Compressibility, expansion coefficient

a. Compressibility means "capable of being compressed". If the pressure increases by a small amount Δp, (and the temperature doesn't change) then the volume changes by the small amount

$$
\Delta V \approx-V \kappa_{T} \Delta p
$$

We certainly expect that if the pressure increases the volume will decrease, so the negative sign acts to make κ_{T} a positive quantity.

If κ_{T} is small then a given Δp will result in a small shrinkage ΔV : the material is hard.
If κ_{T} is large then a given Δp will result in a large shrinkage ΔV : the material is soft.

A substance with high compressibility is also called "squeezable".
The factor of $1 / V$ was put into the definition because the shrinkage is proportional to the volume. Divide by volume to remove this dependence, which makes κ_{T} a property of the substance rather than of the sample.
b. The expansion coefficient β is negative for water between $0^{\circ} \mathrm{C}$ and $4^{\circ} \mathrm{C}$.
c. In two-phase coexistence (i.e. at the cliffs in the graphs below) $\kappa_{T}=+\infty$ and $\beta= \pm \infty$.

d. For the ideal gas, $\kappa_{T}(p, T)=\frac{1}{p}$ and $\beta(p, T)=\frac{1}{T}$.
e.

$$
\begin{aligned}
\frac{\partial \beta}{\partial p} & =\frac{1}{V} \frac{\partial^{2} V}{\partial p \partial T}-\frac{1}{V^{2}} \frac{\partial V}{\partial p} \frac{\partial V}{\partial T} \\
\frac{\partial \kappa_{T}}{\partial p} & =-\frac{1}{V} \frac{\partial^{2} V}{\partial T \partial p}+\frac{1}{V^{2}} \frac{\partial V}{\partial T} \frac{\partial V}{\partial p}
\end{aligned}
$$

which together imply

$$
\frac{\partial \kappa_{T}(p, T)}{\partial T}=-\frac{\partial \beta(p, T)}{\partial p}
$$

f. For the ideal gas, $\frac{\partial \kappa_{T}(p, T)}{\partial T}=0$ and $\frac{\partial \beta(p, t)}{\partial p}=0$.

Note: Watch out for this error!

$$
\begin{aligned}
\kappa_{T} & =\frac{1}{p}=\frac{V}{N k_{B} T} \\
\frac{\partial \kappa_{T}}{\partial T} & =-\frac{V}{N k_{B} T^{2}}=-\frac{N k_{B}}{p^{2} V} .
\end{aligned}
$$

This error comes from considering κ_{T} as a function of V and T, whereas it is defined (and measured!) as a function of p and T. (A measurement of κ_{T} is performed on a sample at some given pressure - usually atmospheric pressure. It is not performed on some sample in a strong box of fixed volume!)

