Photon Polarization

1. Classical description of polarized light

Recall that the intensity of a light beam is proportional to the square of its amplitude. That is, if a light beam is $\mathbf{E}(z, t)=\mathbf{E}_{0} \cos (k z-\omega t)$, then its amplitude is proportional to $\left|\mathbf{E}_{0}\right|^{2}$.

The figure makes it clear that as the x-polarized light passes through the polaroid sheet, the component $E_{0} \sin \theta$ is erased. The θ-polarized beam has amplitude $E_{0} \cos \theta$, so the beam intensity is diminished from I_{0} to $I_{0} \cos ^{2} \theta$.
\llbracket Grading: 5 points for any sort of diagram or argument; 5 points for result $I_{0} \cos ^{2} \theta$. 】

2. Quantal description of polarized light: Analyzers

$$
|\langle x \mid \theta\rangle|^{2}=\cos ^{2} \theta \quad\left|\left\langle x \mid \theta+90^{\circ}\right\rangle\right|^{2}=\sin ^{2} \theta
$$

These analyzer (or "measurement") experiments determine the magnitude of each probability amplitude.
The two states are complete because any incoming photon emerges from either the θ port or the $\theta+$ 90° port.

The two states are orthogonal because when a $|\theta\rangle$ photon encounters a θ-analyzer, it emerges from the θ port with probability one and from the $\theta+90^{\circ}$ port with probability zero.

【Grading: 6 points for the two probabilities; 2 points for completeness; 2 points for orthogonality.】

3. Interference

Form a θ analyzer loop by tilting the x, y analyzer loop by the angle θ.

Experiment 1: Slot a blocked.
probability of passing from input to intermediate is $\left|\left\langle\theta+90^{\circ} \mid x\right\rangle\right|^{2}=\sin ^{2} \theta$
state of intermediate photon is $\left|\theta+90^{\circ}\right\rangle$
probability of passing from intermediate to output is $\left|\left\langle y \mid \theta+90^{\circ}\right\rangle\right|^{2}=\cos ^{2} \theta$
probability of passing from input to output is $\sin ^{2} \theta \cos ^{2} \theta$
Experiment 2: Slot b blocked.
probability of passing from input to intermediate is $|\langle\theta \mid x\rangle|^{2}=\cos ^{2} \theta$
state of intermediate photon is $|\theta\rangle$
probability of passing from intermediate to output is $|\langle y \mid \theta\rangle|^{2}=\sin ^{2} \theta$
probability of passing from input to output is $\cos ^{2} \theta \sin ^{2} \theta$

Experiment 3: Both slots open.
probability of passing from input to intermediate is 1
state of intermediate photon is $|x\rangle$
probability of passing from intermediate to output is $|\langle y \mid x\rangle|^{2}=0$
probability of passing from input to output is 0

And clearly,

$$
0 \neq 2 \sin ^{2} \theta \cos ^{2} \theta \quad!
$$

An equation representing experiment 3 is:

$$
\begin{equation*}
\langle y \mid \theta\rangle\langle\theta \mid x\rangle+\left\langle y \mid \theta+90^{\circ}\right\rangle\left\langle\theta+90^{\circ} \mid x\right\rangle=\langle y \mid x\rangle=0 \tag{1}
\end{equation*}
$$

Problem 2 above gives us the magnitudes

$$
\begin{equation*}
|\langle x \mid \theta\rangle|=|\cos \theta| \quad\left|\left\langle x \mid \theta+90^{\circ}\right\rangle\right|=|\sin \theta| . \tag{2}
\end{equation*}
$$

And because $|\langle x \mid \theta\rangle|^{2}+|\langle y \mid \theta\rangle|^{2}=1 ;\left|\left\langle x \mid \theta+90^{\circ}\right\rangle\right|^{2}+\left|\left\langle y \mid \theta+90^{\circ}\right\rangle\right|^{2}=1$, we have

$$
\begin{equation*}
|\langle y \mid \theta\rangle|=|\sin \theta| \quad\left|\left\langle y \mid \theta+90^{\circ}\right\rangle\right|=|\cos \theta| \tag{3}
\end{equation*}
$$

The easiest way to satisfy equations (1), (2), and (3) simultaneously is to pick all the amplitudes real and one of them negative. The conventional choice is

$$
\begin{aligned}
\langle x \mid \theta\rangle & =\cos \theta \\
\langle y \mid \theta\rangle & =\sin \theta \\
\left\langle x \mid \theta+90^{\circ}\right\rangle & =-\sin \theta \\
\left\langle y \mid \theta+90^{\circ}\right\rangle & =\cos \theta
\end{aligned}
$$

\llbracket A general point on determining probability amplitudes: Analyzer experiments give us the magnitudes through equations like (2) and (3), while interference experiments give us the phases through equations like (1).】

【Grading: 6 points for a set of experiments showing interference (a single experiment earns only 3 points interference is manifested through a combination of experiments); 2 points for the interference equation (1); 2 points for the amplitudes.]

4. Circular polarization

Can real values

$$
\langle R \mid \ell p\rangle= \pm 1 / \sqrt{2} \quad\langle L \mid \ell p\rangle= \pm 1 / \sqrt{2}
$$

satisfy

$$
\langle\theta \mid R\rangle\langle R \mid x\rangle+\langle\theta \mid L\rangle\langle L \mid x\rangle=\langle\theta \mid x\rangle=\cos \theta \quad ?
$$

Certainly not! In any such attempt the left-hand side could take on only three possible values, namely 1,0 , or -1 , and the the right-hand side $\cos \theta$ certainly takes on values other than these! However, the complex amplitudes suggested in the question do work, because

$$
\begin{aligned}
& \langle\theta \mid R\rangle\langle R \mid x\rangle+\langle\theta \mid L\rangle\langle L \mid x\rangle \\
= & \left(e^{i \theta} / \sqrt{2}\right)(1 / \sqrt{2})+\left(e^{-i \theta} / \sqrt{2}\right)(1 / \sqrt{2}) \\
= & \frac{e^{i \theta}+e^{-i \theta}}{2} \\
= & \cos \theta .
\end{aligned}
$$

\llbracket Grading: 5 points for argument that real amplitudes add to 1,0 , or $-1 ; 5$ points for checking the proposed (complex) amplitudes.]

