
Statistical Mechanics: 2019

Model Solutions for Final Exam

1. Change of chemical potential with temperature

The master function associated with variables (T, p,N) is

dG = −S dT + V dp+ µ dN,

whence
∂G

∂T

)
p,N

= −S.

But G = µN so
∂µ

∂T

)
p,N

= − S
N
.

2. Generalized equipartition theorem and the ultra-relativistic gas

a. The proof proceeds exactly as does the proof of the ordinary equipartition theorem up to equation

(5.22):

〈a|p|n〉 = − d

dβ
ln

[∫ +∞

−∞
dp e−βa|p|

n

]
.

Because the integrand is even,

〈a|p|n〉 = − d

dβ
ln

[
2

∫ +∞

0

dp e−βap
n

]
.

(This trick means that we can always consider p to be positive, and don’t need to worry about the absolute

value function, which is non-analytic at the origin.) Employ the substitution

u = (βa)1/np

to find

〈a|p|n〉 = − d

dβ
ln

[
2

(βa)1/n

∫ +∞

0

du e−u
n

]
= − d

dβ

{
ln

[
1

β1/n

]
+ ln

[
2

a1/n

∫ +∞

0

du e−u
n

]}
.

The term in square brackets on the bottom right is not a function of β and hence vanishes when the derivative

is taken, leaving

〈a|p|n〉 = − d

dβ
lnβ−1/n =

1

n

d

dβ
lnβ =

1

n

1

β

or, finally,

〈a|p|n〉 =
1

n
kBT.

b. For the ultra-relativistic gas with N particles, the exponent is n = 1 and there are 3N terms in the

Hamiltonian like pc. Thus the mean total energy is 3NkBT and the heat capacity ∂E/∂T is 3NkB . . . twice

the classical result.
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c. Crossover comes when kBT ≈ mc2.

Note: An ideal gas consisting of particles will, at very high temperatures, cross over from the classical

heat capacity of 3
2kBN to the ultrarelativistic heat capacity of 3kBN . A real gas made of atoms, rather than

particles, behaves differently: the atoms ionize (and the gas becomes a plasma) at temperatures much lower

than this crossover temperature.

3. Fermion gas in two dimensions

a. For d = 3, the density of levels is 2
V

(2π)3
; thus for d = 2, the density of levels is 2

A

(2π)2
.

b. Using EF =
h̄2k2F
2m

, the area of the “Fermi disk” is

πk2F =
2πm

h̄2
EF .

The number of levels in the Fermi disk is

A

2π2
× 2πm

h̄2
EF = N whence EF =

πh̄2

m

N

A
.

c. At finite temperature

N =
∑
r

〈nr〉

=
A

2π2

∫
d2k

1

eβ(E(k)−µ) + 1

=
A

2π2
2π

∫ ∞
0

k dk
1

eβ(E(k)−µ) + 1
[[. . . use the substitution E = h̄2k2/2m . . . ]]

=
Am

πh̄2

∫ ∞
0

dE 1

eβ(E−µ) + 1

so ∫ ∞
0

dE 1

eβ(E−µ) + 1
=
πh̄2

m

N

A
= EF .

This integral is evaluated in Dwight, equation 569.1:∫ ∞
0

dE 1

eβ(E−µ) + 1
=

[
E − 1

β
ln
(
eβ(E−µ) + 1

)]∞
0

= lim
E→∞

[
E − 1

β
[β(E − µ)]

]
+

1

β
ln
(
e−βµ + 1

)
= µ+

1

β
ln
(
e−βµ + 1

)
.

Whence

EF = µ+ kBT ln
(

1 + e−µ/kBT
)
.

d. First note that ln
(
1 + e−µ/kBT

)
is bigger than zero and increases with increasing T . Now, at T = 0

we have EF = µ. Remember that EF doesn’t depend on T . So, for T > 0 we must have µ decreasing in order

that the right-hand of the equation above still sums to EF .
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4. Polymers

a. There are six possible walks of a single step: north, south, east, west, up, and down. Thus N1 = 6.

The same six possible steps may be appended to the tip of any walk, whence Nn = 6Nn−1. Thus

Nn = 6n. This formula even makes sense when n = 0, because there is one walk consisting of no steps.

b. Use the slick trick:

Ξ(α) =
∑
x

e−αn(x)

so

〈n〉 =

∑
x n(x)e−αn(x)∑

x e
−αn(x) = −∂ ln Ξ(α)

∂α
.

c. The partition function is

Ξ(α) =
∑
x

e−αn(x)

=

∞∑
n=0

Nne
−αn

=

∞∑
n=0

6ne−αn

=

∞∑
n=0

(6e−α)n

=
1

1− 6e−α
,

where the series converges when 6e−α < 1, that is when α > ln 6. Thus

〈n〉 = −∂ ln Ξ(α)

∂α

=
∂ ln(1− 6e−α)

∂α

=
6e−α

1− 6e−α

=
6

eα − 6
.

d. The control parameter α ranges from ∞ (associated with generally short polymers) to its minimum

value ln 6 (associated with generally long polymers).

3



Polymers, page 2

e.

∂2 ln Ξ

∂α2
= −∂〈n〉

∂α

= − ∂

∂α

(∑
x n(x)e−αn(x)∑

x e
−αn(x)

)
= −

(∑
x e
−αn(x)) (∑

x−n2(x)e−αn(x)
)
−
(∑

x−n(x)e−αn(x)
) (∑

x n(x)e−αn(x)
)(∑

x e
−αn(x)

)2
= 〈n2〉 − 〈n〉2

= (∆n)2.

Thus

(∆n)2 = −∂〈n〉
∂α

= − ∂

∂α

(
6

eα − 6

)
=

6eα

(eα − 6)2

and
∆n

〈n〉
=

√
eα

6
=

√
1

〈n〉
+ 1.

Thus the relative dispersion decreases for longer polymers (smaller values of α).
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