Quantum Mechanics

Sample Exam for First Examination

1 State representations

Write the column matrix that represents the state $|z-\rangle$ in the basis $\{|\theta+\rangle,|\theta-\rangle\}$, as a function of the angle θ.

2 Photon polarization

A photon linearly polarized at an angle θ to the vertical is said to be in state $|\theta\rangle$. Special cases are $\left|0^{\circ}\right\rangle=|x\rangle$ and $\left|90^{\circ}\right\rangle=|y\rangle$. Express the state $|\theta\rangle$ as a linear combination of states $|x\rangle$ and $|y\rangle$ by finding the functions $a(\theta)$ and $b(\theta)$ such that

$$
|\theta\rangle=a(\theta)|x\rangle+b(\theta)|y\rangle .
$$

I encourage you to use the results from section 3.3 of The Physics of $Q M$.

3 Matrix algebra

Find the eigenvalues and corresponding (normalized) eigenvectors of the three Pauli matrices

$$
\sigma_{1}=\left(\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right), \quad \sigma_{2}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right), \quad \sigma_{3}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

4 Math!

Suppose \hat{A} represents a linear operator. Show that if $(a, \hat{A} a)$ is real for all vectors a, then $(b, \hat{A} c)=$ $(c, \hat{A} b)^{*}$ for all vectors b and c. (That is, \hat{A} is Hermitian.) (Clue: Employ the hypothesis with $a=b+c$ and $a=b+i c$.)

What materials (books, notes, web sites, etc.) did you consult while taking this exam?

