
Anharmonic Oscillator

a. Using the results from the problem “Ladder Operators for the Simple Harmonic Oscillator”,
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b. The perturbation is Ĥ ′ = bx̂3, so to first order
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To second order (which, in this case, is the leading non-vanishing correction)
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The sum is
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For large n, the ratio E
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n increases linearly with n — the energy shifts are not small. This

makes sense: the SHO approximation V (x) = 1
2kx

2 is valid only near the origin. Far from the origin, the
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[[Grading: 5 points for part (a); 5 points for part (b).]]
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