Exercises on Formalism

Interpretation of amplitude squared as a probability

From the Schwarz inequality:

$$
\begin{aligned}
\left|\left\langle a_{n} \mid \psi\right\rangle\right| & \leq \sqrt{\left\langle a_{n} \mid a_{n}\right\rangle} \sqrt{\langle\psi \mid \psi\rangle} \\
\left|\left\langle a_{n} \mid \psi\right\rangle\right|^{2} & \leq\left\langle a_{n} \mid a_{n}\right\rangle\langle\psi \mid \psi\rangle
\end{aligned}
$$

But $\left\langle a_{n} \mid a_{n}\right\rangle=1$ by orthonormality, and $\langle\psi \mid \psi\rangle=1$ by normalization of states. Furthermore, any complex number has non-negative square modulus, so

$$
0 \leq\left|\left\langle a_{n} \mid \psi\right\rangle\right|^{2} \leq 1
$$

【Grading: 2 points for mentioning "Schwarz inequality"; 6 points for using it; 2 points for pointing out that "any complex number has non-negative square modulus".]

Mean value

$$
\begin{aligned}
|\psi\rangle & =\sum_{n}\left|a_{n}\right\rangle\left\langle a_{n} \mid \psi\right\rangle \\
\hat{A}|\psi\rangle & =\sum_{m}\left(\hat{A}\left|a_{m}\right\rangle\right)\left\langle a_{m} \mid \psi\right\rangle \\
& =\sum_{m}^{m} a_{m}\left|a_{m}\right\rangle\left\langle a_{m} \mid \psi\right\rangle
\end{aligned}
$$

So

$$
\begin{aligned}
\langle\psi| \hat{A}|\psi\rangle & =\left[\sum_{n}\left\langle\psi \mid a_{n}\right\rangle\left\langle a_{n}\right|\right]\left[\sum_{m} a_{m}\left|a_{m}\right\rangle\left\langle a_{m} \mid \psi\right\rangle\right] \\
& =\sum_{n} \sum_{m}\left\langle\psi \mid a_{n}\right\rangle a_{m}\left\langle a_{n} \mid a_{m}\right\rangle\left\langle a_{m} \mid \psi\right\rangle \\
& =\sum_{n} \sum_{m}\left\langle\psi \mid a_{n}\right\rangle a_{m} \delta_{n, m}\left\langle a_{m} \mid \psi\right\rangle \\
& =\sum_{n}\left\langle\psi \mid a_{n}\right\rangle a_{n}\left\langle a_{n} \mid \psi\right\rangle \\
& =\sum_{n}^{n} a_{n}\left|\left\langle a_{n} \mid \psi\right\rangle\right|^{2} \\
& =\langle\hat{A}\rangle
\end{aligned}
$$

Measurement example

Eigenbases $\left\{\left|a_{n}\right\rangle\right\}$ and $\left\{\left|b_{n}\right\rangle\right\}$ are related through

$$
\begin{aligned}
\left|b_{1}\right\rangle & =\frac{4}{5}\left|a_{1}\right\rangle+\frac{3}{5}\left|a_{2}\right\rangle \\
\left|b_{2}\right\rangle & =-\frac{3}{5}\left|a_{1}\right\rangle+\frac{4}{5}\left|a_{2}\right\rangle
\end{aligned}
$$

a. Show that if $\left\{\left|a_{n}\right\rangle\right\}$ is orthonormal then $\left\{\left|b_{n}\right\rangle\right\}$ is too.

$$
\begin{aligned}
\left\langle b_{1} \mid b_{1}\right\rangle & \left.=\left\langle\left[\frac{4}{5}\left\langle a_{1}\right|+\frac{3}{5}\left\langle a_{2}\right|\right]\right|\left[\frac{4}{5}\left|a_{1}\right\rangle+\frac{3}{5}\left|a_{2}\right\rangle\right]\right\rangle \\
& =\left(\frac{4}{5}\right)^{2}\left\langle a_{1} \mid a_{1}\right\rangle+\frac{4}{5} \cdot \frac{3}{5}\left\langle a_{1} \mid a_{2}\right\rangle+\frac{3}{5} \cdot \frac{4}{5}\left\langle a_{2} \mid a_{1}\right\rangle+\left(\frac{3}{5}\right)^{2}\left\langle a_{2} \mid a_{2}\right\rangle \\
& =\left(\frac{4}{5}\right)^{2}+\left(\frac{3}{5}\right)^{2}=1 \\
\left\langle b_{1} \mid b_{2}\right\rangle & \left.=\left\langle\left[\frac{4}{5}\left\langle a_{1}\right|+\frac{3}{5}\left\langle a_{2}\right|\right]\right|\left[-\frac{3}{5}\left|a_{1}\right\rangle+\frac{4}{5}\left|a_{2}\right\rangle\right]\right\rangle \\
& =-\frac{4}{5} \cdot \frac{3}{5}\left\langle a_{1} \mid a_{1}\right\rangle+\left(\frac{4}{5}\right)^{2}\left\langle a_{1} \mid a_{2}\right\rangle-\left(\frac{3}{5}\right)^{2}\left\langle a_{2} \mid a_{1}\right\rangle+\frac{3}{5} \cdot \frac{4}{5}\left\langle a_{2} \mid a_{2}\right\rangle \\
& =-\frac{4}{5} \cdot \frac{3}{5}+\frac{3}{5} \cdot \frac{4}{5}=0 \\
\left\langle b_{2} \mid b_{2}\right\rangle & \left.=\left\langle\left[-\frac{3}{5}\left\langle a_{1}\right|+\frac{4}{5}\left\langle a_{2}\right|\right]\right|\left[-\frac{3}{5}\left|a_{1}\right\rangle+\frac{4}{5}\left|a_{2}\right\rangle\right]\right\rangle \\
& =\left(-\frac{3}{5}\right)^{2}\left\langle a_{1} \mid a_{1}\right\rangle-\frac{3}{5} \cdot \frac{4}{5}\left\langle a_{1} \mid a_{2}\right\rangle-\frac{4}{5} \cdot \frac{3}{5}\left\langle a_{2} \mid a_{1}\right\rangle+\left(\frac{4}{5}\right)^{2}\left\langle a_{2} \mid a_{2}\right\rangle \\
& =\left(\frac{3}{5}\right)^{2}+\left(\frac{4}{5}\right)^{2}=1 .
\end{aligned}
$$

b. Find $\left\{\left|a_{n}\right\rangle\right\}$ in terms of $\left\{\left|b_{n}\right\rangle\right\}$.

Straightforward linear algebra gives

$$
\begin{aligned}
\left|a_{1}\right\rangle & =\frac{4}{5}\left|b_{1}\right\rangle-\frac{3}{5}\left|b_{2}\right\rangle \\
\left|a_{2}\right\rangle & =\frac{3}{5}\left|b_{1}\right\rangle+\frac{4}{5}\left|b_{2}\right\rangle
\end{aligned}
$$

c. Repeated measurements. \hat{A} is measured, giving a_{1}. The system is now in state $\left|a_{1}\right\rangle=\frac{4}{5}\left|b_{1}\right\rangle-\frac{3}{5}\left|b_{2}\right\rangle$. Then \hat{B} is measured.

Possibility I: Measurement of \hat{B} results in b_{1}. This happens with probability $\left(\frac{4}{5}\right)^{2}$, and the system is now in state $\left|b_{1}\right\rangle=\frac{4}{5}\left|a_{1}\right\rangle+\frac{3}{5}\left|a_{2}\right\rangle$. So when \hat{A} is measured again, the result is a_{1} with probability $\left(\frac{4}{5}\right)^{2}$, the result is a_{2} with probability $\left(\frac{3}{5}\right)^{2}$.

Possibility II: Measurement of \hat{B} results in b_{2}. This happens with probability $\left(-\frac{3}{5}\right)^{2}$, and the system is now in state $\left|b_{2}\right\rangle=-\frac{3}{5}\left|a_{1}\right\rangle+\frac{4}{5}\left|a_{2}\right\rangle$. So when \hat{A} is measured again, the result is a_{1} with probability $\left(-\frac{3}{5}\right)^{2}$, the result is a_{2} with probability $\left(\frac{4}{5}\right)^{2}$.
probability of measuring a_{1} through possibility I $=\left(\frac{4}{5}\right)^{2}\left(\frac{4}{5}\right)^{2}=\frac{256}{625}$
probability of measuring a_{1} through possibility II $=\left(-\frac{3}{5}\right)^{2}\left(-\frac{3}{5}\right)^{2}=\frac{81}{625}$

$$
\text { total probability of measuring } a_{1}=\frac{337}{625}
$$

$$
\begin{aligned}
\text { probability of measuring } a_{2} \text { through possibility I } & =\left(\frac{4}{5}\right)^{2}\left(\frac{3}{5}\right)^{2}=\frac{144}{625} \\
\text { probability of measuring } a_{2} \text { through possibility II } & =\left(-\frac{3}{5}\right)^{2}\left(\frac{4}{5}\right)^{2}=\frac{144}{625} \\
\text { total probability of measuring } a_{2} & =\frac{288}{625}
\end{aligned}
$$

The answers do indeed sum to 1 . This is not proof that they're correct, but if they had summed to something other than 1 , that would have been proof that they weren't correct!

Example of generalized indeterminancy relation

For this case $\Delta \hat{\mu}_{z}=0$ and $\Delta \hat{\mu}_{x}=\mu_{B} / \sqrt{2}$.
Meanwhile, in the $\{|z+\rangle,|z-\rangle\}$ basis (see textbook, equation (3.13)),

$$
|z+\rangle \doteq\binom{1}{0} ; \quad \hat{\mu}_{z} \doteq \mu_{B}\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) ; \quad \hat{\mu}_{x} \doteq \mu_{B}\left(\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right) .
$$

So in this basis

$$
\begin{aligned}
{\left[\hat{\mu}_{z}, \hat{\mu}_{x}\right] } & \doteq \mu_{B}^{2}\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)\left(\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right)-\mu_{B}^{2}\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) \\
& =\mu_{B}^{2}\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)-\mu_{B}^{2}\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right) \\
& =2 \mu_{B}^{2}\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)
\end{aligned}
$$

whence

$$
\begin{aligned}
\langle z+|\left[\hat{\mu}_{z}, \hat{\mu}_{x}\right]|z+\rangle & =2 \mu_{B}^{2}\left(\begin{array}{ll}
1 & 0
\end{array}\right)\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)\binom{1}{0} \\
& =2 \mu_{B}^{2}\left(\begin{array}{ll}
1 & 0
\end{array}\right)\binom{0}{-1} \\
& =0 .
\end{aligned}
$$

So both sides of the generalized indeterminancy relation are zero, and sure enough

$$
0 \leq 0 .
$$

