Magnetic systems

E(S,H)		
dE = T dS - M dH		
\Downarrow Legendre transformation		
F(T,H) = E - TS		
dF = -S dT - M dH	$\stackrel{\text{Maxwell relation}}{\Longrightarrow}$	$\frac{\partial S}{\partial H}\bigg)_T = \frac{\partial M}{\partial T}\bigg)_H$
\Downarrow Legendre transformation		
A(T,M) = F + MH		
dA = -S dT + H dM	$\stackrel{\text{Maxwell relation}}{\Longrightarrow}$	$-\frac{\partial S}{\partial M}\bigg)_T = \frac{\partial H}{\partial T}\bigg)_M$

Note particularly the physical/experimental meaning of the first Maxwell relation: To find the quantity on the left, you would measure the heat absorbed by the system as the applied magnetic field is changed while in a thermostatic bath: a very "heat-like" measurement. To find the quantity on the right, you would measure the magnetization of the sample using the same technique that you would use to measure the magnetization of a scout compass needle: a very "E&M-like" measurement. It's not immediately clear that the two quantities even have the same dimensions! Yet these two very different measurements are guaranteed to give always the same result.