
Solution to “Seiches on a lake”
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a. Water height. The excess water height y increases linearly with x:

y(−L/2) = −ye,
y(0) = 0,

y(+L/2) = +ye.

Thus

y(x) =
2ye
L
x. (1)

b. Gravitational potential energy of a slab. The increased gravitational potential energy is

[mass]×g×[height of center of mass] = [ρyW (dx)]g[y/2]

or
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2(x)W dx. (2)

c. Gravitational potential energy of the lake.
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d. Differential equation for speed of water flow.

rate of flow in at x − rate of flow out at x+ dx = rate of volume increase within slab

v(x)DW − v(x+ dx)DW = (W dx)(dy/dt)

So

(v(x)− v(x+ dx))DW = W dx
dy

dt

but for any function f(x), the derivitive is defined by

f(x+ dx)− f(x)

dx
=
df

dx
,

so the left hand side above is

−dv
dx
dxDW = W dx

dy

dt
.

As a consequence,
dv
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= − 1

D

dy
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= − 2x

DL
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. (4)

e. Solve the differential equation for speed of water flow. Integrating both sides of this equation with

respect to x gives ∫
dv

dx
dx = − 2
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where C is a constant of integration. The boundary condition v(−L/2) = v(+L/2) = 0 gives constant

as

v(x) = − 1

DL
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Because x2 is less than (L/2)2 for all points within the lake, v(x) always has the same sign as dye/dt.

f. Kinetic energy. The kinetic energy of a slab between x and x+ dx is

1
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so the kinetic energy of the entire lake is
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g. Find the period. Here is the analogy between the two systems:

mass on spring seiche on lake

kinetic energy 1
2mv

2 ⇐⇒ 1
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m ⇐⇒ ρWL3

30D

potential energy 1
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So the period of a seiche oscillation is
2πL√
10gD

. (7)

h. The period of a seiche oscillation is independent of density for the same reason that the period of a

pendulum is independent of mass, or that the acceleration of a falling object is independent of mass:

A heavier object has more attraction to the earth, but it also has more inertia, and the two effects

exactly cancel out.

i. Comparison to experiment. Using L = 70,000 m and D = 150 m gives a period of 3600 sec or

60 minutes. . . 18% less than observed.
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