Statistical Mechanics: 2019
Model Solutions for Final Exam

1. Change of chemical potential with temperature

The master function associated with variables (T, p, N) is

dG = —SdT +V dp + pudN,

aa)
=Z)  =-s
aT ) x

5”) -
ar),y N

2. Generalized equipartition theorem and the ultra-relativistic gas

whence

But G = uN so

a. The proof proceeds exactly as does the proof of the ordinary equipartition theorem up to equation

(5.22): .
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Because the integrand is even,
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(This trick means that we can always consider p to be positive, and don’t need to worry about the absolute

value function, which is non-analytic at the origin.) Employ the substitution
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to find
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The term in square brackets on the bottom right is not a function of 5 and hence vanishes when the derivative

is taken, leaving d 1d 11
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or, finally,
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b. For the ultra-relativistic gas with N particles, the exponent is n = 1 and there are 3N terms in the
Hamiltonian like pc. Thus the mean total energy is 3NkgT and the heat capacity OF/IT is 3Nkp. .. twice

the classical result.



c. Crossover comes when kgT ~ mc?.

Note: An ideal gas consisting of particles will, at very high temperatures, cross over from the classical
heat capacity of %kz BN to the ultrarelativistic heat capacity of 3k N. A real gas made of atoms, rather than
particles, behaves differently: the atoms ionize (and the gas becomes a plasma) at temperatures much lower
than this crossover temperature.

3. Fermion gas in two dimensions

A
a. For d = 3, the density of levels is QL' thus for d = 2, the density of levels is 2——
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b. Using &F = 2—F, the area of the “Fermi disk” is
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The number of levels in the Fermi disk is
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c. At finite temperature
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This integral is evaluated in Dwight, equation 569.1:
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Whence
Er = p+kpTln (1 + e*“/’“BT) .

d. First note that In (14 e~#/*#T) is bigger than zero and increases with increasing 7. Now, at 7' =0
we have € = p. Remember that £ doesn’t depend on T'. So, for T > 0 we must have u decreasing in order
that the right-hand of the equation above still sums to Ep.



4. Polymers

a. There are six possible walks of a single step: north, south, east, west, up, and down. Thus N; = 6.
The same six possible steps may be appended to the tip of any walk, whence N, = 6N, _;. Thus

N,, = 6™. This formula even makes sense when n = 0, because there is one walk consisting of no steps.

b. Use the slick trick:
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c. The partition function is
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where the series converges when 6e~% < 1, that is when a > In 6. Thus
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d. The control parameter « ranges from oo (associated with generally short polymers) to its minimum

value In 6 (associated with generally long polymers).



Polymers, page 2
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Thus the relative dispersion decreases for longer polymers (smaller values of «).



