Quantum Mechanics Sample Exam for Final Examination

1 A one-particle system is in angular momentum eigenstate $|j,m\rangle$ so that

$$\hat{J}^2 |j,m\rangle = \hbar^2 j(j+1)|j,m\rangle \hat{J}_z |j,m\rangle = \hbar m |j,m\rangle.$$

What is the expectation value and uncertainty of \hat{J}_x in this state?

- 2 For a hydrogen atom in the energy eigenstate with n = 4, $\ell = 3$, and m = 0, the mean separation between nucleus and electron is 0.952 nm. Find the mean separation between nucleus and electron for a singly ionized helium ion in its energy eigenstate with n = 4, $\ell = 3$, and m = 0. (Ignore nuclear motion.)
- 3 A spin- $\frac{1}{2}$ particle in initial state $|\psi(0)\rangle$ is equally likely to be found in either of the basis states $|\uparrow\rangle$ or $|\downarrow\rangle$.
 - a. Write a normalized representation of $|\psi(0)\rangle$ in the basis $\{|\uparrow\rangle, |\downarrow\rangle\}$.
 - b. If the Hamiltonian is represented, in the basis $\{|\uparrow\rangle, |\downarrow\rangle\}$, by the matrix

$$\left(\begin{array}{cc}a&0\\0&b\end{array}\right)$$

then find the representation of the state $|\psi(t)\rangle$ for all time.

- 4 Prove the quantum mechanical virial theorem for a one-dimensional system by following these steps:
 - a. For a system in an energy eigenstate, what is $\frac{d}{dt}\langle \hat{x}\hat{p}\rangle$?
 - b. Relate $\frac{d}{dt}\langle \hat{x}\hat{p}\rangle$ to $[\hat{x}\hat{p},\hat{H}]$, where \hat{H} is the Hamiltonian $\frac{\hat{p}^2}{2m} + V(\hat{x})$.
 - c. Evaluate the commutator to show that, for an energy eigenstate,

$$2\langle \widehat{\text{KE}} \rangle = -\langle \hat{x}F(\hat{x}) \rangle$$
 where $F(x) = -\frac{\partial V(x)}{\partial x}$

What materials (books, notes, web sites, etc.) did you consult while taking this exam?