Accessible configurations of a spin system

a. Maximum possible energy is NmH - all spins down.

Minimum possible energy is -NmH - all spins up.
Spacing between energy levels is $2 m H$ - the energy to flip one spin.
b. The number of microstates (configurations) consistent with, say, five down spins is

$$
\frac{N(N-1)(N-2)(N-3)(N-4)}{5!}=\frac{N!}{5!(N-5)!} .
$$

In general, the number of microstates consistent with n_{\downarrow} down spins is the binomial coefficient

$$
\frac{N!}{n_{\uparrow}!n_{\downarrow}!}
$$

These microstates correspond to the energy level with energy

$$
E=-\left(n_{\uparrow}-n_{\downarrow}\right) m H
$$

c. To write this microstate count as a function of macroscopic quantities only, we must solve for n_{\uparrow} and n_{\downarrow} in terms of E, N, and H. First write

$$
\begin{aligned}
n_{\uparrow}+n_{\downarrow} & =N \\
n_{\uparrow}-n_{\downarrow} & =-E / m H
\end{aligned}
$$

and then solve to find

$$
\begin{aligned}
n_{\uparrow} & =\frac{1}{2}(N-E / m H) \\
n_{\downarrow} & =\frac{1}{2}(N+E / m H)
\end{aligned}
$$

d. The number of configurations in this energy range is approximately the number of energy levels in the range times the number of configurations in a typical energy level. If n_{\uparrow} and n_{\downarrow} represent typical values for a level within this range, then

$$
\Omega \approx\left(\frac{N!}{n_{\uparrow}!n_{\downarrow}!}\right)\left(\frac{\Delta E}{2 m H}\right) .
$$

Expressing this formula using the results of part (c) gives

$$
\Omega(E, \Delta E, H, N) \approx \frac{N!}{\left[\frac{1}{2}(N+E / m H)\right]!\left[\frac{1}{2}(N-E / m H)\right]!} \frac{\Delta E}{2 m H}
$$

