Expressions for SHO Ladder Operators

The lowering operator \hat{a} acts upon energy eigenstate $|n\rangle$ as

$$
\hat{a}|n\rangle=\sqrt{n}|n-1\rangle
$$

Since we know how \hat{a} acts upon every element of a basis, we know how it acts upon any state.

The outer product expression

$$
\sum_{m=0}^{\infty} \sqrt{m}|m-1\rangle\langle m|
$$

similarly takes in any energy state $|n\rangle$ and spits out $\sqrt{n}|n-1\rangle$. It must be the same operator.

The m-th row, n-th column matrix element (in the energy basis) is

$$
a_{m, n}=\langle m| \hat{a}|n\rangle=\sqrt{n} \delta_{m, n-1}
$$

so the matrix representation (in the energy basis) is

$$
\left(\begin{array}{cccccc}
0 & \sqrt{1} & 0 & 0 & 0 & \\
0 & 0 & \sqrt{2} & 0 & 0 & \\
0 & 0 & 0 & \sqrt{3} & 0 & \cdots \\
0 & 0 & 0 & 0 & \sqrt{4} & \\
0 & 0 & 0 & 0 & 0 & \\
& & \vdots & & & \ddots
\end{array}\right)
$$

Now, as far as \hat{a}^{\dagger} is concerned, because

$$
(|p\rangle\langle q|)^{\dagger}=|q\rangle\langle p|,
$$

we have

$$
\hat{a}^{\dagger}=\sum_{m=0}^{\infty} \sqrt{m}|m\rangle\langle m-1|=\sum_{m=1}^{\infty} \sqrt{m}|m\rangle\langle m-1|=\sum_{m=0}^{\infty} \sqrt{m+1}|m+1\rangle\langle m|,
$$

and a matrix representation (in the energy basis) of

$$
\left(\begin{array}{cccccc}
0 & 0 & 0 & 0 & 0 & \\
\sqrt{1} & 0 & 0 & 0 & 0 & \\
0 & \sqrt{2} & 0 & 0 & 0 & \cdots \\
0 & 0 & \sqrt{3} & 0 & 0 & \\
0 & 0 & 0 & \sqrt{4} & 0 & \\
& & \vdots & & & \ddots
\end{array}\right)
$$

«Grading: There are many ways to approach this problem. Grade for a total of 10 points recognizing that there will be wide variation in approach.]

