is always an X -scalar parallels the fact
that v, - v, is always an & ; -scalar.

In &; we defined the norm of a vector to be its inner product
with itself. Analogously, in #{ we define the norm of the vector
Y (x) to be

Norm ofw(x)z(w,w>=fww*<x)w(x)dx= fmw(chzxzo
- - (2-33)

Exercise 11. Write y(x)=u(x)+iv(x), and show explicitly that
(V,¥) is a nonnegative real number. Note in particular that if
one of the functions in the integrand in Eq. (2-32) had not been
complex conjugated, then (y,/) would not always be a real
number.

TIt should be emphasized that, in denoting a Hilbert space vector by the
symbol “Y(x),” we are referring to the function Yy of the variable x, and not the
value of this function at the point x.
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We see then that in both &; and H, the norm of a vector is a
nonnegative real number. In fact, the norm of a vector is zero only
for the “null vectors,” v=0 and ¢ (x) = 0.

In analogy with Eqs. (2-24), it is not difficult to show that the
definition of the inner product in Eq. (2-32) implies the following
properties:

(Ya2,¥1)=(Y1,92)* (2-34a)
(cr¥1,ea¥2) =cfe, (V1,¥2) (2-34b)
(W1 ¥ ¥, ¥ ) =(Wi,¥s) * (r,0a) +(Ya,¥s) + (V2,V4)
(2-34c)
(W1, ¥ SV Va,¥2) (2-34d)

Exercise 12.
(a) Using the definition in Eq. (2-32), prove the first three re-
lations listed above.
(b) Prove Eq. (2-34d) in the following way: define the vector
Va(x)= (V1,21 (x) - (V1,¥1)¥2(x), and make use of

the fact that the norm of y ; (x) is nonnegative.

In this book we shall have little occasion to actually compute
explicit inner-product integrals. However, the four properties of the
inner product integral listed in Egs. (2-34) will be used quite ex-
tensively, so the reader should become as familiar with them as
possible. We note in particular the appearance of the complex con-
jugation operation in Egs. (2-34a) and (2-34b), in contrast to
Egs. (2-24a) and (2-24b); however, even in the latter equations, the
complex conjugation operation would evidently not be incorrect, but
merely unnecessary. The Schwarz inequality in Eq. (2-34d) has the
same form as in Eq. (2-24d), but it should be noted that |v; + v,|in
Eq. (2-24d) means the absolute value of the (possibly negative) real
number v, * v,, whereas [(V;,V¥, )l in Eq. (2-34d) means the modulus
of the (in general) complex number (¥ ,,V, ).

The reader should now begin to appreciate the rationale for
calling complex functions “vectors” in a vector space. From a
strictly mathematical point of view, directed line segments may be
regarded as ‘‘vectors,” not because they possess the properties of
magnitude and direction, but rather because we can define for
directed line segments the three operations of scalar multiplication,
vector addition, and vector inner multiplication, in such a way that
Eqgs. (2-23) and (2-24) are obeyed. It is these latter relations that
actually determine the “vector character” of directed line segments,
and not the concept of a directed line segment itself, nor even the
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specific recipes for forming the scalar product, vector sum and vector
inner product, relative to directed line segments. Now we have just
seen that, if we adopt certain well-defined rules for obtaining the
“scalar product,” ‘“vector sum” and “inner product,”’ relative to
complex functions of a real variable, then we arrive at the properties
expressed in Eqgs. (2-33) and (2-34). These properties are essentially
identical to those in Egs. (2-23) and (2-24); consequently, we are
entirely justified in regarding complex functions as ‘‘vectors” in a
vector space. In particular, our definition of the inner product in
Eq. (2-32), which at first sight probably seemed rather peculiar to
the reader, was chosen simply because it was a way of obtaining a
unique scalar from two vectors such that Egs. (2-33) and (2-34) were
satisfied. If we could conjure up a different set of rules for forming
“linear combinations” and ‘““‘inner products” of complex functions,
which still satisfied all the conditions in Egs. (2-33) and (2-34), then
we would have thereby constructed another perfectly valid ‘‘vector
space” of complex functions; however, that vector space would
probably not turn out to be as relevant to the task of describing
physical phenomena as our present ‘‘Hilbert space” turns out to be.

We are now in a position to state the condition alluded to earlier
which a function ¥ (x) must satisfy in order to be a vector in (. We
admit as vectors of J€ only those functions y (x) which have a finite
norm:

Y (x) is a vector of H if and only if (y,0)= fmlxp(x)lz dx < o
o (2-35)

We should note that an analogous condition was implicitly imposed
on & ; -vectors, through their definition as directed line segments (i.e.,
lines of finite length). Condition (2-35) insures the following two im-
portant results:

(i) If ¢, (x) and ¥, (x) are any two vectors in H, then the inner
product (y;,y,) “exists’ in the sense that it is a complex number
with a finite modulus. To see that this is true, we note that, since
Y, (x) and Y, (x) are ¥ -vectors, then (Y ,¥;) <o and (Y,,¥,) <
by Eq. (2-35). Our result then follows immediately from the Schwarz
inequality:

[(Y1,¥,)l 5\/(¢1,\J/1)\/(\1’2,¢/2)< e

(ii) If ¢, (x) and ¥, (x) are any two vectors in ¥, then so is any
linear combination Y (x) =c;y,(x) tc,¥,(x). To see that this is
true, we write

(V,0)=(c1¥y teadr, ey teayy)
=cfe, (Y, ) +efea (Wi, ¥2) Hedey (o, )+ cfer (Y2, V2)
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=l 1P(W1,¥1) Hlea |2 (Ya,va) +efea (Y,¥2)
+ [cFe, (Vi,¥2)]*

=lciP(Y1,¥1) a2 (Y2,¥2) + 2Re[cFer (V1,¥2)]

SO

W) S et Py, 0r ) + 1ea2(Wa,2) + 2lce, (W ,¥2)l

Now the first two terms on the right are bounded by virtue of
Eq. (2-35), and the third term is bounded by virtue of result (i) above.
Consequently, (¢,y) < o, and so by Eq. (2-35) the linear combina-
tion Y (x) = c; ¥, (x) + ¢, ¥, (x) is indeed a vector of J(.

The preceding two results mean, first, that we can be assured
that the improper integrals appearing in the definition of the inner
product always converge (or make sense) for Hilbert space functions,
and second, that the operation of taking linear combinations of Hil-
bert space functions cannot produce a non-Hilbert space function.

In direct analogy with Eq. (2-25), two ¥ -vectors are said to be
orthogonal if their inner product vanishes:

V1 (x) and ¢, (x) are orthogonal if and only if (Y, ¥,)=0
(2-36)

A set of ¥ -vectors {y;(x)} is said to be an orthonormal set if
and only if each vector of the set is orthogonal to every other vector
of the set, and each vector of the set has unit norm. Using the Kron-
ecker delta symbol defined in Eq. (2-26), we therefore have in anal-
ogy to Eq. (2-27),

{yi(x) }is an orthonormal set if and only if (Y;,¥;) = &;j
(2-37)

A set of J(-vectors {y;(x)} is said to be a complete set if and
only if any vector in J can be written as a linear combination of the
vectors in {y;(x)}. In other words, {y;(x)} is a complete set if and
only if, for any vector Y (x) in 7, there exists at least one set of
scalars {c;} such that ¥ (x) = Z;¢;y;(x).

Special use will be made of sets of ¥ -vectors which are both
orthonormal and complete; such a set is called an orthonormal basis
set. In ¥, asin &;, there are infinitely many such orthonormal basis
sets. However, whereas in &; all such sets contain exactly three vec-
tors, it turns out that in ¥ all orthonormal basis sets contain infi-
nitely many vectors; for this reason ¥ is said to be infinite-dimen-
sional. If {e;(x)} is an orthonormal basis set, then we have, by the
orthonormality of the set,

(6,‘,61‘) = 61] (l’] = 1a2, L) ') (2'38)
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Moreover, since {e¢;(x)} is a complete set, then given any J(-vector
¥ (x), we can find a set of scalars {¢;} such that

V(x) =) cieilx) (2-392)

Indeed, using Egs. (2-34) and (2-38), we see that

(eps¥) = <6j3 Zci€i> 5* Zci(e/’7ei) = Z cid;j = ¢; (2-39Db)
i=1 i=1 i=1

That is, the expansion coefficients or components c; of Y (x) in the
orthonormal basis {e;(x)} are just the scalars (¢;,¥). Therefore, we
can write Eq. (2-39a) as

(@)= ) (ent)elx) (2-39¢)

an equation which may be regarded as an identity for all ¢ (x) in 3(,
and all orthonormal basis sets {¢;(x)}.

Exercise 13. If two ¥ -vectors ¥ (x) and ¢(x) have components {c;}
and {d;} relative to a given basis {¢;(x)}, prove that

oo

(W,9)= ) c¥d, (2-40a)

i=1

and in particular that
W)= el (2-40b)
i=1

Compare these results with those of Exercise 9.

The properties of the vector space # are in many respects
deeper and subtler than the foregoing development would seem to
indicate. However, the depth and rigor of our presentation here will
be sufficient for the purposes of this book. The main results of
this section are reviewed and summarized in the accompanying
table. In the remainder of this book, we shall be concerned only
with vectors in #, and not vectors in &;. However, the corre-
spondences which we have traced between the two vector spaces will
often allow us to “visualize,” by analogy with &5, just what it is that
we are doing in #. This will help us to keep our feet on the ground,
so to speak, as we proceed through the rather abstract theory of quan-
tum mechanics.
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2-4 HILBERT SPACE OPERATORS

We recall from elementary calculus that a “function” f is, by
definition, a ‘“rule” which associates with each number x another
number y = f(x). This concept of a function can be extended to
apply to vectors as well as numbers; however, it is then customary to
use the term ‘“‘operator” instead of “function.” Thus, O is said to be
an operator in the Hilbert space if and only if O specifies some rule of
correspondence which associates with each vector ¢ (x) in ¥ another
vector ¢(x). We write this as

¢(x) = Oy (x) (2-41)

and we speak of O as “operating on the vector y (x), transforming it
into the vector ¢(x).”

In the preceding section, we discussed the way in which a vector
in ¥ can be (i) multiplied by a scalar, (ii) added to another vector,
and (iii) multiplied by another vector. Analogous operations can be
defined for operators as well. Thus (i) the operator cO transforms
a glven vector Y (x) into the vector c(Ov(x)), (ii) the _operator
Ol + 0, transforms a given vector y(x) into the vector Ol Y(x) +
0, ¥ (x), and (iii) the operator 0, 0, transforms a given vector ¥ (x)
into the vector O, (O, y (x)). Thus, the product of ¢ times O, the sum
of O, and O,, and the product of O, times O, , are by defmltzon
such that the following equations are valid for all vectors ¢ (x) in J:

(cO)y (x) = c(OY (x)) (2-42a)
(0, +02)w(x)=01w(x)+02wx) (2-42b) |
(0,0,)¥(x)=0,(0, ¥(x)) (2-42c)

In connection with Eq. (2-42c¢), it must be emphasized that it is not
necessarily true that O, 0, =0, O, ; in other words, it is not generally
true that, for every ¥ -vector ¢ (x), 0, acting on O, ¥ (x) produces the
same vector as does O, acting on 01 ¥ (x). If, lAlowever, the equality
does hold for all vectors y (x), then we say that O, and O, commute:

0O, and O, commute if and only if O, O, ¥ (x) = 0,0, ¥ (x)
for all vectors Y (x) in 3  (2-43)

Exercise 14. Let 0, =x [ie., O,¥(x)= x)], and let 0, = d/dx
[i.e., O, ¥ (x) =dy/dx]. Show that O1 and 0O, do not commute.

In quantum mechanics virtually all operators of interest possess
a property called “linearity.”” By definition, an operator O is said
to be a linear operator if and only if, for any ¥ -vectors ¥, (x) and
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¥, (x) and any complex numbers ¢; and c,,
Oci ¥y (®) + 29, (%)) =c1 OV, (%) + ¢, O, (x)  (2-44)

Exercise 15. Show that the operator ““d/dx” is a linear operator, but
that the operator “log” is not a linear operator.

It is easy to show from Egs. (2-42) that if O, and O, are linear
operators, then the operators (¢, O, + ¢, 0, )and O, O, are also linear.

In addition to linearity, another property which many operators
in quantum mechanics possess is the property of ‘“hermiticity.” An
operator O is said to be an Hermitian operator if and only if, for any
two ¥ -vectors ¢, (x) and ¥, (x),

" (¥1,00,) = (Oy,,¥,) (2-45)

As an example, let us see if the simple operator O = ¢ is an Hermitian

operator. If ¢, (x) and y,(x) are any two K -vectors, then, using
Eq. (2-34b), we have

(Y1,e¥7) :C(wl,wz):(C*l//l,‘l/z)

Thus, according to Eq. (2-45), the operator O = ¢ is Hermitian if and
only if ¢ = c*—i.e., if and only if ¢ is real.

" Exercise 16. If O, and O, are Hermitian operators, prove that
(a) ¢;0; +¢,0, is Hermi:cian if ¢, and ¢, are real.
(b) O, 0, is Hermitian if O, and O, commute.

>

We turn now to discuss one final aspect of operators which will
prove to be very essential to the mathematical formulation of quan-
tum mechanics. We make the following definition: If the effect of a
given operator O on some particular ¥ -vector Y (x) is to simply
multiply that vector by an #(-scalar ¢,

Oy (x) = ¥ (x) (2:46)

then we say that the vector ¥ (x) is an eigenvector (or eigenfunction)
of O, and c is the corresponding eigenvalue.t

Exercise 17.

(a) Show that the function e®* (where a is real) is an eigen-
function of the operator ““d/dx.” What is the corresponding
eigenvalue?

(b) Show that the function x" (where n > 1) is an eigenfunc-

T The prefix “eigen” is a German word. When we call ¢ an eigenvalue of O,
we mean literally that ¢ is a value which is ‘“characteristic of” or “peculiar to”
the operator O.
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2

tion of the operator “x - d/dx.
eigenvalue?

(c) Of what operator (excluding O = c) is the function cosax an
eigenfunction?

What is the corresponding

We can now establish two important results concerning the eigen-
vectors and eigenvalues of Hermitian operators:

(i) The eigenvalues of an Hermitian operator are pure real. To
see this, suppose O is an Hermitian operator with eigenvector ¢ (x) and
eigenvalue c. By Eqgs. (2-46) and (2-34b), we can write

W,00) = (¥,c¥) =c(¥,¥)

and

(O, ¥) = (c¥,¥) = c*(¥,¥)

But, since 0 is Hermitian, then these two quantities must be equal:

c(¥,¥) =c*(y,¥)

Excluding the trivial case in which ¢ (x) is the null vector, we have
(¢,¥) > 0, so we may conclude that ¢ = ¢*—i.e., ¢ is pure real.

(ii) The eigenvectors corresponding to two unequal eigenvalues
of an Hermitian operator are orthogonal to each other. The proof of
this statement is the subject of the following exercise.

Exercise 18. Let O be an Hermitian operator with eigenfunctions
Y1 (x) and ¥, (x), and let the corresponding eigenvalues c, and
¢, be unequal. Prove that y;(x) and Y, (x) are orthogonal.
[Hint:. Consider the two quantities(y;,0¢,) and (Ox,bl,d/2)
and use the fact just established that ¢; and ¢, must be pure.
real.]

We shall now prove a theorem that is almost, but not quite, the
converse of the preceding two theorems, (i) and (ii). Suppose A
is a linear operator which possesses a complete, orthonormal set of
eigenvectors {a,(x)} and a corresponding set of real eigenvalues

{a,}:
Aa, (x) =ana,(x), a, real
(%) (%) } (2:47)
(o ,0p) =84, almyn

We shall prove that these conditions imply that the operator A is
Hermitian. We shall do this by showing that, for any two 7 -vectors
Y (x) and ¢(x), it is true that (Y ,A¢) = (Ay,0).

Define ¢, = («,,¥) and e, = (a,,$), and expand ¥ (x) and ¢(x)
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in the orthonormal. basis {«, (x)} according to Eqgs. (2-39):
V(®) =) cpan(@)  9(x)= ) enan(x)

Using the linearity of A, the properties of the inner product in
Egs. (2-34), and the orthonormality of the set {a,(x)} , we have

(Ay9)=(A) "caan, ) Cmam)
\

(Z CnAttn, ) ey )

n m

(Z enanatn, Y emam>

n m

D cfafen (n,am)

m,n

* ok
Z Cnln € 8 nm
myn

SO

. (Ay ) =) ciafen

n

In an exactly analogous way, we find that

(V,A0) = ) ckenan

n

Exercise 19. Carry out the steps leading to this last equation.

Since the eigenvalues {a, } were given to be real, a¥ =a,, it follows at
once that (Ay ,0) = (V,A¢); therefore, A is Hermitian.

The foregoing theorem and its proof should be studied in detail.
Not only is its content important, but the steps in its proof illustrate
well the sort of mathematical manipulations which will be required in
our development of quantum mechanics.

Exercise 20. Suppose a linear operator A has a complete, ortho-
normal set of eigenvectors {a,(x)} and a corresponding set of
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eigenvalues {a,}. Show that a knowledge of the elements of the
two sets {a,(x)} and {a,}is sufficient to completely specify
the operator. [Hint: Show that, for any given ¥ -vector y (x),
the vector Ay (x) is completely defined through the quantities
{a,(x)} and {a,}.]



CHAPTER

3

A Brief Review of
Classical Mechanics

An important prerequisite for a meaningful understanding of
quantum mechanics is a clear appreciation of the fundamental princi-
ples of classical mechanics. It is assumed that the reader is already
familiar with the more elementary ideas and attitudes of classical
mechanics. In this chapter we shall simply try to organize, and
occasionally to expand, these ideas and attitudes, in a way that will
best enable us to see later the basic similarities and differences be-
tween classical and quantum mechanics. At the same time, the level
and approach of our development of the classical theory in this
chapter should give the reader a rough indication of the level and
approach of our development of the quantum theory in the next
chapter.

3-1 A MECHANICAL SYSTEM

Our objects of study will be “mechanical systems” which, for
the sake of simplicity, have only one degree of freedom. For con-
creteness, we shall take as our system a single particle of constant mass
m which is constrained to move along the x-axis in a ‘‘conservative”
force field, F(x). In order to avoid the complications of the theory of
relativity, we restrict our discussion to those cases in which the
velocity of the particle,

dx
dt
is always much less than the velocity of light.

The force function F(x) gives the force exerted on the particle
by its environment at each point x; thus the force function may be
said to describe the mechanical interaction of the particle with its
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environment. This interaction may also be described by the potential
function V(x), which by definition is that function whose negative
derivative with respect to x is the force function:

F(x)=- dix V(x) (3-2)

Although it is possible to think of forces which cannot be derived
from any function V(x) according to Eq. (3-2) (e.g., a frictional
force, which depends not on x, but rather on the direction of mo-
tion), our earlier stipulation that the force field be “conservative”
means precisely that V(x), as defined by Eq. (3-2), does exist. Con-
sequently, for the systems of interest to us it makes no difference
whatsoever whether we describe the interaction between the particle
and its environment by specifying F(x) or V(x), since if one of these
functions is known the other one may be found through Eq. (3-2).
The physical significance of the potential function may be un- ,
derstood as follows: Consider the graph of V(x) in a small neighbor-
hood of some point x,. If the graph is sloping upward in this neigh-
borhood, then dV/dx|, > 0, and so Eq. (3-2) implies that the force
F(x,) is in the negative x-direction; on the other hand, if the graph is
sloping downward, then dV/dx|., < 0, and Eq. (3-2) implies that
the force F(x,) is in the positive x-direction. Thus, the force F(x) al-
ways tries to move the particle in that direction which would result in
a decrease in V(x); moreover, Eq. (3-2) says that the strength or
magnitude of this force at a given point is numerically equal to the
rate of decrease of V(x) at that point. We may therefore think of
the graph of V(x) as being a sort of “hilly terrain” upon which the
particle rolls under the influence of some pseudogravitational force.

Exercise 21.

(a) Show that two potential functions which differ by only a
constant (i.e., V, (x) = V; (x) + C) give rise to identical force
functions, and hence are “physically equivalent’ potentials.

(b) For the force field F(x) = - kx, what is the potential field?
For the potential field V(x) = k/x, what is the force field?

(c) If the point x, is a local minimum of V(x), show that x,
is a point of stdble equilibrium; i.e., show that the particle
feels no force at the point x,, while at any point slightly
above or below x, the particle feels a force acting toward
Xo. In asimilar way, show that if x, is a local maximum of
V(x), then x, is a point of unstable equilibrium.

The basic program of mechanics, both classical and quantum, is
essentially twofold: First, we have to decide how we shall specify the
instantaneous state of a given mechanical system, and then we must
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discover how this state changes or evolves with time. In this chapter
we shall review how classical mechanics accomplishes these ends, and
in the next chapter we shall consider the approach taken by quantum
mechanics.

32 THE CLASSICAL STATE

In classical mechanics the instantaneous state of a mechanical
system is described in terms of the values of certain ‘“‘observable
variables” of the system. For the simple system of a particle of
mass m constrained to move along the x-axis, the observable vari-
ables used to define the state are normally the position x and the mo-
mentum p = mv of the particle. In other words, the state of the sys-
tem at time ¢ is specified by the pair of values [x(¢),p(t)].

This classical definition of the state of a mechanical system
tacitly assumes that:

(i) the position and momentum variables both have precise,
well-defined values at each instant of time; and

(ii) it is always possible, at least in principle, to measure these
values without significantly disturbing the system.

These assumptions might seem so natural and innocuous as to
hardly merit mentioning. However, we shall find in the next chapter
that quantum mechanics, in its most widely accepted formulation,
actually denies the general validity of both these assumptions! This
comes about as a consequence of the radically different viewpoint
taken by quantum mechanics with regard to the concepts of ‘“‘state”
and ‘“‘observable variables,” and to the role played by the measure-
ment process. An elucidation of these important points will occupy
much of our attention in the following chapter.

3-3 TIME EVOLUTION OF THE CLASSICAL STATE

3-3a The Newtonian Formulation

Having defined the instantaneous state of our classical, one-
particle system, we must now address ourselves to the problem of
discovering how the state changes with time. The assumption of
course is that the state variables x and p stand in a definite func-
tional relationship to the time variable t, and our object is to de-
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termine the precise forms of the functions x(t) and p(t). One way
to achieve these ends is to postulate Newton’s second law,

Force = mass X acceleration
which we shall write here in the form

&z _F@)

dt? m (5a)

In words, this law says that the desired function x(¢) is that function
whose second time derivative is equal to the force function divided
by the particle mass. Evidently, then, to find x(¢) we must integrate
Eq. (3-3a) twice with respect to t; once x(t) is found, we then obtain
the function p(t) by differentiating x(t) and multiplying by m:
dx

p=m it (3-3b)
To be sure, the twofold integration of Newton’s second law may be
very difficult, if not impossible, to perform analytically for certain
force functions F(x). However, this is more a problem of applied
mathematics rather than physics (although it sometimes happens that
a “feeling” for a given physical problem will suggest a fruitful way of
carrying out the requisite integrations). For our purposes, though,
we merely content ourselves with the thought that Eq. (3-3a) in prin-
ciple determines the function x(t) for any given force field F(x), re-
gardless of how difficult it may be to explicitly solve the differential
equation.

In twice integrating Eq. (3-3a), we will generate two constants
of integration. The values of these two constants may be uniquely
fixed by specifying the values of x and dx/dt at some “‘initial time”’
t=0. Equivalently, since dx/dt and p are related by Eq. (3-3b), we
may specify the initial value of p instead of dx/dt.

In conclusion we see that, with either F(x) or V(x) given, and
with the “initial state” [x(0), p(0)] specified, then Eqs. (3-3a) and
(3-3b) enable us to determine unambiguously the state of the system
[x(t),p(t)] at any time ¢t > 0.F

TIf the reader wondered why, in the previous section, we chose to specify
the state of our system by the pair of variables [x(t),p(t)], rather than by x(t)
alone, the reason should now be apparent: since the time evolution equation for
x(¢), Eq. (3-3a), contains a second-order time derivative, then a specification of
x(0) alone would not suffice to unambiguously determine x(t) for all ¢ > 0.
Generally speaking, the observable variables chosen to specify the “classical
state” of a system must be such that their initial values collectively determine
their subsequent values.
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As a familiar example, for the simple force field F(x) =k, or
V(x) = - kx, Newton’s second law reads
d*’x _k

dt? m

The two t-integrations yield successively

a X %o —lit2+Ct+C
dt m e x 2 m L 2
Hence,
1k d
x()== S 12 +Ct+Cy, p(t)=mZ =kt+mC,
m dt

The requirements that x(0) =x, and p(0) =p, imply that C, =x,
and mC, = p,. Consequently, if [x,,po] isthe state at time 0, then
the state at time ¢ is evidently

1k
[5 ;;H +p—n‘1’ t+xo, kt+p0]

3-3b Energy

One very important consequence of Newton’s second law is the
introduction of the concept of energy. This concept arises naturally
through a consideration of the quantity

W, = fsz(x)dx (3-4)

1

which is called ‘““the work done on the particle by the force F(x) dur-
ing the motion from x; to x,.” Of course this definition, like any
definition, tells us nothing new; however, let us use the two expres-
sions for F(x) given in Egs. (3-2) and (3-3a) to calculate two different
expressions for W,,, and then see what we can learn by equating the
results. First, from the definition of the potential function in
Eq. (3-2), we have

Wi, =fx2 (— %)dx=— f"z dV=- V(x)

x1 x1

x2

*1

SO
Wi =-[V(x2) - V(x,)] (3-5a) |
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Second, from Newton’s second law in Eq. (3-3a), making use of
Eq. (3-1) and the chain rule for derivatives, we have

x2 d*x *2 dv *2 dv dx
W12=J‘ (mﬁ>dx=f < a)dx':f < ad—t>dx
X1 X1

£q

SO
mu? (3-5b)

where v, and v, are the velocities of the particle at x, and x, respec-
tively. Equating the two expressions for W,, in Egs. (3-5a) and
(3-5b), we find that

1)
2 mvi + V(x,) =% mv} + V(x,) (3-5¢)

But since the points x; and x, were completely arbitrary, then we
may conclude that the quantity

E E% mv? + V(x) (3-6a)
maintains a constant value throughout the motion of the particle. E
is called the energy of the system. It is seen to be composed of two
parts, one part associated with the motion, mv?/2, and the other
part associated with the position, V(x); evidently, the particle moves
in such a way that any decrease in one of these terms is always ex-
actly compensated by an increase in the other term.

To demonstrate the usefulness of the energy concept in study-
ing the dynamics of a mechanical system, we show in Fig. 2 a plot of
V(x) versus x for a particle in some hypothetical force field. If the
total energy is E, then the particle is constrained to move only in
those regions in which V(x) < E, since the quantity mv?/2 in
Eq. (3-6a) cannot go negative. In such a region, the distance from
the curve V(x) up to the line V =E is evidently just the difference
between the total energy E and the potential energy V(x)—i.e., this
distance is just the kinetic energy mv?/2. In Fig. 2 we have illus-
trated how the energy of the particle at a given point is divided be-
tween the kinetic and potential terms. The points x =a and x = b
satisfy V(a) = V(b) = E, and define the boundaries of the motion; at
these points the velocity of the particle must obviously vanish, and
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Fig. 2. A plot of the potential function V(x) versus x for a particle in some

hypothetical force field. The distance from the curve V(x) up to the
horizontal line V = E represents the kinetic energy, Yomuv?. Since this
quantity cannot become negative, the motion of the particle is confined
to the interval a < x <b, where V(x)<E. The distance from the base
line up to the curve represents the potential energy V(x), which can be
either positive or negative.

the particle will evidently reverse its direction of travel. Thus the
energy plot in Fig. 2 indeed presents a very clear and concise pic-
ture of the motion of the particle: the distance (E - V(x)) provides a
measure of the speed of the particle at the point x, while the slope
of the potential function curve at the point x provides a measure of
the direction and magnitude of the force on the particle, or the ac-
celeration of the particle, at this point.
Since p = mv, then we can also write E as
2

E=Z +v) (3-6b)
2m

The fact that this particular function of the state variables x and p re-
mains constant as these two variables evolve with time is clearly a
non-trivial consequence of Newton’s second law, and is why the con-
cept of energy occupies such an important place in the structure of
classical mechanics.
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Exercise 22. Calculate dE/dt directly from its definition in Eq. (3-6a)
and show that, as a consequence of Newton’s second law and
the definition of the potential function, dE/dt=0. [Hint:
Since V(x) depends on t only implicitly through x, use the chain
rule to calculate dV/dt.]

3-3¢c The Hamiltonian Formulation

Equations (3-3a) and (3-3b) comprise what is called the “New-
tonian formulation” of classical mechanics; it is this formulation that
is usually presented in introductory physics courses. It so happens
that there are several other ways to formulate the time evolution of
the state variables x(t) and p(t); of course, all these ways are entirely
equivalent in physical content to the Newtonian formulation, but cer-
tain of them offer special advantages in various situations. The so-
called “Hamiltonian formulation” is especially relevant to our pur-
poses because it helps us to see a little more clearly the relation
between classical and quantum mechanics.

From a strictly classical point of view, the Hamiltonian formu-
lation is nice because it places the state variables x and p on a for-
mally equivalent footing. We note that, by contrast, the Newtonian
formulation treats x as the primary variable [see Eq. (3-3a)], while
P seems to be merely an auxiliary variable which is derived from x
[see Eq. (3-3b)]. For the particular case of a particle on the x-axis
in a potential field V(x), the transition from the Newtonian to the
Hamiltonian formulation can be easily made: Using Egs. (3-1) and
(3-2), we can write Egs. (3-3b) and (3-3a) respectively as

dx _p

= 3-7
dt m (Sta)
and
dp __dv
dt  dx (857R)

We now define the Hamiltonian function H(x,p) to be the total
energy of the system expressed as a function of the state variables
x and p. Thus, using Eq. (3-6b), we define

2

H(x,p)= 2 + V() (3-8)
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We now observe that the partial derivativesi of H(x,p) with respect
to its two arguments are given by
oH _p 4 9H _dV

3-9
op m -y ox dx (3-9)

Exercise 23.
(a) Show that Egs. (3-7) are equivalent to Newton’s equa-
tions, (3-3).
(b) Show that Egs. (3-9) follow from our definition of the
Hamiltonian function.

It is now a simple matter to combine Egs. (3-9) with Egs. (3-7)
to obtain

dx 0

— T — '10
dt  ap H(x,p) (3-10a)
dp )

_— = - — 3‘10b
= axH(x,p) ( )

These two equations are called ‘“‘Hamilton’s equations of motion,”
and they constitute the Hamiltonian formulation of classical mechan-
ics in the same way that Eqgs. (3-3a) and (3-3b) constitute the New-
tonian formulation. It should be clear from our derivation of Hamil-
ton’s equations that they contain no more nor no less information
than Newton’s equations. However, it is equally clear that the state
variables x and p formally play more symmetric roles in Egs. (3-10)
than in Egs. (3-3). From a strictly mathematical point of view, what
we have done is to replace a single, second-order differential equa-
tion in the one variable x [Eq. (3-3a)] with two coupled, first-order
differential equations in the two variables x and p [Egs. (3-10)]. It
should also be noted that, in the Hamiltonian formulation, the me-
chanical interaction of the particle with its environment is now for-
mally described by the Hamiltonian function, rather than by the force
function or the potential function. Of course, it is clear from the
definitions in Egs. (3-2) and (3-8) that a knowledge of any one of the
functions H(x,p), V(x), or F(x), implies a knowledge of the other
two.

To find the functions x(t) and p(t) via the Hamiltonian formu-

TIf f is a function of two variables u and v, then 0f/du, the “partial deriva-
tive of f with respect to u,” is defined to be the u-derivative takenawith v treated
as a constant. Thus if f(u,v) = u2v3, then we have 0f/0u = 2uv”, and of/ov =
3v2u?.
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lation, we must evidently integrate Egs. (8-10a) and (3-10b) once
each with respect to ¢. Again, the actual integrations might be quite
difficult to perform—especially since the equations are coupled (i.e.,
x and p both appear in both equations); however, we are not con-
cerned here with these “practical details.”” Of more interest to us is
the fact that the two integrations will yield two integration con-
stants, and, as in the Newtonian formulation, these two constants can
be fixed by specifying the values of x and p at some “initial time”
t=0. Thus, with H(x,p) given, and with the initial state [x(0),p(0)]
specified, then Eqs. (3-10a) and (3-10b) enable us to determine un-
ambiguously the state of the system [x(¢),p(¢)] at any time ¢ > 0.

Exercise 24. We have derived Hamilton’s equations from Newton’s
equations. Prove now that Newton’s equations can be derived
from Hamilton’s equations. That is, show that Eqs. (3-3) fol-
low from Egs. (3-10) when account is taken of the definitions
of H(x,p) and V(x).

3-3d ““Determinism’’ in Classical Mechanics

Classical mechanics has sometimes been said by philosophers to
imply a “deterministic’ universe. By this it is meant that, given the
initial state of the universe (i.e., given the exact positions and mo-
menta of all the particles in the universe at some time ¢ = 0), and
given also the functional forms of all the forces acting on and among
these particles, then the subsequent ‘“history” of the universe is in
principle completely determined through the dynamical equations of
Newton (or Hamilton). We shall see in the next chapter that the
tenets of quantum mechanics will force us to dramatically revise
(but not to completely discard) this simple deterministic picture of
the physical universe.



