The logarithm

Start with

$$
\begin{equation*}
f(x y)=f(x)+f(y) \tag{1}
\end{equation*}
$$

Differentiate with respect to y :

$$
\begin{align*}
\frac{\partial f(x y)}{\partial y} & =0+f^{\prime}(y) \\
\frac{\partial f(x y)}{\partial(x y)} \frac{\partial(x y)}{\partial y} & =f^{\prime}(y) \\
f^{\prime}(x y) x & =f^{\prime}(y) \tag{2}
\end{align*}
$$

Set $y=1$:

$$
\begin{equation*}
f^{\prime}(x) x=f^{\prime}(1) \equiv k \tag{3}
\end{equation*}
$$

Then

$$
\begin{aligned}
f^{\prime}(x) x & =k \\
f^{\prime}(x) & =\frac{k}{x} \\
f(x) & =k \ln \left(x / x_{0}\right)
\end{aligned}
$$

where x_{0} is a constant of integration. (The argument in this paragraph is due to Naiyuan Zhang '18.)
What is x_{0} ? Take $y=1$ in equation (1), giving

$$
f(x)=f(x)+f(1)
$$

Hence $f(1)=0$, whence $x_{0}=1$, and

$$
f(x)=k \ln (x)
$$

(The argument of this paragraph is due to Bryce Denny '98.)

