Quantum Mechanics

Sample Exam for Second Examination

- 1 An Ammonia molecule starts out in state "down". What is the probability that it is found "down" at time t? Use the notation and results in the textbook, section 5.5.
- 2 Evaluate $\Im m\{\langle \hat{x}\hat{p}\rangle\}$ for any state $|\psi\rangle$. $(\Im m\{z\}$ means the imaginary part of z. So if z = x + iy, where x and y are real, then $\Im m\{z\} = y$.)
- 3 Suppose operators \hat{A} and \hat{B} obey $[\hat{A}, \hat{B}] = c\hat{B}$, where c is a number. If $|a\rangle$ is an eigenstate of \hat{A} with eigenvalue a, show that $\hat{B}|a\rangle$ is an eigenstate of \hat{A}^3 , and find its eigenvalue.
- 4 A "Lorentzian" wavepacket has

$$\psi(x) = \frac{A}{x^2 + \gamma^2} e^{ikx},$$

where γ and k are fixed parameters.

- a. What is the normalization constant A?
- b. What is the mean kinetic energy?

What materials (books, notes, web sites, etc.) did you consult while taking this exam?