Statistical Mechanics 2024

Model Solutions for First Exam

1. The coin toss

A single coin is tossed seven times.
a. The probability of obtaining all heads is $1 / 2^{7}$.
b. The probability of obtaining alternating heads and tails is $2 / 2^{7}$. (One alternating pattern starts with heads, the other starts with tails.)
c. The probability of obtaining the pattern THHTTHT is $1 / 2^{7}$.
d. The probability of obtaining a pattern with one head and six tails is $7 / 2^{7}$. (There are seven such patterns.)

2. Fluid work

For a quasistatic change, the dissipative work is zero so

$$
\text { work }=\text { configuration work }=-\int_{\text {initial }}^{\text {final }} p(V) d V
$$

Now along path (a)

$$
p(V)=\frac{K}{V^{\gamma}} \quad \text { where } \quad K=p_{i} V_{i}^{\gamma}=p_{f} V_{f}^{\gamma}
$$

so the work along path (a) is

$$
\text { Work }=-\int_{V_{i}}^{V_{f}} \frac{K}{V^{\gamma}} d V=\frac{K}{(\gamma-1)}\left[\frac{1}{V^{\gamma-1}}\right]_{V_{i}}^{V_{f}}=\frac{K}{(\gamma-1)}\left[\frac{1}{V_{f}^{\gamma-1}}-\frac{1}{V_{i}^{\gamma-1}}\right]=\frac{p_{f} V_{f}-p_{i} V_{i}}{\gamma-1} .
$$

Path (a) is quasistatic and adiabatic, so $Q=0$ and $\Delta E=Q+W=W$. Plugging in numbers, $W=-36 \mathrm{~J}$, $Q=0$, and $\Delta E=-36 \mathrm{~J}$. [Note that we never need to calculate any power V^{γ}.]

Now ΔE is the same for all paths. Thus for paths (b), (c), and (d) we can find W through "negative of area under the path" and Q through $Q=\Delta E-W$. The results are

path	W	Q
a	-36 J	0 J
b	-224 J	188 J
c	-115.5 J	79.5 J
d	-7 J	-29 J

3. Magnetic systems

For these systems (using $x=E /(N H)$)

$$
\begin{gathered}
\frac{1}{T}=\frac{\partial S}{\partial E}=\frac{d f}{d x} \frac{\partial x}{\partial E}=f^{\prime}(E /(N H))\left(\frac{1}{N H}\right) \\
\frac{M}{T}=\frac{\partial S}{\partial H}=\frac{d f}{d x} \frac{\partial x}{\partial H}=f^{\prime}(E /(N H))\left(-\frac{E}{N H^{2}}\right)
\end{gathered}
$$

Thus

$$
M=\frac{M / T}{1 / T}=\frac{f^{\prime}(E /(N H))\left(-\frac{E}{N H^{2}}\right)}{f^{\prime}(E /(N H))\left(\frac{1}{N H}\right)}=-\frac{E}{H} .
$$

This result might be familiar to you from an electricity and magnetism class in the form $E=-M H$.

4. From equation of state to entropy

Combining the two equations in the problem statement gives

$$
\frac{p(E, V, N)}{T(E, V, N)}=\frac{\partial S(E, V, N)}{\partial V}=\frac{N k_{B}}{V} .
$$

If this were a single-variable problem then the right-hand equation would read

$$
\frac{d S}{d V}=\frac{N k_{B}}{V}
$$

and you would immediately integrate this equation as

$$
\begin{aligned}
d S & =N k_{B} \frac{d V}{V} \\
\int d S & =N k_{B} \int \frac{d V}{V} \\
S & =N k_{B}[\ln V+\text { constant }]=N k_{B} \ln \left(V / V_{0}\right)
\end{aligned}
$$

where in the last step I have written the constant in the form $-\ln V_{0}$. I prefer this last form because it makes clear that V_{0} is a constant with the dimensions of volume.

For the case where S is a function of three variables, the result is exactly the same except the integration over V is carried out at constant E and N, whence the "constant" V_{0}, although independent of V, might (and generally will) depend upon E and N. Thus

$$
S(E, V, N)=k_{B} N \ln \frac{V}{V_{0}(E, N)} .
$$

\llbracket You can check for yourself to see that, for the classical monatomic ideal gas, the function $V_{0}(E, N)$ is given through

$$
\frac{1}{V_{0}(E, N)}=e^{5 / 2}\left(\frac{4 \pi m E}{3 h_{0}^{2} N^{5 / 3}}\right)^{3 / 2} . \rrbracket
$$

