Statistical Mechanics: 2019

Model Solutions for Final Exam

1. Change of chemical potential with temperature

The master function associated with variables (T, p, N) is

$$
d G=-S d T+V d p+\mu d N
$$

whence

$$
\left.\frac{\partial G}{\partial T}\right)_{p, N}=-S
$$

But $G=\mu N$ so

$$
\left.\frac{\partial \mu}{\partial T}\right)_{p, N}=-\frac{S}{N}
$$

2. Generalized equipartition theorem and the ultra-relativistic gas

a. The proof proceeds exactly as does the proof of the ordinary equipartition theorem up to equation (5.22):

$$
\left.\left.\langle a| p\right|^{n}\right\rangle=-\frac{d}{d \beta} \ln \left[\int_{-\infty}^{+\infty} d p e^{-\beta a|p|^{n}}\right]
$$

Because the integrand is even,

$$
\left.\left.\langle a| p\right|^{n}\right\rangle=-\frac{d}{d \beta} \ln \left[2 \int_{0}^{+\infty} d p e^{-\beta a p^{n}}\right]
$$

(This trick means that we can always consider p to be positive, and don't need to worry about the absolute value function, which is non-analytic at the origin.) Employ the substitution

$$
u=(\beta a)^{1 / n} p
$$

to find

$$
\begin{aligned}
\left.\left.\langle a| p\right|^{n}\right\rangle & =-\frac{d}{d \beta} \ln \left[\frac{2}{(\beta a)^{1 / n}} \int_{0}^{+\infty} d u e^{-u^{n}}\right] \\
& =-\frac{d}{d \beta}\left\{\ln \left[\frac{1}{\beta^{1 / n}}\right]+\ln \left[\frac{2}{a^{1 / n}} \int_{0}^{+\infty} d u e^{-u^{n}}\right]\right\}
\end{aligned}
$$

The term in square brackets on the bottom right is not a function of β and hence vanishes when the derivative is taken, leaving

$$
\left.\left.\langle a| p\right|^{n}\right\rangle=-\frac{d}{d \beta} \ln \beta^{-1 / n}=\frac{1}{n} \frac{d}{d \beta} \ln \beta=\frac{1}{n} \frac{1}{\beta}
$$

or, finally,

$$
\left.\left.\langle a| p\right|^{n}\right\rangle=\frac{1}{n} k_{B} T
$$

b. For the ultra-relativistic gas with N particles, the exponent is $n=1$ and there are $3 N$ terms in the Hamiltonian like $p c$. Thus the mean total energy is $3 N k_{B} T$ and the heat capacity $\partial E / \partial T$ is $3 N k_{B} \ldots$ twice the classical result.
c. Crossover comes when $k_{B} T \approx m c^{2}$.

Note: An ideal gas consisting of particles will, at very high temperatures, cross over from the classical heat capacity of $\frac{3}{2} k_{B} N$ to the ultrarelativistic heat capacity of $3 k_{B} N$. A real gas made of atoms, rather than particles, behaves differently: the atoms ionize (and the gas becomes a plasma) at temperatures much lower than this crossover temperature.

3. Fermion gas in two dimensions

a. For $d=3$, the density of levels is $2 \frac{V}{(2 \pi)^{3}}$; thus for $d=2$, the density of levels is $2 \frac{A}{(2 \pi)^{2}}$.
b. Using $\mathcal{E}_{F}=\frac{\hbar^{2} k_{F}^{2}}{2 m}$, the area of the "Fermi disk" is

$$
\pi k_{F}^{2}=\frac{2 \pi m}{\hbar^{2}} \mathcal{E}_{F}
$$

The number of levels in the Fermi disk is

$$
\frac{A}{2 \pi^{2}} \times \frac{2 \pi m}{\hbar^{2}} \mathcal{E}_{F}=N \quad \text { whence } \quad \mathcal{E}_{F}=\frac{\pi \hbar^{2}}{m} \frac{N}{A}
$$

c. At finite temperature

$$
\begin{aligned}
N & =\sum_{r}\left\langle n_{r}\right\rangle \\
& =\frac{A}{2 \pi^{2}} \int d^{2} k \frac{1}{e^{\beta(\mathcal{E}(k)-\mu)}+1} \\
& =\frac{A}{2 \pi^{2}} 2 \pi \int_{0}^{\infty} k d k \frac{1}{e^{\beta(\mathcal{E}(k)-\mu)}+1} \quad \llbracket \ldots \text { use the substitution } \mathcal{E}=\hbar^{2} k^{2} / 2 m \ldots \rrbracket \\
& =\frac{A m}{\pi \hbar^{2}} \int_{0}^{\infty} d \mathcal{E} \frac{1}{e^{\beta(\mathcal{E}-\mu)}+1}
\end{aligned}
$$

so

$$
\int_{0}^{\infty} d \mathcal{E} \frac{1}{e^{\beta(\mathcal{E}-\mu)}+1}=\frac{\pi \hbar^{2}}{m} \frac{N}{A}=\mathcal{E}_{F}
$$

This integral is evaluated in Dwight, equation 569.1:

$$
\begin{aligned}
\int_{0}^{\infty} d \mathcal{E} \frac{1}{e^{\beta(\mathcal{E}-\mu)}+1} & =\left[\mathcal{E}-\frac{1}{\beta} \ln \left(e^{\beta(\mathcal{E}-\mu)}+1\right)\right]_{0}^{\infty} \\
& =\lim _{\mathcal{E} \rightarrow \infty}\left[\mathcal{E}-\frac{1}{\beta}[\beta(\mathcal{E}-\mu)]\right]+\frac{1}{\beta} \ln \left(e^{-\beta \mu}+1\right) \\
& =\mu+\frac{1}{\beta} \ln \left(e^{-\beta \mu}+1\right)
\end{aligned}
$$

Whence

$$
\mathcal{E}_{F}=\mu+k_{B} T \ln \left(1+e^{-\mu / k_{B} T}\right)
$$

d. First note that $\ln \left(1+e^{-\mu / k_{B} T}\right)$ is bigger than zero and increases with increasing T. Now, at $T=0$ we have $\mathcal{E}_{F}=\mu$. Remember that \mathcal{E}_{F} doesn't depend on T. So, for $T>0$ we must have μ decreasing in order that the right-hand of the equation above still sums to \mathcal{E}_{F}.

4. Polymers

a. There are six possible walks of a single step: north, south, east, west, up, and down. Thus $N_{1}=6$. The same six possible steps may be appended to the tip of any walk, whence $N_{n}=6 N_{n-1}$. Thus $N_{n}=6^{n}$. This formula even makes sense when $n=0$, because there is one walk consisting of no steps.
b. Use the slick trick:

$$
\Xi(\alpha)=\sum_{\mathrm{x}} e^{-\alpha n(\mathrm{x})}
$$

so

$$
\langle n\rangle=\frac{\sum_{\mathrm{x}} n(\mathrm{x}) e^{-\alpha n(\mathrm{x})}}{\sum_{\mathrm{x}} e^{-\alpha n(\mathrm{x})}}=-\frac{\partial \ln \Xi(\alpha)}{\partial \alpha}
$$

c. The partition function is

$$
\begin{aligned}
\Xi(\alpha) & =\sum_{x} e^{-\alpha n(x)} \\
& =\sum_{n=0}^{\infty} N_{n} e^{-\alpha n} \\
& =\sum_{n=0}^{\infty} 6^{n} e^{-\alpha n} \\
& =\sum_{n=0}^{\infty}\left(6 e^{-\alpha}\right)^{n} \\
& =\frac{1}{1-6 e^{-\alpha}}
\end{aligned}
$$

where the series converges when $6 e^{-\alpha}<1$, that is when $\alpha>\ln 6$. Thus

$$
\begin{aligned}
\langle n\rangle & =-\frac{\partial \ln \Xi(\alpha)}{\partial \alpha} \\
& =\frac{\partial \ln \left(1-6 e^{-\alpha}\right)}{\partial \alpha} \\
& =\frac{6 e^{-\alpha}}{1-6 e^{-\alpha}} \\
& =\frac{6}{e^{\alpha}-6} .
\end{aligned}
$$

d. The control parameter α ranges from ∞ (associated with generally short polymers) to its minimum value $\ln 6$ (associated with generally long polymers).

Polymers, page 2
e.

$$
\begin{aligned}
\frac{\partial^{2} \ln \Xi}{\partial \alpha^{2}} & =-\frac{\partial\langle n\rangle}{\partial \alpha} \\
& =-\frac{\partial}{\partial \alpha}\left(\frac{\sum_{\mathrm{x}} n(\mathrm{x}) e^{-\alpha n(\mathrm{x})}}{\sum_{\mathrm{x}} e^{-\alpha n(\mathrm{x})}}\right) \\
& =-\frac{\left(\sum_{\mathrm{x}} e^{-\alpha n(\mathrm{x})}\right)\left(\sum_{\mathrm{x}}-n^{2}(\mathrm{x}) e^{-\alpha n(\mathrm{x})}\right)-\left(\sum_{\mathrm{x}}-n(\mathrm{x}) e^{-\alpha n(\mathrm{x})}\right)\left(\sum_{\mathrm{x}} n(\mathrm{x}) e^{-\alpha n(\mathrm{x})}\right)}{\left(\sum_{\mathrm{x}} e^{-\alpha n(\mathrm{x})}\right)^{2}} \\
& =\left\langle n^{2}\right\rangle-\langle n\rangle^{2} \\
& =(\Delta n)^{2} .
\end{aligned}
$$

Thus

$$
\begin{aligned}
(\Delta n)^{2} & =-\frac{\partial\langle n\rangle}{\partial \alpha} \\
& =-\frac{\partial}{\partial \alpha}\left(\frac{6}{e^{\alpha}-6}\right) \\
& =\frac{6 e^{\alpha}}{\left(e^{\alpha}-6\right)^{2}}
\end{aligned}
$$

and

$$
\frac{\Delta n}{\langle n\rangle}=\sqrt{\frac{e^{\alpha}}{6}}=\sqrt{\frac{1}{\langle n\rangle}+1}
$$

Thus the relative dispersion decreases for longer polymers (smaller values of α).

