
Isothermal vs. adiabatic compressibility

a. We start with the relation

dS =
∂S

∂T

)
p

dT +
∂S

∂p

)
T

dp

and find “conventional names” for the partial derivatives. First, by the definition of heat capacity, we have

∂S

∂T

)
p

=
Cp

T
.

Then, using the Maxwell relation associated with G(T, p),

∂S

∂p

)
T

= − ∂V

∂T

)
p

= −V β.

Together these become

dS =
Cp

T
dT − V β dp

The above equation holds for any small change in T and p. If we restrict it to a small change at constant

S, that is, a change with dS = 0, we find
Cp

T
dT = V β dp

or
∂T

∂p

)
S

=
βT

Cp/V
.

(I write the fraction in this perhaps-contorted form to make it apparent that it is intensive.)

Two experiments that measure this quantity directly are sketched below.

measure
temperature

insulate (S = constant)

measure
temperature

insulate (S = constant)

OR

control
pressure control

volume

measure
pressure
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b. Start with:

dV =
∂V

∂p

)
T

dp+
∂V

∂T

)
p

dT.

Restrict to a change at constant S, and divide by dp:

∂V

∂p

)
S

=
∂V

∂p

)
T

+
∂V

∂T

)
p

∂T

∂p

)
S

.

Divide both sides by −V :

− 1

V

∂V

∂p

)
S

= − 1

V

∂V

∂p

)
T

− 1

V

∂V

∂T

)
p

βT

Cp/V
.

Recognize the definitions of κS , κT , and β in the above:

κS = κT − β2T

Cp/V
.

c.

γ ≡ Cp

CV
=

[
T
∂S

∂T

)
p

]/[
T
∂S

∂T

)
V

]
=

[
∂S

∂T

)
p

]/[
∂S

∂T

)
V

]
.

Use the implicit function theorem to find

γ =

[
− ∂p

∂T

)
S

/
∂p

∂S

)
T

]/[
− ∂V

∂T

)
S

/
∂V

∂S

)
T

]
,

then rearrange algebraically giving

γ =

[
∂p

∂T

)
S

/
∂V

∂T

)
S

]/[
∂p

∂S

)
T

/
∂V

∂S

)
T

]
.

This rearrangement has the benefit that now the derivatives within the first square brackets are with respect

to T alone, while the derivatives within the second square brackets are with respect to S alone, so within

either set of square brackets we can use the rules of single-variable calculus. Namely use the inverse rule

followed by the chain rule, followed by the inverse rule a second time to find

γ =

[
∂p

∂T

)
S

∂T

∂V

)
S

]/[
∂p

∂S

)
T

∂S

∂V

)
T

]

=

[
∂p

∂V

)
S

]/[
∂p

∂V

)
T

]

=

[
∂V

∂p

)
T

]/[
∂V

∂p

)
S

]

=

[
− 1

V

∂V

∂p

)
T

]/[
− 1

V

∂V

∂p

)
S

]
.
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And in this form we immediately recognize the adiabatic and isothermal compressibilities:

γ ≡ Cp

CV
=
κT
κS
.

The argument above came from students in the Statistical Mechanics class of Spring 2017. My own

argument is given in the paragraph below. I like the students’s argument better than mine, even though

it’s longer, because it goes straight to the heart of the calculus involved, whereas my argument relies on the

names of various derivatives. Here’s my argument:

From class,

Cp = CV + TV
β2

κT
,

so

CpκS = Cp

(
κT − β2T

Cp/V

)
= CpκT − β2TV

=

(
CV + TV

β2

κT

)
κT − β2TV

= CV κT + TV β2 − β2TV

= CV κT .

Thus

γ ≡ Cp

CV
=
κT
κS
.

Regardless of which argument you prefer, the result is staggering: The experiments used to measure Cp

and CV are wildly different from the experiments used to measure κT and κS . The heat capacities involve

the response of temperature to heat, whereas the compressibilites involve the response of volume to pressure

(“hardness” or “softness”). How could these possibly be connected? And yet they are. If you discovered a

substance for which these two ratios were not equal, then you could use that substance to build a perpetual

motion machine. To quote Faraday, “Nothing is too wonderful to be true.”
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