
Oberlin College Physics 110, Fall 2011

Model Solutions to Assignment 4

Additional problem 56: A girl, a sled, and an ice-covered lake

ice

shore

girl

sled
rope

geometry diagram:

free body diagrams:

force on sled by girlforce on girl by sled

force on girl
by ground
(friction)

a. The only force on the sled is the leftward force due to the girl. (To be absolutely precise, the leftward

force on the sled is the force due to the rope, not due to the girl. However we have seen that when the

mass of the rope is negligible, then the force on the sled due to the rope is nearly equal to the force on

the rope due to the girl. We say that the rope transmits the force without change. Similarly for the

rightward force on the girl due to the sled.) The acceleration of the sled is

aS =
FS,net

mS
=

5.2 N

8.4 kg
= 0.62 m/s2.

b. The two forces on the girl are the rightward force due to the sled (actually due to the rope plus sled),

and the leftward force of friction due to the ground. These two forces balance so that the net force

vanishes whence the acceleration is zero.
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c. Same as part (a).

d. By Newton’s third law, the force by the girl on the sled is equal and opposite to the force on the sled

by the girl. Thus

aG =
FG,net

mG
=

5.2 N

40 kg
= 0.13 m/s2.

e. At any instant of time, the distances traveled by the girl and the sled from their starting points are

xG = 1
2aGt

2 and xS = 1
2aSt

2,

so
xS
xG

=
aS
aG

=
mG

mS
.

This makes sense: the high-mass (more sluggish, more inert) girl moves less than the low-mass sled

does — but if the two were equally massive, then by symmetry they would move equal amounts.

In particular, we want to know xG when the girl and sled touch, that is, when xG + xS = 15 m. This

is when:

xG + xS = 15 m

xG +
mG

mS
xG = 15 m

xG

[
1 +

mG

mS

]
= 15 m

xG

[
mS +mG

mS

]
= 15 m

xG =

[
mS

mS +mG

]
(15 m)

xG =

[
8.4 kg

48 kg

]
(15 m) = 2.6 m.

2



As expected, the low-mass sled moves more than the high-mass girl.

f. In part (b), the two forces acting on the girl are balanced: you know they are equal and opposite

because the acceleration is zero, so the forces must add up to zero. But in the forces mentioned in

parts (c) and (d) are equal and opposite by Newton’s third law. They are equal and opposite even

when the girl accelerates. The two members of a third-law pair always act upon different objects.

Moral of the story: I drop a ball. The gravitational force on the ball due to the earth is equal and

opposite to the gravitational force on the earth due to the ball. But the ball accelerates a whole lot more

than the earth does because the ball has a much smaller mass.

The word “force”, like most words, has multiple meanings. (The Oxford English Dictionary lists 53

meanings for the noun “force”.) In terms of the everyday meaning of the word “force”, it seems absurd that

the huge, enormous earth can only muster up as much force as the tiny ball can. But in the physics meaning

of the word “force” this is exactly what has to happen, in order for the accelerations to be so different. I

caution you that intuition developed from the military or legal senses of the word “force” probably doesn’t

apply to the physics sense of the word “force”.

Additional problem 58: Monkey business

The monkey has mass mM , the bananas have mass mB . The drawings are:

monkey

T

Mmg

bananas

T

Mbg

am

a. [8 points] The bananas don’t move, so for the bananas
∑ ~F = m~a becomes T = mBg. For the monkey,∑ ~F = m~a becomes

T −mMg = mMa whence mBg −mMg = mMa whence a =
mB −mM

mM
g.

Given the numbers of the problem, a = 0.50g = 4.9 m/s2.

b. [2 points] It is clear from our equation that if both masses are doubled, the acceleration won’t change.

HRW problem 5-54: Pulled penguins

free body diagrams:

front two penguinsrear two penguins

111 N111 N 222 N

mass: 35 kgmass: 12 kg + m
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The front two penguins experience a net force of 111 N to the right, and this force results in certain

acceleration. The rear two penguins experience a net force of 111 N to the right, and they also undergo the

same acceleration. Thus they must have the same mass. . . the mass of the remaining penguin is 23 kg.

HRW problem 5-55: Blocks

Only horizontal forces are relevant, so only those are shown:

geometry diagram:

free body diagrams:

m1
m2

hand

m2

m1FH
FB FB

a

Note that both blocks undergo the same acceleration a.

For left block:
∑
Fx = m1a =⇒ FH − FB = m1a

For right block:
∑
Fx = m2a =⇒ FB = m2a

We know m1, m2, and FH . Above are two equations in two unknowns, namely a and FB . Solving for FB :

FB = FH −m1a = FH −m1

(
FB

m2

)
FB

(
1 +

m1

m2

)
= FH

FB

(
m1 +m2

m2

)
= FH

and finally

FB =

(
m2

m1 +m2

)
FH . (1)

Using numbers:

a.

FB =

(
1.2 kg

3.5 kg

)
(3.2 N) = 1.1 N.
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b. This situation just swaps m1 and m2, so now FB = 2.1 N.

c. Result (1) says that FB diminishes as m2 shrinks: From FB = FH if m1 = 0 down to FB = 0 if m2 = 0.

HRW problem 5-57: Wedge

As usual, we solve this problem first with symbols (mr, mh, and θ), and only then plug in numbers. This

is because (1) it is easier to do algebra with symbols than numbers and (2) we will be able to “read the

equation” to check it for reasonableness.

geometry diagram:

free body diagrams:

mhmr

θ

mr

T

Wr

N
mh

T

Wh
a

a

(Note: we could have chosen the two positive acceleration directions pointing the other way. . . this would

have just resulted in a final acceleration of the opposite sign.) Apply
∑ ~F = m~a to both blocks:∑
F = ma

Forces on hanging block mhg − T = mha (1)

Forces on ramp block, parallel to surface T −mrg sin θ = mra (2)

Forces on ramp block, perpendicular to surface N −mrg cos θ = 0 (3)

Equations (1) and (2) are two equations for the two unknowns T and a. Solve them simultaneously to find

a =
mh −mr sin θ

mh +mr
g,

T =
mhmr

mh +mr
(1 + sin θ)g.

Now, do these equations make sense?
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The dimensions are correct. Check.

When mr = 0, these equations give a = g and T = 0. Check.

When θ = 90◦ this is exactly the situation of the additional problem on “sliding salami”, and

these equations give exactly the same answers. Check.

If mh � mr, the acceleration is positive; if mr � mh, the acceleration is negative. Check.

I can’t think of any more circumstances in which I have any intuition. Can you?

Plugging in the numbers given, and using significant figures properly, we find that for the situation of this

problem: (a) a = 0.736 m/s2; (b) the hanging block accelerates downward; (c) T = 20.9 N.

HRW problem 5-58: Window washer

T

man

T

W

a

The equation
∑ ~F = m~a becomes

2T −mg = ma, so T = 1
2m(a+ g).

(a) When a = 0, T = 1
2 (95.0 kg)(9.81 m/s2) = 466 N.

(b) When a = 1.30 m/s2, T = 1
2 (95.0 kg)(1.30 m/s2 + 9.81 m/s2) = 528 N.

T

man

W

a
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In this case the equation
∑ ~F = m~a becomes

T −mg = ma, so T = m(a+ g).

(c) When a = 0, T = (95.0 kg)(9.81 m/s2) = 932 N.

(d) When a = 1.30 m/s2, T = (95.0 kg)(1.30 m/s2 + 9.81 m/s2) = 1060 N.

Discussion: Suppose we want the cab to rise at constant speed. The man in the cab accomplishes this

by applying a force of 466 N. His coworker on the ground needs to apply twice as much force! It seems that

the man in the cab is getting something for nothing.

However, consider this aspect: When the coworker on the ground pulls two meters of rope through his

hands, the man in the cab rises by two meters. But when the man in the cab pulls two meters of rope, the

cab rises by only one meter. (One meter is eliminated between the cab and the pulley, the other meter is

eliminated between the pulley and the hand.)

So the man in the cab pulls with half the force, but has to pull twice as much rope in order to rise the

same distance. We will return to this issue when we discuss work.

Problem 5-88: Landing on Callisto

a. The weight is 3260 N.

b. When the thrust is 2200 N, the net force is 1060 N (downward), so the mass of the spacecraft is

m =
Fnet

a
=

1060 N

0.39 m/s2
= 2700 kg.

spacecraft

thrust (2200 N)

weight (3260 N)

c. The acceleration of gravity is
weight

mass
=

3260 N

2700 kg
= 1.2 m/s2.
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HRW problem 6-52: Amusement park

geometry diagram: free body diagram:

W
Fon car by boom

a

ride today! 

The equation
∑ ~F = m~a becomes (taking the positive direction to be downward)

W − Fon car by boom = ma = m
v2

r
.

So

Fon car by boom = W −mv2

r
= W

(
1− v2

rg

)
.

For the two cases given:

a. If v = 5.0 m/s, then F = +3.7 kN (that is, the force points upward, as shown in the diagram).

b. If v = 12 m/s, then F = −2.3 kN. (The negative sign means that the force points downward.)

It makes sense that at low speeds, the force should point upward, because at zero speed the force is of course

upward. As the speed increases, the boom needs to hold on to the car lest it fly away.
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HRW problem 6-57: Orbiting puck

free body diagram:

a

T

The cylinder will remain at rest when the string tension ~T supplies all the needed centripetal acceleration

v2/r. This occurs when

T = Mg = m
v2

r
or v =

√
M

m
rg.

(With a lower puck speed, the cylinder drops. With a higher puck speed, it rises.)

HRW problem 6-54: Amusement park design

The net force on the passenger must be

F =
mv2

r
.

a. If there is a small change dr in the radius, with no change in v, then the force will change by about

dF =
dF

dr
dr = −mv

2

r2
dr.

b. If there is a small change dv in the speed, with no change in r, then the force will change by about

dF =
dF

dv
dv =

2mv

r
dv.

c. If there is a small change dT in the period

T =
2πr

v
,

with no change in r, then the associated change in velocity is

dv =
dv

dT
dT = −2πr

T 2
dT.

Using the result of part (b), this changes the force by

dF =
2mv

r
dv = −2mv

r

2πr

T 2
dT = −8π2mr

T 3
dT.
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