Anharmonic Oscillator

a. Using the results from the problem "Ladder Operators for the Simple Harmonic Oscillator",

$$
\begin{aligned}
&\langle m| \hat{x}^{3}|n\rangle \\
&= \sum_{\ell}\langle m| \hat{x}|\ell\rangle\langle\ell| \hat{x}^{2}|n\rangle \\
&=\left(\frac{\hbar}{2 m \omega}\right)^{3 / 2} \sum_{\ell}\left[\sqrt{\ell} \delta_{m, \ell-1}+\sqrt{\ell+1} \delta_{m, \ell+1}\right] \\
& \times\left[\sqrt{n(n-1)} \delta_{\ell, n-2}+(2 n+1) \delta_{\ell, n}+\sqrt{(n+1)(n+2)} \delta_{\ell, n+2}\right] \\
&=\left(\frac{\hbar}{2 m \omega}\right)^{3 / 2}\left\{\sum_{\ell} \sqrt{\ell} \delta_{m, \ell-1}\left[\sqrt{n(n-1)} \delta_{\ell, n-2}+(2 n+1) \delta_{\ell, n}+\sqrt{(n+1)(n+2)} \delta_{\ell, n+2}\right]\right. \\
&\left.\quad+\sum_{\ell} \sqrt{\ell+1} \delta_{m, \ell+1}\left[\sqrt{n(n-1)} \delta_{\ell, n-2}+(2 n+1) \delta_{\ell, n}+\sqrt{(n+1)(n+2)} \delta_{\ell, n+2}\right]\right\} \\
&=\left(\frac{\hbar}{2 m \omega}\right)^{3 / 2}\left\{\sqrt{m+1}\left[\sqrt{n(n-1)} \delta_{m+1, n-2}+(2 n+1) \delta_{m+1, n}+\sqrt{(n+1)(n+2)} \delta_{m+1, n+2}\right]\right. \\
&\left.\quad+\sqrt{m}\left[\sqrt{n(n-1)} \delta_{m-1, n-2}+(2 n+1) \delta_{m-1, n}+\sqrt{(n+1)(n+2)} \delta_{m-1, n+2}\right]\right\} \\
&=\left(\frac{\hbar}{2 m \omega}\right)^{3 / 2}\left[\sqrt{n-2} \sqrt{n(n-1)} \delta_{m, n-3}+\sqrt{n}(2 n+1) \delta_{m, n-1}+\sqrt{n+2} \sqrt{(n+1)(n+2)} \delta_{m, n+1}\right. \\
&\left.\quad+\sqrt{n-1} \sqrt{n(n-1)} \delta_{m, n-1}+\sqrt{n+1}(2 n+1) \delta_{m, n+1}+\sqrt{n+3} \sqrt{(n+1)(n+2)} \delta_{m, n+3}\right] \\
&=\left(\frac{\hbar}{2 m \omega}\right)^{3 / 2}\left[\sqrt{n(n-1)(n-2)} \delta_{m, n-3}+3 n \sqrt{n} \delta_{m, n-1}\right. \\
&\left.\quad+3(n+1) \sqrt{n+1} \delta_{m, n+1}+\sqrt{(n+1)(n+2)(n+3)} \delta_{m, n+3}\right] .
\end{aligned}
$$

b. The perturbation is $\hat{H}^{\prime}=b \hat{x}^{3}$, so to first order

$$
E_{n}^{(1)}=b\langle n| \hat{x}^{3}|n\rangle=0
$$

To second order (which, in this case, is the leading non-vanishing correction)

$$
E_{n}^{(2)}=\sum_{m \neq n} \frac{H_{n, m}^{\prime} H_{m, n}^{\prime}}{E_{n}^{(0)}-E_{m}^{(0)}}
$$

In this case $E_{n}^{(0)}-E_{m}^{(0)}=\hbar \omega(n-m)$ and $H_{n, m}^{\prime}=H_{m, n}^{\prime}$, so

$$
\begin{aligned}
E_{n}^{(2)} & =\sum_{m=0}^{\infty} \frac{b^{2}\langle n| \hat{x}^{3}|n\rangle^{2}}{\hbar \omega(n-m)} \\
& =\frac{b^{2}}{\hbar \omega}\left(\frac{\hbar}{2 m \omega}\right)^{3} \sum_{m=0}^{\infty} \frac{\text { stuff from part a }}{n-m}
\end{aligned}
$$

The sum is

$$
\frac{n(n-1)(n-2)}{3}+\frac{9 n^{3}}{1}+\frac{9(n+1)^{3}}{-1}+\frac{(n+1)(n+2)(n+3)}{-3}=-\left(30 n^{2}+30 n+11\right)
$$

whence

$$
E_{n}^{(2)}=-\frac{b^{2}}{\hbar \omega}\left(\frac{\hbar}{2 m \omega}\right)^{3}\left(30 n^{2}+30 n+11\right)
$$

For large n, the ratio $E_{n}^{(2)} / E_{n}^{(0)}$ increases linearly with $n-$ the energy shifts are not small. This makes sense: the SHO approximation $V(x)=\frac{1}{2} k x^{2}$ is valid only near the origin. Far from the origin, the "correction" term $b x^{3}$ dominates $\frac{1}{2} k x^{2}$. High energy states are spread out far (remember from "Ladder Operators for the Simple Harmonic Oscillator" that $\Delta x=\sqrt{\hbar / m \omega} \sqrt{n+\frac{1}{2}}$) so they sample regions where $b x^{3}$ is large.

【Grading: 5 points for part (a); 5 points for part (b).】

