Photon Polarization

1. Classical description of polarized light

Recall that the intensity of a light beam is proportional to the square of its amplitude. That is, if a light beam is $\mathbf{E}(z,t) = \mathbf{E}_0 \cos(kz - \omega t)$, then its amplitude is proportional to $|\mathbf{E}_0|^2$.

The figure makes it clear that as the x-polarized light passes through the polaroid sheet, the component $E_0 \sin \theta$ is erased. The θ -polarized beam has amplitude $E_0 \cos \theta$, so the beam intensity is diminished from I_0 to $I_0 \cos^2 \theta$.

[[*Grading:* 5 points for any sort of diagram or argument; 5 points for result $I_0 \cos^2 \theta$.]]

2. Quantal description of polarized light: Analyzers

 $|\langle x|\theta\rangle|^2 = \cos^2\theta \qquad |\langle x|\theta + 90^\circ\rangle|^2 = \sin^2\theta$

These analyzer (or "measurement") experiments determine the magnitude of each probability amplitude.

The two states are complete because any incoming photon emerges from either the θ port or the θ + 90° port.

The two states are orthogonal because when a $|\theta\rangle$ photon encounters a θ -analyzer, it emerges from the θ port with probability one and from the $\theta + 90^{\circ}$ port with probability zero.

[Grading: 6 points for the two probabilities; 2 points for completeness; 2 points for orthogonality.]

3. Interference

Form a θ analyzer loop by tilting the x, y analyzer loop by the angle θ .

Experiment 1: Slot a blocked.

probability of passing from input to intermediate is $|\langle \theta + 90^{\circ} | x \rangle|^2 = \sin^2 \theta$ state of intermediate photon is $|\theta + 90^{\circ}\rangle$ probability of passing from intermediate to output is $|\langle y|\theta + 90^{\circ}\rangle|^2 = \cos^2 \theta$ probability of passing from input to output is $\sin^2 \theta \cos^2 \theta$

Experiment 2: Slot b blocked.

probability of passing from input to intermediate is $|\langle \theta | x \rangle|^2 = \cos^2 \theta$ state of intermediate photon is $|\theta\rangle$ probability of passing from intermediate to output is $|\langle y | \theta \rangle|^2 = \sin^2 \theta$ probability of passing from input to output is $\cos^2 \theta \sin^2 \theta$

Experiment 3: Both slots open.

probability of passing from input to intermediate is 1 state of intermediate photon is $|x\rangle$ probability of passing from intermediate to output is $|\langle y|x\rangle|^2 = 0$ probability of passing from input to output is 0

And clearly,

$$0 \neq 2\sin^2\theta\cos^2\theta \quad !$$

An equation representing experiment 3 is:

$$\langle y|\theta\rangle\langle\theta|x\rangle + \langle y|\theta + 90^{\circ}\rangle\langle\theta + 90^{\circ}|x\rangle = \langle y|x\rangle = 0 \tag{1}$$

Problem 2 above gives us the magnitudes

$$|\langle x|\theta\rangle| = |\cos\theta| \qquad |\langle x|\theta + 90^{\circ}\rangle| = |\sin\theta|.$$
⁽²⁾

And because $|\langle x|\theta\rangle|^2 + |\langle y|\theta\rangle|^2 = 1$; $|\langle x|\theta + 90^\circ\rangle|^2 + |\langle y|\theta + 90^\circ\rangle|^2 = 1$, we have

$$|\langle y|\theta\rangle| = |\sin\theta| \qquad |\langle y|\theta + 90^{\circ}\rangle| = |\cos\theta|. \tag{3}$$

The easiest way to satisfy equations (1), (2), and (3) simultaneously is to pick all the amplitudes real and one of them negative. The conventional choice is

$$\begin{array}{rcl} \langle x|\theta\rangle &=& \cos\theta\\ \langle y|\theta\rangle &=& \sin\theta\\ \langle x|\theta+90^\circ\rangle &=& -\sin\theta\\ \langle y|\theta+90^\circ\rangle &=& \cos\theta \end{array}$$

[A general point on determining probability amplitudes: Analyzer experiments give us the *magnitudes* through equations like (2) and (3), while interference experiments give us the *phases* through equations like (1).]

[[Grading: 6 points for a set of experiments showing interference (a single experiment earns only 3 points — interference is manifested through a combination of experiments); 2 points for the interference equation (1); 2 points for the amplitudes.]]

4. Circular polarization

Can real values

$$\langle R|\ell p\rangle = \pm 1/\sqrt{2}$$
 $\langle L|\ell p\rangle = \pm 1/\sqrt{2}$

satisfy

$$\langle \theta | R \rangle \langle R | x \rangle + \langle \theta | L \rangle \langle L | x \rangle = \langle \theta | x \rangle = \cos \theta \quad ?$$

Certainly not! In any such attempt the left-hand side could take on only three possible values, namely 1, 0, or -1, and the right-hand side $\cos \theta$ certainly takes on values other than these! However, the complex amplitudes suggested in the question do work, because

$$\begin{array}{rcl} \langle \theta | R \rangle \langle R | x \rangle + \langle \theta | L \rangle \langle L | x \rangle \\ = & (e^{i\theta} / \sqrt{2})(1 / \sqrt{2}) + (e^{-i\theta} / \sqrt{2})(1 / \sqrt{2}) \\ = & \frac{e^{i\theta} + e^{-i\theta}}{2} \\ = & \cos \theta. \end{array}$$

[[Grading: 5 points for argument that real amplitudes add to 1, 0, or -1; 5 points for checking the proposed (complex) amplitudes.]]