## The rotating water glass

a. Consider a cube of water of volume $\ell \times \ell \times \ell$ where $\ell$ is "quite small".


The forces due to pressure are denoted $F_{t, 1}$ (force tangential, 1) and so forth.
Use $\sum \vec{F}=m \vec{a}$ :
Tangential component:

$$
\begin{aligned}
F_{t, 1} & -F_{t, 2}=m a_{t}=0 \\
& \Longrightarrow \quad p_{t, 1} \ell^{2}=p_{t, 2} \ell^{2} \quad \Longrightarrow \quad p_{t, 1}=p_{t, 2}
\end{aligned}
$$

Thus the pressure in independent of angle (which is also clear from symmetry).
Vertical component:

$$
\begin{aligned}
& F_{v, 1}-\rho V g-F_{v, 2}=m a_{v}=0 \\
& \quad \Longrightarrow \quad p_{v, 1} \ell^{2}-\rho \ell^{3} g-p_{v, 2} \ell^{2}=0 \quad \Longrightarrow \quad p_{v, 2}-p_{v, 1}=-\rho \ell g
\end{aligned}
$$

Thus $\frac{\partial p}{\partial h}=-\rho g$.
Radial component:

$$
\begin{aligned}
F_{r, 1} & -F_{r, 2}=m a_{r}=-\rho V \omega^{2} r \quad \text { (centripetal acceleration) } \\
& \Longrightarrow p(r) \ell^{2}-p(r+\ell) \ell^{2}=-\rho \ell^{3} \omega^{2} r
\end{aligned}
$$

Thus $\frac{\partial p}{\partial r}=\rho \omega^{2} r$.
b. When moving along a small path, the change in pressure is

$$
d p=\frac{\partial p}{\partial r} d r+\frac{\partial p}{\partial h} d h=\rho \omega^{2} r d r-\rho g d h
$$

Integrate this differential along the following integration path

to find

$$
\begin{aligned}
\int d p & =\int_{0}^{r} \rho \omega^{2} r d r-\int_{h_{c}}^{h} \rho g d h \\
p-p_{a} & =\frac{1}{2} \rho \omega^{2} r^{2}-\rho g\left(h-h_{c}\right)
\end{aligned}
$$

c. At the fluid surface, $p=p_{a}$, so

$$
0=\frac{1}{2} \rho \omega^{2} r^{2}-\rho g\left(h-h_{c}\right)=\frac{1}{2} \rho \omega^{2} r^{2}-\rho g(y(r))
$$

whence

$$
y(r)=\frac{\omega^{2}}{2 g} r^{2}
$$

Note that the profile $y(r)$ is independent of $\rho$ : water and mercury will have identical surface profiles.

