Entropy of a spin system

From the problem "Accessible configurations of a spin system" ...

$$
\Omega(E, \Delta E, H, N)=\frac{N!}{\left[\frac{1}{2}(N+E / m H)\right]!\left[\frac{1}{2}(N-E / m H)\right]!} \frac{\Delta E}{2 m H} .
$$

a.

$$
\begin{aligned}
\ln \Omega= & \ln N!-\ln \left[\frac{1}{2}(N+E / m H)\right]!-\ln \left[\frac{1}{2}(N-E / m H)\right]!+\ln (\Delta E / 2 m H) \\
\approx & N \ln N-N-\left[\frac{1}{2}(N+E / m H)\right] \ln \left[\frac{1}{2}(N+E / m H)\right]+\left[\frac{1}{2}(N+E / m H)\right] \\
& \quad-\left[\frac{1}{2}(N-E / m H)\right] \ln \left[\frac{1}{2}(N-E / m H)\right]+\left[\frac{1}{2}(N-E / m H)\right]+\ln (\Delta E / 2 m H) \\
= & N \ln N-\left[\frac{1}{2}(N+E / m H)\right] \ln \left[\frac{1}{2}(N+E / m H)\right] \\
& \quad-\left[\frac{1}{2}(N-E / m H)\right] \ln \left[\frac{1}{2}(N-E / m H)\right]+\ln (\Delta E / 2 m H) .
\end{aligned}
$$

b. To prepare for the thermodynamic limit, define $e \equiv E / N$ and $\delta \equiv \Delta E / N$. Then

$$
\begin{aligned}
S(E, \Delta E, H, N) / k_{B}=N \ln N & -\left[\frac{1}{2}(1+e / m H) N\right] \ln \left[\frac{1}{2}(1+e / m H) N\right] \\
& -\left[\frac{1}{2}(1-e / m H) N\right] \ln \left[\frac{1}{2}(1-e / m H) N\right]+\ln (N \delta / 2 m H)
\end{aligned}
$$

To separate out "upper case" quantities (dependent on sample size) from "lower case" quantities (independent of sample size), we write

$$
\ln \left[\frac{1}{2}(1 \pm e / m H) N\right]=\ln \left[\frac{1}{2}(1 \pm e / m H)\right]+\ln N
$$

so that

$$
\begin{aligned}
S(E, \Delta E, H, N) / k_{B}=N \ln & N-\left[\frac{1}{2}(1+e / m H) N\right] \ln N-\left[\frac{1}{2}(1-e / m H) N\right] \ln N \\
& -\left[\frac{1}{2}(1+e / m H) N\right] \ln \left[\frac{1}{2}(1+e / m H)\right] \\
& -\left[\frac{1}{2}(1-e / m H) N\right] \ln \left[\frac{1}{2}(1-e / m H)\right]+\ln (N \delta / 2 m H)
\end{aligned}
$$

Here comes the miracle of canceling N-dependent terms... the first line above sums to zero!
$\frac{S(E, \Delta E, H, N)}{N k_{B}}=-\left[\frac{1}{2}(1+e / m H)\right] \ln \left[\frac{1}{2}(1+e / m H)\right]-\left[\frac{1}{2}(1-e / m H)\right] \ln \left[\frac{1}{2}(1-e / m H)\right]+\frac{\ln (N \delta / 2 m H)}{N}$.
The rightmost term above vanishes as $N \rightarrow \infty$, so you never need to take the limit $\delta \rightarrow 0$. The result is that, in the thermodynamic limit,

$$
\begin{equation*}
s(e, H)=-k_{B}\left\{\left[\frac{1}{2}(1+e / m H)\right] \ln \left[\frac{1}{2}(1+e / m H)\right]+\left[\frac{1}{2}(1-e / m H)\right] \ln \left[\frac{1}{2}(1-e / m H)\right]\right\} . \tag{1}
\end{equation*}
$$

【One could "simplify" this expression to

$$
\begin{equation*}
s(e, H)=-\frac{k_{B}}{2}\left\{-2 \ln 2+\ln \left[1-(e / m H)^{2}\right]+(e / m H) \ln \left[\frac{1+e / m H}{1-e / m H}\right]\right\} \tag{2}
\end{equation*}
$$

but it's actually harder to compute with and to understand form (2), so I recommend against it. For example, the function $s(e / m H)$ is even. This is obvious from expression (1) but obscure from expression (2).]
c. Define $u \equiv e / m H$ and graph

$$
s(u)=-k_{B}\left\{\left[\frac{1}{2}(1+u)\right] \ln \left[\frac{1}{2}(1+u)\right]+\left[\frac{1}{2}(1-u)\right] \ln \left[\frac{1}{2}(1-u)\right]\right\} .
$$

The energy E ranges from $-N m H$ to $+N m H$, so u ranges from -1 to +1 .
The function $s(u)$ is clearly symmetric about $u=0$.
The slope

$$
\frac{d s}{d u}=\frac{k_{B}}{2} \ln \frac{1-u}{1+u}
$$

is positive for $-1<u<0$, so $s(u)$ increases monotonically there. (So, despite the minus sign in the formula for $s(u)$, the entropy itself is always positive...good thing, too!)

In sum, the graph of $s(e, H)$ is

This satisfies our expectations at the edge points:
If $e= \pm m H$, we have $\Omega=1$, so we need $S=k_{B} \ln \Omega=0$.

