Oberlin College Physics 110, Fall 2011

Model Solutions to Sample Exam 2

Additional problem 71: Skier.
Key idea: Energy is conserved because poles aren't used, friction is negligible, and the normal force does no work.

Initial energy: $\frac{1}{2} m v_{i}^{2}+m g h_{i}=\frac{1}{2} m(0)^{2}+m g h_{i}$.
Final energy: $\frac{1}{2} m v_{f}^{2}+m g h_{f}$.
Energy conservation: $\frac{1}{2} m v_{f}^{2}+m g h_{f}=m g h_{i} \Longrightarrow v_{f}^{2}=2 g\left(h_{i}-h_{f}\right)$.
Change in height: $h_{f}-h_{i}=-12.3 \mathrm{~m}+6.5 \mathrm{~m}-3.5 \mathrm{~m}+4.4 \mathrm{~m}-10.7 \mathrm{~m}=-15.6 \mathrm{~m}$.
Final velocity: $v_{f}=\sqrt{2 g\left(h_{i}-h_{f}\right)}=17.5 \mathrm{~m} / \mathrm{s}$.
Additional problem 58: Monkey business.
See model solutions to assignment 4.
Additional problem 80: Ice mound, part III.

$$
\begin{array}{ll}
\frac{2}{5} R+\frac{v_{0}^{2}}{3 g} & \text { Wrong value when } v_{0}=0 . \\
\frac{2}{3} R+\frac{v_{0}^{2}}{3 g} & \text { OK. } \\
\frac{2}{3} R+\frac{v_{0}}{3 g} & \text { Dimensionally incorrect. } \\
\frac{2}{3} R-\frac{v_{0}^{2}}{3 g} & \text { Height of departure will increase with } v_{0} . \\
\sqrt{\frac{2 v_{0}^{2} R}{3 g}} & \text { Wrong value when } v_{0}=0 .
\end{array}
$$

Additional problem 66: Simple harmonic motion graph, II.
a. We have

$$
\begin{aligned}
x(t) & =A \sin (\omega t) \\
v(t) & =A \omega \cos (\omega t) \\
a(t) & =-A \omega^{2} \sin (\omega t)
\end{aligned}
$$

Because $\sin \theta$ varies between +1 and -1 , the maximum acceleration will come when the sine is equal to -1 , namely

$$
\text { maximum acceleration }=A \omega^{2}=A\left(\frac{2 \pi}{T}\right)^{2}=12.0 \mathrm{~cm} / \mathrm{s}^{2}
$$

b. Comparing $a(t)$ and $x(t)$ above, $a(t)=-\omega^{2} x(t)$. Alternatively,

$$
a=\frac{F}{m} \quad \text { but } \quad F=-k x \quad \text { so } \quad a=-\frac{k}{m} x
$$

The graph is thus

Additional problem 70：Work with force preconceptions．
In truth $\sum \vec{F}=m \vec{a}$ ，from which we proved in class that（where i stands for＂initial＂and f stands for ＂final＂）

$$
\begin{aligned}
\sum \int_{\vec{r}_{i}}^{\vec{r}_{f}} \vec{F} \cdot d \vec{r} & =m \int_{\vec{r}_{i}}^{\vec{r}_{f}} \vec{a} \cdot d \vec{r} \\
\sum W & =m \int_{t_{i}}^{t_{f}} \frac{d \vec{v}}{d t} \cdot \frac{d \vec{r}}{d t} d t \\
& =m \int_{t_{i}}^{t_{f}} \frac{d \vec{v}}{d t} \cdot \vec{v} d t \\
& =\frac{1}{2} m \int_{t_{i}}^{t_{f}} \frac{d \vec{v}^{2}}{d t} d t \\
& =\frac{1}{2} m\left[\vec{v}^{2}\right]_{t_{i}}^{t_{f}}
\end{aligned}
$$

【The above is not needed to solve the problem．I put it in only to facilitate comparison between what happens in truth and what would happen if the preconception were true．』

But if you held the pseudo－Aristotelian preconception that $\sum \vec{F}=m \vec{v}$ ，then you would have to hold that

$$
\begin{aligned}
\sum \int_{\vec{r}_{i}}^{\vec{r}_{f}} \vec{F} \cdot d \vec{r} & =m \int_{\vec{r}_{i}}^{\vec{r}_{f}} \vec{v} \cdot d \vec{r} \\
\sum W & =m \int_{t_{i}}^{t_{f}} \vec{v} \cdot \frac{d \vec{r}}{d t} d t \\
& =m \int_{t_{i}}^{t_{f}} \vec{v}^{2} d t
\end{aligned}
$$

and the right－hand side is always positive or zero．
Additional problem 89：Impulse with force preconceptions．
In truth $\sum \vec{F}=m \vec{a}$ ，from which we proved in class that（where i stands for＂initial＂and f stands for ＂final＂）

$$
\begin{aligned}
\sum \int_{t_{i}}^{t_{f}} \vec{F} d t & =m \int_{t_{i}}^{t_{f}} \vec{a} d t \\
\sum \vec{J} & =m \int_{t_{i}}^{t_{f}} \frac{d \vec{v}}{d t} d t \\
& =m[\vec{v}]_{t_{i}}^{t_{f}}
\end{aligned}
$$

【The above is not needed to solve the problem．I put it in only to facilitate comparison between what happens in truth and what would happen if the preconception were true．】

But if you held the pseudo-Aristotelian preconception that $\sum \vec{F}=m \vec{v}$, then you would have to hold that

$$
\begin{aligned}
\sum \int_{t_{i}}^{t_{f}} \vec{F} d t & =m \int_{t_{i}}^{t_{f}} \vec{v} d t \\
\sum \vec{J} & =m \int_{t_{i}}^{t_{f}} \frac{d \vec{r}}{d t} d t \\
& =m[\vec{r}]_{t_{i}}^{t_{f}}
\end{aligned}
$$

7. Cracked up cantaloupe.

> at first: later:

momentum: $m v=\frac{M}{2} V_{1}+\left(\frac{M}{2}+m\right) V_{2}$
kinetic energy: $\frac{1}{2} m v^{2}=\frac{1}{2} \frac{M}{2} V_{1}^{2}+\frac{1}{2}\left(\frac{M}{2}+m\right) V_{2}^{2}$
Because $M / 2$ is about 500 times m, approximate $M / 2+m$ by $M / 2$.
from momentum: $v=\frac{M}{2 m}\left(V_{1}+V_{2}\right)$
from kinetic energy: $v^{2}=\frac{M}{2 m}\left(V_{1}^{2}+V_{2}^{2}\right)$
square of "from momentum": $v^{2}=\left(\frac{M}{2 m}\right)^{2}\left(V_{1}^{2}+2 V_{1} V_{2}+V_{2}^{2}\right)$
equating the two expressions for v^{2} gives:

$$
\begin{aligned}
& \frac{M}{2 m}\left(V_{1}^{2}+V_{2}^{2}\right)=\left(\frac{M}{2 m}\right)^{2}\left(V_{1}^{2}+2 V_{1} V_{2}+V_{2}^{2}\right) \\
& V_{1}^{2}+V_{2}^{2}=\frac{M}{2 m}\left(V_{1}^{2}+2 V_{1} V_{2}+V_{2}^{2}\right)
\end{aligned}
$$

Remembering that $M / 2 m$ is about 500 , this is

$$
0 \approx \frac{M}{2 m}\left(V_{1}^{2}+2 V_{1} V_{2}+V_{2}^{2}\right)
$$

$$
2 V_{1} V_{2} \approx-\left(V_{1}^{2}+V_{2}^{2}\right)
$$

The right hand side is negative, so V_{1} and V_{2} are of opposite sign: they fly away in different directions.
8. Atomic collision.

Conservation of momentum:

$$
\begin{align*}
\text { Horizontal: } & m_{\alpha} v_{\alpha, i}=m_{\alpha} v_{\alpha, f} \cos \left(64.0^{\circ}\right)+m_{\mathrm{O}} v_{\mathrm{O}, f} \cos \left(51.0^{\circ}\right) \tag{1}\\
\text { Vertical: } & 0=m_{\alpha} v_{\alpha, f} \sin \left(64.0^{\circ}\right)-m_{\mathrm{O}} v_{\mathrm{O}, f} \sin \left(51.0^{\circ}\right) \tag{2}
\end{align*}
$$

We know the speed of the outgoing nucleus, $v_{\mathrm{O}, f}=1.20 \times 10^{5} \mathrm{~m} / \mathrm{s}$, and the two masses, so these are two equations in two unknowns. Equation (2) tells us that

$$
v_{\alpha, f}=v_{\mathrm{O}, f} \frac{m_{\mathrm{O}}}{m_{\alpha}} \frac{\sin \left(51.0^{\circ}\right)}{\sin \left(64.0^{\circ}\right)}=4.15 \times 10^{5} \mathrm{~m} / \mathrm{s}
$$

while equation (1) tells us that

$$
v_{\alpha, i}=v_{\alpha, f} \cos \left(64.0^{\circ}\right)+\frac{m_{\mathrm{O}}}{m_{\alpha}} v_{\mathrm{O}, f} \cos \left(51.0^{\circ}\right)=4.84 \times 10^{5} \mathrm{~m} / \mathrm{s}
$$

