Quantum Mechanics

Model Solutions for Sample Exam for Final Examination

1. (a) Expectation value. In terms of ladder operators,

$$
\hat{J}_{x}=\frac{1}{2}\left(\hat{J}_{+}+\hat{J}_{-}\right) .
$$

Thus

$$
\left\langle\hat{J}_{x}\right\rangle=\frac{1}{2}\left(\langle j, m| \hat{J}_{+}|j, m\rangle+\langle j, m| \hat{J}_{-}|j, m\rangle\right)=0 .
$$

(b) Uncertainty. We have

$$
\left(\Delta J_{x}\right)^{2}=\left\langle\hat{J}_{x}^{2}\right\rangle-\left\langle\hat{J}_{x}\right\rangle^{2}=\left\langle\hat{J}_{x}^{2}\right\rangle .
$$

But

$$
\left\langle\hat{J}^{2}\right\rangle=\left\langle\hat{J}_{x}^{2}\right\rangle+\left\langle\hat{J}_{y}^{2}\right\rangle+\left\langle\hat{J}_{z}^{2}\right\rangle .
$$

By symmetry, $\left\langle\hat{J}_{x}^{2}\right\rangle=\left\langle\hat{J}_{y}^{2}\right\rangle$, so

$$
\left(\Delta J_{x}\right)^{2}=\left\langle\hat{J}_{x}^{2}\right\rangle=\frac{1}{2}\left[\left\langle\hat{J}^{2}\right\rangle-\left\langle\hat{J}_{z}^{2}\right\rangle\right]=\frac{1}{2}\left[\hbar^{2} j(j+1)-(\hbar m)^{2}\right]
$$

whence

$$
\Delta J_{x}=\hbar \sqrt{\frac{1}{2}\left[j(j+1)-m^{2}\right]} .
$$

2. Scaling. We've seen that, within the Coulomb problem with mass M and interaction $V(r)=$ $-k / r$, there is only one quantity with the dimensions of length, namely $\hbar^{2} / k M$. (See The Physics of $Q M$ equation 14.72.) Any quantity with the dimensions of length (such as the mean separation in the energy eigenstate with $n=4, \ell=3$, and $m=0$) must take the form

$$
\text { (dimensionless number) } \frac{\hbar^{2}}{k M} \text {. }
$$

For the hydrogen atom problem, $M=m_{e}$ (ignoring nuclear motion) and $k=e^{2} / 4 \pi \epsilon_{0}$. For the helium ion problem, $M=m_{e}$ (ignoring nuclear motion) and $k=2 e^{2} / 4 \pi \epsilon_{0}$. Hence any length calculated for the helium ion problem is half the corresponding length for the hydrogen atom problem. The length in question is thus $\frac{1}{2}(0.952 \mathrm{~nm})=0.476 \mathrm{~nm}$.
[It so happens that for the length in question, the dimensionless number is 18 . But it's a long calculation to find that 18 , and you don't need to do it in order to solve the problem.】

3. Spin- $\frac{1}{2}$ system.

a. We have

$$
|\psi(0)\rangle=\psi_{+}|\uparrow\rangle+\psi_{-}|\downarrow\rangle
$$

where $\left|\psi_{+}\right|^{2}=\frac{1}{2},\left|\psi_{-}\right|^{2}=\frac{1}{2}$, so $\psi_{+}=\frac{1}{\sqrt{2}} e^{i \delta_{+}}, \psi_{-}=\frac{1}{\sqrt{2}} e^{i \delta_{-}}$. Use overall phase freedom to select $\delta_{+}=0$ and we have

$$
|\psi(0)\rangle=\frac{1}{\sqrt{2}}\left(|\uparrow\rangle+e^{i \delta-}|\downarrow\rangle\right) .
$$

b. The Hamiltonian is diagonal, so

$$
|\psi(t)\rangle=\frac{1}{\sqrt{2}}\left(e^{-i a t / \hbar}|\uparrow\rangle+e^{-i b t / \hbar} e^{i \delta_{-}}|\downarrow\rangle\right)
$$

4. The virial theorem.

a. In an energy eigenstate (stationary state), any observable is time constant, so

$$
\frac{d}{d t}\langle\hat{x} \hat{p}\rangle=0 .
$$

b. As always

$$
\frac{d}{d t}\langle\hat{x} \hat{p}\rangle=-\frac{i}{\hbar}\langle[\hat{x} \hat{p}, \hat{H}]\rangle .
$$

c.

$$
\begin{aligned}
{[\hat{x} \hat{p}, \hat{H}] } & =\left[\hat{x} \hat{p}, \hat{p}^{2} / 2 m+V(\hat{x})\right] \\
& =\left[\hat{x} \hat{p}, \hat{p}^{2} / 2 m\right]+[\hat{x} \hat{p}, V(\hat{x})] \\
& =\hat{x}\left[\hat{p}, \hat{p}^{2} / 2 m\right]+\left[\hat{x}, \hat{p}^{2} / 2 m\right] \hat{p}+\hat{x}[\hat{p}, V(\hat{x})]+[\hat{x}, V(\hat{x})] \hat{p} \\
& =0+\left[\hat{x}, \hat{p}^{2}\right] \hat{p} / 2 m+\hat{x}[\hat{p}, V(\hat{x})]+0 \\
& =(\hat{p}[\hat{x}, \hat{p}]+[\hat{x}, \hat{p}] \hat{p}) \hat{p} / 2 m+\hat{x}[\hat{p}, V(\hat{x})] \\
& =(2 i \hbar \hat{p}) \hat{p} / 2 m+\hat{x}[\hat{p}, V(\hat{x})] \\
& =2 i \hbar \widehat{\mathrm{KE}}+\hat{x}[\hat{p}, V(\hat{x})] .
\end{aligned}
$$

Find $[\hat{p}, V(\hat{x})]$ by evaluating the commutator in the position representation:

$$
\begin{aligned}
{[\hat{p}, V(\hat{x})]|\psi\rangle } & =\hat{p} V(\hat{x})|\psi\rangle-V(\hat{x}) \hat{p}|\psi\rangle \\
& \doteq-i \hbar\left[\frac{\partial}{\partial x} V(x) \psi(x)-V(x) \frac{\partial}{\partial x} \psi(x)\right] \\
& =-i \hbar\left[\frac{\partial V(x)}{\partial x} \psi(x)+V(x) \frac{\partial \psi(x)}{\partial x}-V(x) \frac{\partial \psi(x)}{\partial x}\right] \\
& =i \hbar F(x) \psi(x)
\end{aligned}
$$

where $F(x)=-\frac{\partial V(x)}{\partial x}$. Because this holds for arbitrary $|\psi\rangle,[\hat{p}, V(\hat{x})]=i \hbar F(\hat{x})$. Thus, going back to our first chain of deductions,

$$
[\hat{x} \hat{p}, \hat{H}]=2 i \hbar \widehat{\mathrm{KE}}+i \hbar \hat{x} F(\hat{x})
$$

Add this to the results of parts (a) and (b) to find that, for any energy eigenstate

$$
\frac{d}{d t}\langle\hat{x} \hat{p}\rangle=-\frac{i}{\hbar}\langle[\hat{x} \hat{p}, \hat{H}]\rangle=\langle 2 \widehat{\mathrm{KE}}+\hat{x} F(\hat{x})\rangle=0,
$$

whence

$$
2\langle\widehat{\mathrm{KE}}\rangle=-\langle\hat{x} F(\hat{x})\rangle
$$

... the virial theorem!

