Oberlin College Physics 110, Fall 2011

Model Solutions to Sample Final Exam

Additional problem 27: Cannon shot
Because I'm concerned about speeds and distances, but not times, the central equation will likely be

$$
v^{2}=v_{0}^{2}+2 a_{0}\left(x-x_{0}\right)
$$

In our case $v_{0}=0, x-x_{0}=L$, the length of the cannon, so

$$
a_{0}=\frac{v^{2}}{2 L}
$$

To find the time, use

$$
v=v_{0}+a_{0} t
$$

or

$$
T=\frac{v}{a_{0}}=\frac{2 L}{v} .
$$

Plugging in the given numbers results in a time of 0.6600 s . (Note four significant figures.)
Additional problem 76: Spring gun
Solved in the notes.
Additional problem 90: Train latch
Let M_{f} and M_{c} represent the masses of the freight car and the caboose. Let v_{i} represent the initial velocity of the freight car and v_{f} represent the final velocity of the latched combination.

Momentum conservation: $M_{f} v_{i}=\left(M_{f}+M_{c}\right) v_{f}$.
Kinetic energy loss: $0.66\left(\frac{1}{2} M_{f} v_{i}^{2}\right)=\frac{1}{2}\left(M_{f}+M_{c}\right) v_{f}^{2}$.
Square the first equation, and divide that squared equation by the second equation to obtain

$$
\frac{1}{0.66} M_{f}=M_{f}+M_{c} \quad \text { or } \quad M_{c}=\frac{0.37}{0.66} M_{f}
$$

Plugging in the given weight of the freight car, the caboose has weight 24 tons.
HRW problem 9-17: $A \operatorname{dog}$ on a boat
The location of the center of mass is

$$
x_{c m}=\frac{x_{B} m_{B}+x_{D} m_{D}}{m_{B}+m_{D}}
$$

where x_{B} is the location of the CM of the boat, m_{B} the mass of the boat, and similarly for the dog.
There are no external forces during the dog's walk, so $\Delta x_{c m}=0$, whence

$$
\Delta x_{B} m_{B}=-\Delta x_{D} m_{D}
$$

Now, $\Delta x_{D}=-2.4 \mathrm{~m}+\Delta x_{B}$ so

$$
\Delta x_{B}=(2.4 \mathrm{~m})\left(\frac{m_{B}}{m_{B}+m_{D}}\right)=0.48 \mathrm{~m}
$$

So the distance from the dog to shore is

$$
6.1 \mathrm{~m}-2.4 \mathrm{~m}+0.48 \mathrm{~m}=4.2 \mathrm{~m}
$$

Relativity problem 2: Muon lifetime

Classically, without time dilation:

$$
\text { distance traveled }=\text { speed } \times \text { time }=(0.83 c) \times(2.2 \mu \mathrm{~s})=550 \mathrm{~m}
$$

Correctly, with time dilation:
$T_{0}=$ time ticked off by muon between production and decay $=2.2 \mu \mathrm{~s}$
$T=$ time elapsed in lab frame between production and decay $=\frac{T_{0}}{\sqrt{1-(V / c)^{2}}}=\frac{2.2 \mu \mathrm{~s}}{\sqrt{1-(0.83)^{2}}}=3.9 \mu \mathrm{~s}$
distance traveled in lab frame $=$ speed in lab frame \times time elapsed in lab frame $=(0.83 c) \times(3.9 \mu \mathrm{~s})=980 \mathrm{~m}$

Relativity problem 8: Time travel
Ivan has aged $T_{0}=2$ years whereas time $T=12$ years has elapsed, so

$$
\begin{aligned}
T & =T_{0} / \sqrt{1-(V / c)^{2}} \\
\sqrt{1-(V / c)^{2}} & =T_{0} / T=1 / 6 \\
1-(V / c)^{2} & =1 / 36 \\
(V / c)^{2} & =35 / 36 \\
V & =\sqrt{35 / 36} c=0.986 c
\end{aligned}
$$

Relativity problem 11: Two events
The Lorentz transform says that

$$
\Delta t^{\prime}=\frac{\Delta t-V \Delta x / c^{2}}{\sqrt{1-(V / c)^{2}}}
$$

So if $\Delta t^{\prime}=0$, we have

$$
\begin{aligned}
0 & =\Delta t-V \Delta x / c^{2} \\
V & =(\Delta t / \Delta x) c^{2}=(6 \text { nan } / 14 \mathrm{ft})(1 \mathrm{ft} / \mathrm{nan}) c=\frac{3}{7} c
\end{aligned}
$$

Relativity problem 18: Relativistic energy: a new proposal
If this proposal were correct, then the non-relativistic limit of energy would be

$$
E=\frac{m c^{2}}{\sqrt{1-(v / c)^{4}}} \approx m c^{2}\left[1-\frac{1}{2}\left(-(v / c)^{4}\right)\right]=m c^{2}+\frac{1}{2} m v^{4} / c^{2}
$$

That is, classical kinetic energy would be, not $\frac{1}{2} m v^{2}$, but $\frac{1}{2} m v^{4} / c^{2}$. Clearly wrong.

