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Love all God’s creation, the whole and every grain of sand in it.

Love the stars, the trees, the thunderstorms, the atoms.

The more you love, the more you will grow curious.

The more you grow curious, the more you will question.

The more you question, the more you will uncover.

The more you uncover, the more you will love.

And so at last you will come to love the entire universe with an

agile and resilient love founded upon facts and understanding.

— This improvisation by Dan Styer was inspired by

the first sentence, which appears in

Fyodor Dostoyevsky’s The Brothers Karamazov.
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Synoptic Contents

Welcome

What is quantum mechanics and why should I care about it?

1. “Something Isn’t Quite Right”

Historical experiments show that classical mechanics is flawed.

2. What Is Quantum Mechanics About?

If classical mechanics is wrong, then what is right? We explore, in the

context of modern experiments with qubits, the atomic phenomena that

quantum mechanics needs to explain.

3. Forging Mathematical Tools

We build a framework for the quantum mechanics of qubits, using a

mathematical tool called “amplitude”.

4. The Quantum Mechanics of Position

The framework, built to treat qubits, extends to treat continuum position

as well. Energy plays a central role here.

1



2 Synoptic Contents

5. Solving the Energy Eigenproblem

Since energy plays a central role, we devote a chapter to solving such

problems. We find that solving particular problems strengthens our

conceptual understanding, and that conceptual understanding strengthens

our skill in solving particular problems.

6. Identical Particles

This surprisingly subtle topic deserves a chapter of its own.

7. Atoms

We apply our new knowledge to physical (rather than model) systems.

8. The Vistas Open to Us

This book is an invitation. Where might you and quantum mechanics travel

together?



Welcome

Why would anyone want to study quantum mechanics?

Starting in the year 1900, physicists exploring the newly discovered atom

found that the atomic world of electrons and protons is not just smaller than

our familiar world of trees, balls, and automobiles, it is also fundamentally

different in character. Objects in the atomic world obey different rules from

those obeyed by a tossed ball or an orbiting planet. These atomic rules are

so different from the familiar rules of everyday physics, so counterintuitive

and unexpected, that it took more than 25 years of intense research to

uncover them.

But it is really only since the year 1990 that physicists have come to

appreciate that the rules of the atomic world (now called “quantum mechan-

ics”) are not just different from the everyday rules (now called “classical

mechanics”). The atomic rules are also far richer. The atomic rules provide

for phenomena like particle interference and entanglement that are simply

absent from the everyday world. Every phenomenon of classical mechanics

is also present in quantum mechanics, but the quantum world provides for

many additional phenomena.

Here’s an analogy: Some films are in black-and-white and some are in

color. It does not malign any black-and-white film to say that a color film

has more possibilities, more richness. In fact, black-and-white films are

simply one category of color films, because black and white are both colors.

Anyone moving from the world of only black-and-white to the world of color

is opening up the door to a new world — a world ripe with new possibilities

and new expression — without closing the door to the old world.

This same flood of richness and freshness comes from entering the quan-

tum world. It is a difficult world to enter, because we humans have no expe-

3



4 Welcome

rience, no intuition, no expectations about this world. Even our language,

invented by people living in the everyday world, has no words for the new

quantal phenomena — just as a language among a race of the color-blind

would have no word for “red”.

Reading this book is not easy: it is like a color-blind student learning

about color from a color-blind teacher. The book is just one long argument,

building up the structure of a world that we can explore not through touch

or through sight or through scent, but only through logic. Those willing to

follow and to challenge the logic, to open their minds to a new world, will

find themselves richly rewarded.

The place of quantum mechanics in nature

Quantum mechanics is the framework for describing and analyzing small

things, like atoms and nuclei. Quantum mechanics also applies to big

things, like baseballs and galaxies, but when applied to big things, cer-

tain approximations become legitimate: taken together, these are called

the classical approximation to quantum mechanics, and the result is the

familiar classical mechanics.

Quantum mechanics is not only less familiar and less intuitive than

classical mechanics; it is also harder than classical mechanics. So whenever

the classical approximation is sufficiently accurate, we would be foolish not

to use it. This leads some to develop the misimpression that quantum

mechanics applies to small things, while classical mechanics applies to big

things. No. Quantum mechanics applies to all sizes, but classical mechanics

is a good approximation to quantum mechanics when it is applied to big

things.

For what size is the classical approximation good enough? That depends

on the accuracy desired. The higher the accuracy demanded, the more situ-

ations will require full quantal treatment rather than approximate classical

treatment. But as a rule of thumb, something as big as a DNA strand is

almost always treated classically, not quantum mechanically.

This situation is analogous to the relationship between relativistic me-

chanics and classical mechanics. Relativity applies always, but classical

mechanics is a good approximation to relativistic mechanics when applied

to slow things (that is, with speeds much less than light speed c). The speed

at which the classical approximation becomes legitimate depends upon the
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accuracy demanded, but as a rule of thumb particles moving less than a

quarter of light speed are treated classically.

The difference between the quantal case and the relativistic case is that

while relativistic mechanics is less familiar, less comforting, and less ex-

pected than classical mechanics, it is no more intricate than classical me-

chanics. Quantum mechanics, in contrast, is less familiar, less comforting,

less expected, and more intricate than classical mechanics. This intricacy

makes quantum mechanics harder than classical mechanics, yes, but also

richer, more textured, more nuanced. Whether to curse or celebrate this

intricacy is your choice.

-0

-c

speed

slow

fast

quantum
mechanics

classical
mechanics

relativistic
quantum
mechanics

relativistic
mechanics

size

small big

Finally, is there a framework that applies to situations that are both fast

and small? There is: it is called “relativistic quantum mechanics” and is

closely related to “quantum field theory”. Ordinary non-relativistic quan-

tum mechanics is a good approximation for relativistic quantum mechanics

when applied to slow things. Relativistic mechanics is a good approxima-

tion for relativistic quantum mechanics when applied to big things. And

classical mechanics is a good approximation for relativistic quantum me-

chanics when applied to big, slow things.
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What you can expect from this book

This book introduces quantum mechanics at the second-year American un-

dergraduate level. It assumes the reader knows about classical forces, po-

tential energy functions, and the simple harmonic oscillator. The reader

should know that wavelength is represented by λ, frequency by f , and that

for a wave moving at speed c, λf = c. S/he needs to know the meaning

and significance of “standard deviation”. Turning to mathematics, it as-

sumes the reader knows about complex numbers (see appendix C) and dot

products, knows the difference between an ordinary and a partial deriva-

tive, and can solve simple ordinary differential equations. It assumes that

the reader understands phrases like “orthonormal basis representation of a

position vector”.

This is a book about physics, not mathematics. The word “physics”

derives from the Greek word for “nature”, so the emphasis lies in nature,

not in the mathematics we use to describe nature. Thus the book starts

with experiments about nature, then builds mathematical machinery to

describe nature, and finally applies the machinery to atoms, where the

understanding of both nature and machinery is deepened.

The book never abandons its focus on nature. It provides a balanced,

interwoven treatment of concepts, techniques, and applications so that each

thread reinforces the other. There are many problems at many levels of

difficulty, but no problem is there just for “make-work”: each has a “moral

to the story”. Some problems are essential to the logical development of

the subject: these are labeled (unsurprisingly) “essential”. Other problems

promote learning far better than simple reading can: these are labeled

“recommended”. Sample problems build both mathematical technique and

physical insight.

The book does not merely convey correct ideas, it also refutes miscon-

ceptions. Just to get started, I list the most important and most pernicious

misconceptions about quantum mechanics: (a) An electron has a position

but you don’t know what it is. (b) The only states are energy states. (c) The

wavefunction ψ(~x, t) is “out there” in space and you could reach out and

touch it if only your fingers were sufficiently sensitive.

I do not provide summary lists of key ideas and difficult-to-remember

concepts and equations. That’s because an equation that I find easy to

remember might be hard for you to remember. I recommend instead that
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you write out for yourself, in your own words, a summary of the ideas and

equations that you consider most important and most difficult to remember.

The object of the biographical footnotes in this book is twofold: First, to

present the briefest of outlines of the subject’s historical development, lest

anyone get the misimpression that quantum mechanics arose fully formed,

like Aphrodite from sea foam. Second, to show that the founders of quan-

tum mechanics were not inaccessible giants, but people with foibles and

strengths, with interests both inside and outside of physics, just like you

and me.

Teaching tips

Most physics departments offer a second-year course titled Modern

Physics. The topics in this course vary widely from institution to institu-

tion: special relativity and elementary quantum mechanics are staples, but

the course might also cover classical waves, thermodynamics and elemen-

tary statistical mechanics, descriptive atomic, molecular, and solid state

physics. No textbook could cover all this variety, nor should any textbook

try: instead each institution should provide a mix of topics appropriate

for its own students. This book is devoted only to quantum mechanics at

the level of a Modern Physics course. You will want to add it to other

materials for the other topics in your own particular course.

In chapters 2 and 3, a surprising amount of student difficulty comes from

nothing more than getting straight which Stern-Gerlach analyzer is oriented

in which direction. I recommend that you mark up some cardboard boxes

to look like analyzers and analyzer loops, and use them as demonstrations

during your classes.

Chapter 5 presents two techniques for solving the energy eigenproblem:

one informal and one numerical. I discuss the first in class and assign

the second for reading, because the first benefits from a lot of blackboard

sketching, erasing, resketching, and gesturing. But your own priorities

might differ from mine, so you might take the opposite tack.

This text spends a lot of time on concepts before applying those concepts

to atoms. Atoms are mathematically intense, and it pays to get the concepts

straight first. If we jumped directly into atoms, that mathematical intensity

would completely obscure the conceptual issues. Some people like it that

way, because they don’t want to face the conceptual issues.
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Chapter 1

“Something Isn’t Quite Right”

We are used to things that vary continuously: An oven can take on any

temperature, a recipe might call for any quantity of flour, a child can grow to

a range of heights. If I told you that an oven might take on the temperature

of 172.1 ◦C or 181.7 ◦C, but that a temperature of 173.8 ◦C was physically

impossible, you would laugh in my face.

So you can imagine the surprise of physicists on 14 December 1900,

when Max Planck announced that certain features of blackbody radiation

(that is, of light in thermal equilibrium) could be explained by assuming

that the energy of the light could not take on any value, but only certain

discrete values. Specifically, Planck found that light of frequency f could

take on only the energies of

E = nhf, where n = 0, 1, 2, 3, . . ., (1.1)

and where the constant h (now called the “Planck constant”) is

h = 6.626 070 15× 10−34 J s. (1.2)

That is, light of frequency f can have an energy of 3.0hf , and it can have

an energy of 4.0hf , but it is physically impossible for this light to have an

energy of 3.8hf . Any numerical quantity that can take on only discrete

values like this is called “quantized”. By contrast, a numerical quantity

that can take on any value is called “continuous”.

The photoelectric effect (section 1.2) supplies additional evidence that

the energy of light comes only in discrete values. And if the energy of

light comes in discrete values, then it’s a good guess that the energy of

an atom comes in discrete values too. This good guess was confirmed

through investigations of atomic spectra (where energy goes into or out of

9



10 Light in thermal equilibrium

an atom via absorption or emission of light) and through the Franck–Hertz

experiment (where energy goes into or out of an atom via collisions).

Furthermore, if the energy of an atom comes in discrete values, then

it’s a good guess that other properties of an atom — such as its magnetic

moment — also take on only discrete values. The story of this chapter is

that these good guesses have all proved to be correct.1

1.1 Light in thermal equilibrium: Blackbody radiation

You know that the logs of a campfire, or the coils of an electric stove, glow

orange. You might not know that objects at higher temperatures glow

white, although blacksmiths and glass blowers are quite familiar with this

fact and use it to judge the temperature of the metal or the molten glass

they work with. Objects at still higher temperatures, like the star Sirius,

glow blue. A nuclear bomb explosion glows with x-rays.

Going down the temperature scale, the tables, chairs, walls, trees, and

books around us glow with infrared radiation. (Many people are unaware

of this fact because our eyes can’t detect infrared light.) In fact, our own

bodies glow in the infrared — at a somewhat shorter wavelength than our

books, because our bodies are slightly warmer than our books. And the

bitter cold of outer space glows with the famous 3 K cosmic microwave

background radiation.

All these situations are examples of electromagnetic radiation — light

— in thermal equilibrium. What does that mean? The light streaming

from, say, a red neon tube is not in thermal equilibrium: for one thing, it

has only one color, for another all the light streams in the same direction.

Just as a stream of nitrogen molecules, each one with the same speed and

each one moving in the same direction, is not in thermal equilibrium, so

the red light, all the same wavelength and all moving in the same direction,

is not in thermal equilibrium. But after that light is absorbed by matter

at a given temperature, then re-emitted, then reabsorbed and then re-

emitted again, several times, that light relaxes into equilibrium at the same
1This book is about physics, not the history of physics. In order to present the physical

ideas clearly they are sometimes developed ahistorically. For example in the next section
Planck’s 1900 radiation law is developed as a refinement of the 1905 Rayleigh–Jeans law.

In section 1.5.2 Bohr’s 1913 atomic theory is developed as a consequence of de Broglie’s

1924 concept of matter waves.
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temperature as the matter with which it’s been interacting. This light in

thermal equilibrium has a variety of wavelengths, and it moves with equal

probability in any direction. In exactly the same way, a stream of nitrogen

molecules will, after many collisions, have a variety of molecular speeds,

and the molecules move with equal probability in any direction.

If you want to do a high-accuracy experiment with light in thermal equi-

librium, you will want light that has been absorbed and re-emitted many

times. The worst possible object for putting light into thermal equilibrium

would be a mirror, which reflects rather than absorbs most incoming light.

Somewhat better would be matter painted white, which reflects much in-

coming light. Better still would be matter painted black. Best of all would

be a cavity surrounded by matter, like a cave, so that the light in the cavity

is absorbed by the walls and re-emitted many times. For these experimental

reasons, light in thermal equilibrium is often called “blackbody radiation”

or “cavity radiation”.

Qualitative arguments explain a number of familiar features of black-

body radiation. You know that the atoms in matter oscillate: as the tem-

perature increases, the oscillations become both farther and faster. The

“farther” oscillations suggest that high-temperature objects should glow

brighter; the “faster” oscillations suggest that they should glow with higher-

frequency (hence shorter-wavelength) light. Turning these qualitative ar-

guments into a quantitative prediction requires an understanding of elec-

trodynamics and of statistical mechanics beyond the needs of this book.

Here I summarize the reasoning involved. First, three principles from elec-

trodynamics:

(1) In all cases, the state of light within a cavity can be expressed

as a sum over the “normal modes” of light within that cavity. Normal

modes come about when one half-wavelength fits within a cubical cavity;

or two half-wavelengths; or three; or any integer. This principle states that

if ~En(~x, t) denotes the electric field due to the light of the normal mode

indexed n, then the electric field of an arbitrary state of light is

~E(~x, t) =
∑
n

an ~En(~x, t) (1.3)

where an sets the amplitude of that mode in the particular state. Each

mode is characterized by a particular wavelength.
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(2) The energy of any arbitrary state of light is just the sum of the

energies due to each normal mode.

(3) There are more normal modes at shorter wavelength. In May 1905,

Lord Rayleigh2 calculated that the number of modes with wavelength falling

within the window between λ and λ+ dλ was

64πV

λ4
dλ,

where V is the volume of the cavity (assuming a cavity large in the sense

that V � λ3). Two months later James Jeans3 pointed out that Rayleigh

had made a counting error: the correct result is

8πV

λ4
dλ. (1.4)

To these three electrodynamics principles, add one principle from clas-

sical statistical mechanics: In thermal equilibrium, the energy4 of each

mode is kBT , where T is the (absolute) temperature and kB is the Boltz-

mann constant. This principle is called “equipartition”: some modes have

short wavelengths and some have long, but the energy is equally partitioned

among the various different modes, independent of wavelength.

[[The Boltzmann5 constant kB comes up whenever drawing a connection

between energy and temperature. The U.S. National Institute of Standards

and Technology gives its value as

kB = 1.380 649× 10−23 J/K, (1.5)
2John William Strutt, the third Baron Rayleigh (1842–1919), of England, is usually

called just “Lord Rayleigh”. Although particularly interested in acoustics, he made con-

tributions throughout physics: he was the first to explain why the sky is blue and
how seabirds soar. The mode counting described here was published in Nature on
18 May 1905.
3English physicist and astronomer (1877–1946). His 1930 popular book The Mysterious

Universe did much to introduce the new quantum mechanics to a wide audience. His

correct mode counting argument was published in Philosophical Magazine in July 1905.
Rayleigh acknowledged his error (“Mr. Jeans has just pointed out that I have introduced
a redundant factor 8. . . . I hasten to admit the justice of this correction.”) in Nature on

13 July 1905.
4Technically the “average energy”, but in these situations the thermal fluctuations

about average energy are so small I’ll just call it the “energy”.
5Ludwig Boltzmann (1844–1906) of Austria developed statistical mechanics, which ex-

plains the properties of matter in bulk (such as density, hardness, luster, viscosity, and
resistivity) in terms of the properties of atoms (such as mass, charge, and potential en-
ergy of interaction). His students include Paul Ehrenfest, who we will meet later, and
Lise Meitner, who discovered nuclear fission.
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but this number is hard to remember. For one thing, the joule (J) is a huge

unit for measuring atomic energies — using it would be like measuring the

distance between screw threads in miles or kilometers. The energy unit

typically used in atomic discussions is instead the “electron volt”, where

1 eV = 1.60× 10−19 J. (1.6)

Second, I like to remember kB through a product: at room temperature,

about 300 K, the value of kBT is close to 1
40 eV. (This knowledge has

rescued me several times during physics oral exams.) The famous ideal

gas constant R (as in pV = nRT ) is just kB times the Avogadro number,

6.02× 1023.]]

Putting these four principles together results in the “Rayleigh–Jeans

law”, which says that for light in thermal equilibrium at temperature T

within a volume V , the electromagnetic energy due to wavelengths from λ

to λ+ dλ is

(kBT )
8πV

λ4
dλ. (1.7)

This formula has numerous admirable features: It is dimensionally consis-

tent, as required. Doubling the volume results in doubling the energy, as ex-

pected. Higher temperature results in higher energy, in agreement with our

previous expectation that “high-temperature objects should glow brighter”.

The very long wavelength modes are unimportant because there’s no signif-

icant amount of energy in them anyway, so we can disregard our previous

qualifier that the formula holds only when V � λ3.

On the other hand, there is nothing in this formula supporting our

expectation and common experience that high-temperature objects should

glow with shorter-wavelength light. To the contrary, at any temperature

the light spectrum should have exactly the same 1/λ4 character! Even

worse: What is the total energy in blackbody radiation? It is

(kBT )8πV

∫ ∞
0

1

λ4
dλ = (kBT )8πV

(
−1

3

)[
1

λ3

]∞
0

= +∞. (1.8)

Infinite energy! In fact, infinite energy at any finite temperature! If this

were true, then every book and table and wall — not to mention every

person — would be as deadly as an exploding nuclear bomb. The infinite

energy arises from the short wavelengths of the spectrum, so this disastrous

feature of the Rayleigh–Jeans prediction is called the “ultraviolet catastro-

phe”.
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Rayleigh–Jeans law

Energy within one cubic meter due to electromagnetic radiation at tempera-

ture 1259 K, with wavelength from λ to λ+ (1 nm). Experiment6 compared

with the Rayleigh–Jeans law (1.7).

Experiment, and common experience, differ from the Rayleigh–Jeans

law. However the experimental results mimic the Rayleigh–Jeans prediction

at long wavelengths, so it’s not totally off base. What could be wrong

with the derivation? Perhaps the short-wavelength radiation is not really

at thermal equilibrium. Perhaps there’s some error in the mode counting

that is significant only at short wavelengths. Or perhaps there’s something

wrong with the equipartition result.

6O. Lummer and E. Pringsheim, Verhandlungen der Deutschen Physikalischen
Gesellschaft 2 (1900) 163.



16 Light in thermal equilibrium

In the year 1900 Max Planck7 decided to pursue this third possibility.

He wondered what would happen if the energy of a normal mode with

frequency f couldn’t take on any possible energy, but only certain values

E = nhf, where n = 0, 1, 2, 3, . . . (1.9)

and where h is some constant to be determined by a fit to experiment.

(Except that, being a formal German professor, Planck didn’t say that he

“wondered”, he said that he “hypothesized”.) Because fλ = c for light,

Planck’s hypothesis is equivalent to

E = n
hc

λ
. (1.10)

When Planck worked out the statistical mechanical consequences of his

hypothesis, he found that if it were correct then the energy of a mode

would not be the equipartition result kBT , but instead

hc/λ

e(hc/λ)/(kBT ) − 1
. (1.11)

No longer would the energy be equally partitioned. . . instead it would de-

pend upon wavelength.

Before rushing into the laboratory to test Planck’s idea, let’s see if it

even makes sense. Planck’s hypothesis is that the energy is discrete, not

continuous, that it comes in packets of size hf . (Except that he didn’t call

them packets, he called them “quanta”, from the Latin word for “amount”.

The singular is “quantum”, the plural is “quanta”.) When the frequency is

small, that is, when the wavelength is long, these quanta are so small that

the continuous approximation ought to be excellent. What does Planck’s

formula say for for long wavelengths? If λ is large, then (hc/λ)/(kBT ) is

small. How does ex behave when x is small? Remember Taylor’s formula:

ex ≈ 1 + x when |x| � 1.

Thus for long wavelengths

e(hc/λ)/(kBT ) ≈ 1 +
hc/λ

kBT
when λ� hc

kBT
.

7Max Karl Ernst Ludwig Planck (1858–1947) was a German theoretical physicist par-

ticularly interested in thermodynamics and radiation. Concerning his greatest discovery,
the introduction of quantization into physics, he wrote, “I can characterize the whole pro-

cedure as an act of desperation, since, by nature I am peaceable and opposed to doubtful

adventures.” [Letter from Planck to R.W. Wood, 7 October 1931, quoted in J. Mehra
and H. Rechenberg, The Historical Development of Quantum Theory (Springer–Verlag,

New York, 1982) volume 1, page 49.]
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It follows that, in this same long-wavelength regime,

e(hc/λ)/(kBT ) − 1 ≈ hc/λ

kBT

and

hc/λ

e(hc/λ)/(kBT ) − 1
≈ hc/λ

(hc/λ)/(kBT )
= kBT.

The λs have canceled and we have recovered the equipartition result!

This analysis tells us two things: First, we know that for long wave-

lengths the Planck result (1.11) is almost the same as the equipartition

result. Second, we know that the boundary between long and short wave-

lengths falls near the crossover wavelength

λ× =
hc

kBT
. (1.12)

This doesn’t mean that Planck’s formula is right, but it’s not transparently

wrong.

Adding Planck’s result for energy to the same normal mode count re-

sult (1.4) that we used before results in the “Planck radiation law”, which

says that for light in thermal equilibrium at temperature T within a volume

V , the electromagnetic energy due to wavelengths from λ to λ+ dλ is(
hc/λ

e(hc/λ)/(kBT ) − 1

)
8πV

λ4
dλ. (1.13)

This formula has the same admirable features possessed by the Rayleigh–

Jeans result and discussed immediately below equation (1.7). (Does the

electromagnetic energy increase with increasing temperature? See sample

problem 1.1.2 on page 20.)

We’re still not quite ready for the laboratory. Does Planck’s result suffer

from the same ultraviolet catastrophe that the Rayleigh–Jeans result did?

This question is investigated in sample problem 1.1.1 on page 18. The result

is: No, it doesn’t.

Now is a good time to go to the laboratory. The Planck radiation law fits

the data extraordinarily well, provided that one uses the value for h given in

equation (1.2). Planck’s hypothesis that an electromagnetic normal mode

can’t take on any energy, only certain values given by equation (1.9), seems

to be correct.
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Energy within one cubic meter due to electromagnetic radiation at tem-

perature 1259 K, with wavelength from λ to λ + (1 nm). Experiment and

Rayleigh–Jeans law compared with the Planck law (1.13).

1.1.1 Sample Problem: Stefan–Boltzmann law

We saw that the Rayleigh–Jeans formula (1.7) could not represent reality,

because it said that any body in thermal equilibrium would contain an

infinite amount of radiant energy. Does the Planck formula (1.13) suffer

from the same excruciating defect?
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Solution: If the Planck radiation law holds, then the energy in blackbody

radiation of all wavelengths is of course∫ ∞
0

(
hc/λ

ehc/(kBTλ) − 1

)
8πV

λ4
dλ. (1.14)

You will be tempted to jump immediately into evaluating this integral,

but I urge you to pause for a moment and find a good strategy before

executing it. Integration is a mathematical, not a physical, operation, so I

will first convert to a mathematical variable — that is, to a variable without

dimensions. A glance suggests that the proper dimensionless variable is

x =
hc/λ

kBT
. (1.15)

(Comparison to the crossover wavelength λ× in definition (1.12) shows that

this variable is just the ratio x = λ×/λ.) Converting the integral to this

variable shows that the total energy is

8πV
(kBT )4

(hc)3

∫ ∞
0

x3

ex − 1
dx. (1.16)

Even without evaluating the integral, this equation gives us a lot of in-

formation. The integral on the right is just a number (unless it diverges)

independent of T (or h, or c), so the total energy of light in thermal equi-

librium is proportional to T 4. This fact, called the Stefan–Boltzmann law,

is the formal result corresponding to our common experience that objects

glow brighter at higher temperatures.
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Plot of the integrand x3/(ex − 1). At small x (that is x� 1) the integrand

behaves like x2, at large x like x3e−x.

Now that we’ve squeezed the physics out, it’s time to execute the math.

You can work out the integral yourself, or you can use a computer algebra

system, and in either case you’ll find that the integral evaluates to π4/15.

The total energy is therefore

8π5

15
V

(kBT )4

(hc)3
. (1.17)

which is safely finite.

1.1.2 Sample Problem: Characteristics of the Planck Ra-

diation Law

Your class has decided to write an “Underground Guide to Quantum Me-

chanics” for the benefit of next year’s students in this course. You have

volunteered to contribute about 500 words explicating the Planck radiation

law (1.13). What do you write?

Solution: Like most equations in physics, the Planck radiation law (1.13

in our textbook) is concise, but this conciseness hides a lot of information.

This essay unpacks some of this information to see what the equation is

trying to tell us about nature. I address two points:
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(1) Does the electromagnetic energy increase with increasing

temperature?

There are a lot of symbols in the equation, but the temperature depen-

dence comes in through only one term: The energy at temperature T is

proportional to

1

eT0/T − 1

where I have defined the temperature-independent constant T0 = hc/λkB .

As T increases, T0/T decreases, so eT0/T decreases, so eT0/T − 1 decreases,

so 1/(eT0/T − 1) increases. Thus the electromagnetic energy increases with

increasing T , as expected.

[Note, however, that energy doesn’t increase linearly with temperature.

You might know that for a monatomic gas modeled as noninteracting clas-

sical point particles, the total energy for N particles in thermal equlibrium

at temperature T is 3
2NkBT . From this, some people get the mistaken no-

tion that energy and temperature are always related linearly, or even that

this is the definition of temperature. Blackbody radiation provides a neat

counterexample.]

If you like calculus, you could find the same result by showing that the

slope of this curve is always positive. That slope is

d

dT

(
1

eT0/T − 1

)
= − 1

(eT0/T − 1)2

d(eT0/T )

dT

= − 1

(eT0/T − 1)2

d(eT0/T )

d(1/T )

d(1/T )

dT

= − 1

(eT0/T − 1)2
T0e

T0/T

(
− 1

T 2

)
=

eT0/T

(eT0/T − 1)2

T0

T 2

which sure enough is always positive.

(2) What does the Planck law say about the energy in very

short wavelengths?

The graph on page 12 of our textbook shows very small energies at

small wavelengths. In fact all three energy curves hide behind the axis!
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Having investigated the behavior of energy with temperature, what can we

say about the behavior of energy with wavelength?

Write the energy equation to emphasize the λ dependence using the con-

stant crossover wavelength λ× defined in equation (1.12) in the textbook.

The energy is proportional to

(λ×/λ)5

eλ×/λ − 1
.

As λ → 0 this approaches ∞/∞. You could resolve this indeterminate

form using l’Hôpital’s rule, but it’s more insightful to look at the rate of

approach to infinity. Define x = λ×/λ, and investigate the behavior as

x→∞. Both the numerator x and the denominator ex − 1 ≈ ex approach

infinity, but ex goes to infinity faster than x, faster than x2, faster than x3,

faster than x5, even faster than x1023

. As x→∞, the quantity

x5

ex − 1

is not just small, it’s “exponentially small”, which explains why it hides

behind the axis.

Conclusions: An equation is not an inert blob of symbols awaiting

numbers to “plug in and chug through”. An equation is a troubadour

singing songs about nature. The songs are interesting only if you listen

for them. This essay has listened to two of the notes sung by the Planck

radiation law, equation (1.13).

Problems

1.1 How big is an atom?

How many times can a liter of water be cut in half until you’re left

with a single water molecule?

1.2 Units for atomic-sized energies

Physicists are fond of measuring typical atomic energies in

“eV/atom”, chemists are fond of measuring typical atomic energies

in “kJ/mole”. An energy of exactly 1 eV in an atom corresponds

to what energy, in kJ, in a mole of atoms? (In reporting your

numerical result, be sure to use significant figures and units: see

appendices A and B.)
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1.3 Behavior of integrand

Justify the claim, made in the caption of the graph on page 20,

that when x� 1, x3/(ex−1) ≈ x2. [Clue: ex = 1 +x+ 1
2x

2 + · · · .]

1.4 Wien displacement law (recommended problem)

Use the Planck radiation law (1.13) to show that at any given

temperature, the wavelength holding maximum energy is λ̂ = b/T ,

where b is some constant that you don’t need to determine. This so-

called “Wien displacement law” is the formal result corresponding

to our common experience that objects glow with shorter wave-

lengths at higher temperatures. [Clue: You could take the deriva-

tive of equation (1.13) with respect to λ, set the result equal to zero,

and solve for λ̂. This would be grotesquely difficult. Instead, using

x as defined in equation (1.15), argue that the function x5/(ex−1)

has a maximum located at, say, x̂, and then derive an expression

for λ̂ in terms of x̂ and other quantities. You don’t need to find a

numerical value for x̂, just argue that it exists.]

1.2 Photoelectric effect

But does Planck’s hypothesis apply only to light in thermal equilibrium?

Does it apply only to normal modes? Here’s the relevant question: What if

we produce light of wavelength λ proceeding in a beam. This light is surely

not in thermal equilibrium, nor is it in a normal mode. Will the energy in

the beam still be restricted to the possible values

E = n
hc

λ
= nhf where n = 0, 1, 2, 3, . . .? (1.18)

In 1905 Albert Einstein8 thought this question was worth pursuing. He

reasoned in four steps:

(1) The electrons in a metal can be used as light-energy detectors.

(2) The reason the electrons are inside the metal at all, instead of

roaming around free, is because it’s energetically favorable for an electron

to be within the metal. Some of the electrons will be bound tightly within
8Although Albert Einstein (1879–1955) is most famous for his work on relativity, he

claimed that he had “thought a hundred times as much about the quantum problems as I
have about general relativity theory.” [Remark to Otto Stern, reported in Abraham Pais,
“Subtle Is the Lord. . . ”: The Science and the Life of Albert Einstein (Oxford University

Press, Oxford, UK, 1982) page 9.]
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the metal, some less so. Call the trapping energy of the least-well-bound

electron Ut.

(3) If an electron within the metal absorbs a certain amount of energy

from the light shining on it, then some of that energy will go into getting

the electron out of the metal. The rest will become kinetic energy of the

ejected electron. The electron ejected with maximum kinetic energy will

be the one with the minimum trapping energy, namely Ut. [The reasoning

up to this point has been purely classical.]

(4) Add to this the quantum hypothesis: the amount of light energy

available for absorption can’t take on any old value — it has to be hf .

Then the maximum kinetic energy of an ejected electron will depend upon

the frequency of the light shining on the metal:

KEmax = hf − Ut. (1.19)

If the light has low frequency, hf < Ut, then no electron will be ejected at

all.

This analysis is clearly oversimplified. A metal is a complex system

rather than a simple potential energy well, and it ignores the possibility

that the electron might absorb an energy of 2hf , or 3hf , or more, but it’s

worth an experimental test: Plot the measured maximum kinetic energy of

ejected electrons as a function of frequency f . Will the plot give a straight

line with slope h matching the slope determined through the completely

different blackbody radiation experiment?

The challenge was taken up by Robert A. Millikan.9 By 1916 he exper-

imentally verified Einstein’s prediction, writing that “Einstein’s photoelec-

tric equation has been subjected to very searching tests and it appears in

every case to predict exactly the observed results.” Nevertheless, he found

the quantum condition troubling: this same 1916 paper calls quantization

a “bold, not to say reckless, hypothesis” because it “flies in the face of the

thoroughly established facts of interference”, and in his 1923 Nobel Prize

acceptance speech he said that his confirmation of the Einstein equation

had come “contrary to my own expectation”.
9American experimental physicist (1868–1953), famous also for measuring the charge

of the electron through his oil-drop experiment, and for his research into cosmic rays.
A graduate of Oberlin College and of Columbia University, he used his administrative

acumen to build the small vocational school called Throop College of Technology into

the research and teaching powerhouse known today as the California Institute of Tech-
nology. His photoelectric results were reported in “A direct photoelectric determination

of Planck’s ‘h’ ” Physical Review 7 (1 March 1916) 355–390.
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Despite Millikan’s reservations, the conclusion is clear: The energy of

electromagnetic waves of frequency f cannot take on just any old value; it

can take on only the values

nhf where n = 0, 1, 2, 3, . . ..

This result is counterintuitive and non-classical, but it is in accord with

blackbody and photoelectric experiments, and that’s what matters.

One way to picture this energy restriction is to imagine the light as

coming in noninteracting particles, each particle having energy hf . These

pictured particles are called “photons”. If no photons are present, the

electromagnetic energy is 0; if one photon is present the energy is hf , if

two photons are present the energy is 2hf , and so forth. Using this picture,

the blackbody and photoelectric experiments are said to demonstrate the

“particle nature of light”.

It is important to realize that this particle picture goes above and be-

yond what the experiments say. The experiments tell us that the energy

can take on only certain values; they say nothing about particles. Because

light, classically, consists of electric and magnetic fields, it is tempting to

picture a photon as a “ball of light”, a packet of classical electric and mag-

netic fields. We will see soon that the picture of a photon as a classical

particle with a precise position, a precise energy (hf), and a precise speed

(c) is not tenable. We will also encounter energy restrictions that cannot

be interpreted through this picture at all: for example, the energy of a

hydrogen atom is restricted to the values

−Ry

n2
where n = 1, 2, 3, . . .

and where Ry is a constant. There is no way to picture this energy re-

striction through a collection of noninteracting hypothetical particles. The

picture of photons can be made quite precise and can be very valuable,

but only if you keep in mind that a photon does not behave exactly like a

familiar classical point particle.

Further evidence for the quantized character of electromagnetic energy

comes from the Compton effect (which involves the interaction of x-rays and

electrons; see problem 1.9 on page 28), from the discrete clicks produced

by a photomultiplier tube or any other highly sensitive detector of light

energy, and from photon anticoincidence experiments. I will not describe

these experiments in detail, but you should understand that the evidence for
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energy quantization in light is both wide and deep.10 It is worth your effort

to memorize that electromagnetic energy comes in lumps of magnitude

E =
hc

λ
=

1240 eV·nm

λ
. (1.20)

[[This equation comes up frequently in the physics Graduate Record Exam

and in physics oral exams. I recommend that you remember the constant

hc in terms of the unit usually used for energy in atomic situations, namely

the electron volt, and the unit usually used for the wavelength of optical

light, namely the nanometer.]]

1.2.1 Sample Problem: Find the flaw

No one would write a computer program and call it finished without test-

ing and debugging their first attempt. Yet some approach physics problem

solving in exactly this way: they get to the equation that is “the solution”,

stop, and then head off to bed for some well-earned sleep without investi-

gating whether the solution makes sense. This is a loss, because the real

fun and interest in a problem comes not from our cleverness in finding “the

solution”, but from uncovering what that solution tells us about nature.

(Appendix D, “Problem-Solving Tips and Techniques”, calls this final step

“reflection”.) To give you experience in this reflection step, I’ve designed

“find the flaw” problems in which you don’t find the solution, you only test

it. Here’s an example.

This is a physics problem that you are not supposed to solve:

Blackbody radiation is largely infrared at room tem-

perature, largely red in a campfire, largely blue in the star

Sirius. What is the relationship between the wavelength

holding the peak energy, called λ̂, and the temperature?
10A clear summary of the evidence that light energy is quantized, but that a photon is
not just like a small, hard version of a classical marble, is presented in section 2.1, “Do
photons exist?”, of George Greenstein and Arthur G. Zajonc, The Quantum Challenge

(Jones and Bartlett Publishers, Sudbury, Massachusetts, 2006). See also J.J. Thorn,

M.S. Neel, V.W. Donato, G.S. Bergreen, R.E. Davies, and M. Beck, “Observing the
quantum behavior of light in an undergraduate laboratory” American Journal of Physics

72 (September 2004) 1210–1219.
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(This relationship enables astronomers to find the temper-

atures of distant stars inaccessible to human-made ther-

mometers.)

Four friends work this problem independently. When they get together

afterwards to compare results, they find that they have produced four dif-

ferent answers! Their candidate answers are

(a) λ̂ = 0.201
hc2

kBT

(b) λ̂ = 0.201
hc

kBT

(c) λ̂ = 0.201× 10−3 hc

kBT

(d) λ̂ = 0.201
kBT

hc

Provide simple reasons showing that three of these candidates must be

wrong.

Solution: Candidate (a) does not have the correct dimensions for wave-

length. There are no problems with candidate (b), which is in fact the

correct “Wien displacement law”. Candidate (c) claims that at room tem-

perature (kBT = 1
40 eV), the dominant wavelength would be λ̂ = 10 nm,

deep in the ultraviolet, whereas the problem statement tells you that it’s

actually in the infrared. (Recall that hc = 1240 eV·nm.) Candidate (d)

not only has incorrect dimensions, it also shows the dominant wavelength

increasing, not decreasing, with temperature.

Problems

1.5 Visible light photons (recommended problem)

The wavelength of visible light stretches from 700 nm (red) to

400 nm (violet). (Figures with one significant digit.) What is

the energy range of visible photons?
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1.6 Light bulb photons

Stand about 100 meters from a 60-watt light bulb and look at

the bulb. The pupil in your eye has a diameter of about 2 mm.

Estimate the number of photons entering one of your eyes each

second. You will need to make reasonable assumptions: be sure to

spell them out.

1.7 Rephrasing the Einstein relation (essential problem)

Using your knowledge of classical waves, rewrite the Einstein re-

lation for the energy of a photon, E = hc/λ, in terms of the an-

gular frequency ω = 2πf of light. Employ the shortcut notation

~ = h/2π and compare your result to

E = ~ω. (1.21)

1.8 Character of photons

Two classical particles, say two asteroids, interact with a gravi-

tational potential energy, and each particle can have any possible

non-negative kinetic energy. Write a paragraph or two contrasting

these characteristics of classical particles with the characteristics

of photons.

1.9 Compton scattering

(This problem requires background in relativity.)

When x-rays shine on a target, they are scattered in all directions.

Both the wave and photon pictures of light predict this scattering.

The wave picture, however, predicts that the scattered x-rays will

have the same wavelength as that of the incoming waves, whereas

the photon picture predicts that the wavelength of the scattered

x-rays will depend upon the direction of scattering. This problem

derives that dependence.

An x-ray photon of energy E0 strikes a stationary electron of mass

m. The photon scatters off with energy E at angle θ, the electron

recoils with momentum p at angle φ. Recall from your study of

relativity that, for both photon and electron, E2− (pc)2 = (mc2)2,

but that the photon mass is zero.
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a. Write down the expressions for energy conservation, for mo-

mentum conservation in the horizontal direction, and for mo-

mentum conservation in the vertical direction, using only the

variables in the figure above. Compare your result to

E0 +mc2 = E +
√

(mc2)2 + (pc)2

E0/c = (E/c) cos θ + p cosφ

0 = (E/c) sin θ − p sinφ.

b. It is hard to detect electrons and (relatively) easy to detect

x-rays. Hence we set out to eliminate the quantities involving

the scattered electron, namely p and φ. There are three equa-

tions and we wish to eliminate two variables, so we expect to

end up with one equation. Begin by squaring and combining

the last two equations to eliminate φ, finding

E2
0 − 2E0E cos θ + E2 = (pc)2.
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c. Meanwhile, show that the energy conservation equation is

equivalent to

E2
0 − 2E0E + E2 + 2(E0 − E)mc2 = (pc)2.

Combine these two equations to find

(E0 − E)mc2 = E0E(1− cos θ).

d. So far, this has been a relativistic collision problem. It be-

comes a quantum mechanics problem when we note that, for

a photon, E = hc/λ. Show that the x-ray wavelength changes

by

λ− λ0 =
h

mc
(1− cos θ).

e. Let’s read meaning into this equation to make it something

more than a jumble of symbols. Does the photon picture

predict an increase or decrease in wavelength? For what angle

does the wave-picture prediction λ = λ0 hold true?

In 1923, Arthur Compton verified that scattered x-rays have ex-

actly this angle dependence. His experiment convinced many physi-

cists that the photon picture — strange though it may be — must

have some merit. Ever since then, a particle of mass m has been

said to have a “Compton wavelength” of h/mc.

1.3 Wave character of electrons

If light, a classical wave, has some sort of particle character, could it be

that an electron, a classical particle, has some sort of wave character?

The very idea seems absurd and meaningless: the word “particle” sug-

gests a point, the word “wavelength” requires a length extending beyond a

point. But in 1924 Louis de Broglie11 thought the question was worth pur-

suing. He thought about the relationship between energy and wavelength

for a photon:

E =
hc

λ
.

11Louis de Broglie (1892–1987) was born into the French nobility, and is sometimes

called “Prince de Broglie”, although I am told that he was actually a duke. He earned
an undergraduate degree in history, but then switched into physics and introduced the

concept of particle waves in his 1924 Ph.D. thesis.
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De Broglie realized that if he wanted to extrapolate from a photon, which

is intrinsically relativistic, to an electron, which might or might not be

relativistic, he’d have have to use relativistic, not classical, mechanics. I

hope you remember from your study of special relativity that for a photon

— or anything else moving at light speed — the energy and momentum

are related through E = pc. De Broglie stuck these two facts together and

hypothesized that any particle has an associated wavelength given through

p =
h

λ
. (1.22)

This associated wavelength is today called the de Broglie wavelength.

Please realize that this is not a derivation; it’s more like a stab in the

dark. And it’s a difficult hypothesis to test, because particle wavelengths

are typically so short. Recall from your study of classical waves that we

test for wave character through interference experiments, and that such

experiments work best when the apparatus is about the size of a wavelength.

So what are the sizes of these de Broglie waves? In all cases λ = h/p, but

in the non-relativistic case, a particle with kinetic energy K and mass m

has K = p2/2m, so p =
√

2Km and thus the de Broglie wavelength is

λ =
h√

2Km
=

hc√
2Kmc2

, (1.23)

where in the last step I have inserted a factor of c in the numerator and

the denominator to make the formula easier to remember.

[[“What?” you object, “How can those extra cs, which just cancel out in

the end, make anything easier?” First of all, I’ve already recommended on

page 26 that you not memorize the value of h in SI units; instead you should

remember that hc = 1240 eV·nm. Second, most people don’t remember the

mass of an electron me in kilograms; instead, they remember it through the

energy equivalent mec
2 = 0.511 MeV. Similarly for all other elementary

particles: I would have to look up the mass of a proton in kilograms, but I

remember that mpc
2 ≈ 1000 MeV right off the top of my head.]]

Let’s try this out in a calculation. Suppose a stationary electron is

accelerated through a potential difference of exactly 100 V, so it picks up

a kinetic energy of K = 100 eV. That electron will have a de Broglie
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wavelength of

λ =
hc√

2Kmc2

=
1240 eV·nm√

2× (100 eV)× (511 000 eV)

=
1240 nm√

2× (102)× (0.511× 106)

=
1240 nm√
1.022× 108

= 0.123 nm.

This is a very short wavelength — if it were an electromagnetic wave, it

would be in the x-ray regime (10 nm to 0.01 nm). In 1924, it was impossible

to manufacture slits — or anything else — with a size near 0.123 nm.

(Higher-energy electrons, or protons of the same energy, would have even

shorter wavelengths, and their wave character would be even harder to

discern.)

This difficulty was overcome by using, not human-manufactured slits,

but the rows of atoms within a crystal of nickel (with an atomic spacing of

0.352 nm). In a series of experiments executed from 1923 to 1927, Clinton

Davisson and Lester Germer12 showed that electrons scattering from nickel

exhibit interference as predicted by de Broglie’s strange hypothesis.

Since 1927, the wave character of particles, as demonstrated through in-

terference experiments, has been tested time and again. One breakthrough

came in 1987, when Akira Tonomura13 and his colleagues at the Hitachi

Advanced Research Laboratory in Tokyo demonstrated interference in elec-

trons thrown one at a time through a classic two-slit apparatus. In 2013,

Markus Arndt and his colleagues at the University of Vienna,14 building on
12Davisson (1881–1958) and Germer (1896–1971) were experimenting at Bell Telephone
Laboratories in Manhattan with the ultimate goal not of testing quantum mechanics,
but of building better telephone amplifiers. Earlier, Germer had served as a World War I

fighter pilot. Later, he would become an innovative rock climber.
13A. Tonomura, J. Endo, T. Matsuda, T. Kawasaki, and H. Ezawa, “Demonstration

of single-electron buildup of an interference pattern” American Journal of Physics 57
(1989) 117–120. Tonomura (1942–2012) worked tirelessly to develop the full potential
of electron microscopy, and almost as a sideline used these developments to test the

fundamentals of quantum mechanics. If you search the Internet for “single electron two

slit interference Akira Tonomura”, you will probably find his stunning video showing
how an electron interference pattern builds up over time.
14Sandra Eibenberger, Stefan Gerlich, Markus Arndt, Marcel Mayor, and Jens Tüxen,
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work by Anton Zeilinger, demonstrated quantal interference in a molecule

consisting of 810 atoms. Research in this direction continues.15 Exactly

what is meant by “wave character of a particle” needs to be elucidated, but

the effect is so well explored experimentally that it cannot be denied.

Problems

1.10 de Broglie wavelengths for various particles

We have found the de Broglie wavelength of an electron with energy

100 eV. What about for a neutron with that energy? An atom of

gold? (A neutron’s mass is 1849 times the mass of an electron,

and a gold nucleus consists of 197 protons and neutrons.) If these

de Broglie waves had instead been electromagnetic waves, would

such wavelengths be characterized as ultraviolet, x-rays, or gamma

rays?

1.11 de Broglie wavelength for a big molecule

The 2013 experiments by Markus Arndt, mentioned in the

text, used the molecule C284H190F320N4S12 with mass 10 118 amu

(where the “atomic mass unit” is very close to the mass of a hydro-

gen atom), and with a velocity of 85 m/s. What was its de Broglie

wavelength?

1.12 Rephrasing the de Broglie relation (essential problem)

Rewrite the de Broglie relation, p = h/λ, in terms of the wavenum-

ber k = 2π/λ. Employ the shortcut notation ~ = h/2π and com-

pare your result to

p = ~k. (1.24)

“Matter–wave interference of particles selected from a molecular library with masses

exceeding 10 000 amu” Physical Chemistry Chemical Physics 15 (2013) 14696–14700.
15Jonas Wätzel, Andrew James Murray, and Jamal Berakdar, “Time-resolved buildup
of two-slit-type interference from a single atom” Physical Review A 100 (12 July 2019)

013407.
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1.13 de Broglie wavelength for relativistic particles

(This problem requires background in relativity.)

The kinetic energy of a relativistic particle with energy E and mass

m is defined as K = E −mc2. Recall that E2 − (pc)2 = (mc2)2.

a. Show that

(pc)2 = (E −mc2)(E +mc2).

b. Combine the above result with the de Broglie relation λ = h/p

to show that the generalization of equation (1.23) applicable

to both relativistic and non-relativistic particles is

λ =
hc√

K(K + 2mc2)
.

c. Show that the above equation reduces to equation (1.23) in the

non-relativistic limit. [Clue: Given two positive numbers, s

and b, with s� b, then s+b ≈ b, but there’s no approximation

for sb.]

1.14 Hofstadter’s use of relativistic electrons

(This problem assumes you have completed the previous problem.)

The 1961 Nobel Prize in Physics was awarded to Robert Hofstadter

“for his pioneering studies of electron scattering in atomic nuclei

and for his thereby achieved discoveries concerning the structure

of the nucleons”. In one of these experiments he bombarded gold

nuclei with electrons of total relativistic energy 183 MeV.

a. What is the de Broglie wavelength of such an electron?

b. Compare that wavelength to 10−15 m, the typical size of an

atomic nucleus. (The experiment succeeded only because the

wavelength of the electron probe was smaller than or compa-

rable to the size of the nucleus. In exactly the same way, you

can obtain a good image of a person’s face using light — with

a wavelength near 600 nm — but not using FM radio waves

— with a wavelength near 3 m.)

c. Hofstadter reported his results in a paper16 that didn’t say

whether the electron energy “183 MeV” refers to the total

energy or just the kinetic energy. Is this a significant error on

Hofstadter’s part?

16R. Hofstadter, B. Hahn, A.W. Knudsen, and J.A. McIntyre, “High-energy electron
scattering and nuclear structure determinations, II” Physical Review 95 (15 July 1954)

512–515.
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1.4 How does an electron behave?

We have seen that an electron has a particle-like character, yet somehow it

has a wave-like character as well. This seeming paradox invites the question:

“How does an electron behave: like a particle or like a wave?”

I approach an answer through an analogy17 drawn from another field

of physics: the theory of classical waves. When a classical wave (water

wave, sound wave, light wave, etc.) of wavelength λ passes through a slit

of width a, wave theory tells us how the wave behaves: If the slit is large

(a � λ; “geometrical optics limit”) then the wave acts almost like a ray,

which passes through the slit with no spreading. If the slit is small (a� λ;

“spherical wave limit”) then the wave acts like a Huygens wavelet, which

passes through the slit and then spreads throughout the half-circle on the far

side. For slits of intermediate size the wave acts in an intermediate manner.

The behavior of a classical wave is known exactly and can be calculated

with exquisite accuracy. Under some circumstances it behaves almost like

a ray, and in some circumstances it behaves almost like a Huygens wavelet,

although it takes on these behaviors exactly only in limiting cases.

As with classical waves, so with electrons. The theory of quantum

mechanics tells us with exquisite accuracy how an electron behaves in all

circumstances. Under some circumstances it behaves almost like a classical

particle. Under other circumstances it behaves almost like a classical wave.

The question “Does an electron behave like a classical particle or like a

classical wave?” is like the question “Does a classical wave behave like a

ray or like a Huygens wavelet?” It never behaves exactly like either. Instead,

it behaves in its own inimitable way, which you might call “typical quantum

mechanical behavior”.

It is the job of this book (and of the rest of your physics education) to

teach you “typical quantum mechanical behavior”. If you open your mind

to the idea that electrons behave in a manner unlike anything you have

previously encountered, then you can gain an appreciation of and build an

intuition for such “typical quantum mechanical behavior”. If you refuse to

admit this possibility, then you might be able to execute the problems, and

you might even get a good grade, but your mind will be forever closed to

one of the wonders of our universe.
17Perhaps you will find that the parable of “the blind men and the elephant” makes a
more appealing analogy.
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1.5 Quantization of atomic energies

If the energy of light comes in quantized amounts, how about the energy

of an atom?

1.5.1 Experiments

It is not hard to change the energy of an atom: simply put a gas in a

high-voltage discharge tube to give the gas atoms a jolt. The atoms will

absorb energy from the discharge, and then will release light energy as they

fall back to their ground state. If the atoms can take on continuous energy

values, then they will emit light of continuous energy value and (through

equation 1.20) of continuous wavelength. But if the atoms can take on

only certain quantized energy values, then they will emit light of quantized

energy value and hence of only certain wavelengths. Perhaps you have

performed experiments sending the light from a discharge tube through

a diffraction grating and spreading it out by wavelength: if so, then you

know from your personal experience that the light comes out at only certain

wavelengths, not with continuous wavelengths. If energy is released from

an atom through light, it seems that the atom can take on only certain

quantized energy values.

But what if the energy goes into or out of an atom through some other

mechanism? In 1914 James Franck18 and Gustav Hertz19 figured out a way

to get energy into mercury atoms through collisions with electrons. There’s

no need to go through the details of the Franck–Hertz experiment, but the

conclusion is again that the atom cannot accept just any old amount of en-

ergy: it can only absorb energy in certain quantized amounts. Furthermore,

those amounts agreed with the amounts derived from spectral experiments.
18German physicist (1882–1964) who left Germany in disgust after the Nazi Party came

to power. He went first to Denmark, then to the United States where he worked to build
the nuclear bomb. He authored a report recommending that U.S. nuclear bombs not be
used on Japanese cities without warning.
19German physicist (1887–1975), nephew of Heinrich Hertz, for whom the unit of fre-
quency is named. Hertz was forced out of his career in Germany due to distant Jewish

ancestry. He went to the Soviet Union and there worked to build the Soviet nuclear

bomb.
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1.5.2 Bohr’s theory

Niels Bohr20 decided in 1913 not just to accept the quantization of atomic

energies as an experimental fact, but to find a theoretical underpinning.

He started with the simplest atom: hydrogen. Hydrogen consists of an

electron (mass me, charge −e) and a far more massive proton (charge +e).

Bohr made21 two assumptions: first that the electron orbits the proton

only in circular (never elliptical) orbits, second that the circumference of

the circular orbit holds an whole number of de Broglie wavelengths (one

or two or three or more but never 2.7). If you remember F = ma, and

the formula for centripetal acceleration (v2/r), and Coulomb’s law, you’ll

realize that the circular orbit assumption demands

e2

4πε0

1

r2
= me

v2

r
=

p2

mer
. (1.25)

And if you remember the de Broglie formula λ = h/p you’ll realize that the

assumption of a whole number of wavelengths demands

2πr = nλ = nh/p where n = 1, 2, 3, . . .. (1.26)

Here are two different formulas connecting the two variables r and p, so we

can solve for these variables in terms of n, h, me, and e2/4πε0. (Don’t get

distracted by the quantities λ and v . . . if we decide we want them later on

we can easily find them once we’ve solved for r and p.) Once our objectives

are clear it’s not hard to achieve them. Solve equation (1.26) for p,

p = n
h/2π

r
, (1.27)

and then plug this into equation (1.25) giving

e2/4πε0
r2

= n2 (h/2π)2

mer3
.

Solve this equation for r giving

r = n2 (h/2π)2

me(e2/4πε0)
, (1.28)

20Danish physicist (1885–1962), fond of revolutionary ideas. In 1924 and again in 1929

he suggested that the law of energy conservation be abandoned, but both suggestions
proved to be on the wrong track. Father of six children, all boys, one of whom won the
Nobel Prize in Physics and another of whom played in the 1948 Danish Olympic field
hockey team.
21The treatment in this book captures the spirit but not all the nuance of Bohr’s argu-

ment.
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and then plug this back into (1.27) giving

p =
1

n

me(e
2/4πε0)

h/2π
. (1.29)

(Notice that the quantity e2/4πε0 makes a natural combination of quanti-

ties, so we keep it together as a packet and never rend it apart in the course

of our algebraic manipulations. Similarly for the quantity h/2π.)

If Bohr’s assumptions hold, then the orbital radius can’t be any old

value, it can only take on the values given in (1.28). And the momentum

can’t be any old value, it can only take on the values given in (1.29). This

is unexpected and curious and worthwhile, but in Bohr’s day, and still

today, our experimental apparatus is not so refined that it can determine

the radius or the momentum of a single electron orbiting a proton, so it’s

also sort of useless. We can find an experimentally accessible result by

calculating the energy

E =
p2

2me
− e2/4πε0

r
.

If Bohr’s assumptions hold, then the energy, too, can’t be any old value, it

can only take on the quantized values

E = − 1

n2

me(e
2/4πε0)

2(h/2π)2
. (1.30)

And, as discussed in section 1.5.1, the energy values of an atom are exper-

imentally accessible.

Experiment shows this result for hydrogen to be correct. Yet the deriva-

tion clearly leaves much to be desired. The result (1.30) springs from two

equations: equation (1.25) assumes that the electron is a classical point

particle in a circular orbit; equation (1.26) assumes that the electron is a

de Broglie wave. Both equations are needed to produce the energy quanti-

zation result, yet the two assumptions cannot both be correct.

1.5.3 Visualizations

As with the photon, it is the job of the rest of this book to come up with

a description of an electron that is correct, but one thing is clear already:

the visualization of an electron as a classical point particle — a smaller

and harder version of a marble — cannot be correct. At this stage in your

quantal education I cannot yet give you a perfect picture of an electron, but
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you can see that the picture of an electron as a point particle with a position,

a speed, and an energy — the picture that appeared in, for example, the

seal of the U.S. Atomic Energy Commission — must be wrong.

An atom does not look like this.

An atom does not look like this, either.

The electron is not a small, hard marble with a position, a speed, and an

energy, and any intuition you hold in your mind based on that mistaken

visualization is likely to lead you astray.
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1.5.4 Multi-electron atoms

Bohr, of course, forged on to investigate atoms more complicated than

hydrogen. He found that he could indeed explain the spectra of more com-

plicated atoms — sometimes with high accuracy, sometimes only approx-

imately — but not by making the assumption about circular orbits that

worked so well for hydrogen. For example, here are the orbits required for

the eleven electrons in a sodium atom:

A sodium atom in the Bohr model.22

Atoms larger than sodium required even more elaborate schemes, and

each new atom required a new set of assumptions. Furthermore, even

for simple hydrogen, Bohr could never explain how the quantized ener-

gies changed when the atom was placed in a magnetic field (the “Zeeman23

effect”).

We must conclude that the Bohr model, despite its impressive prediction

concerning the energies of a hydrogen atom in the absence of magnetic field,

is wrong.

22Reproduced from K.A. Kramers and Helge Holst, The Atom and the Bohr Theory of

Its Structure (Alfred A. Knopf, New York, 1923) rear endpaper.
23Pieter Zeeman (1865–1943), Dutch physicist, discovered this effect in 1896, three years
after earning his Ph.D. The prestigious journal Nature had earlier described his obser-
vations of the meteoroid of 17 November 1882, made at age 17 years.
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Problem

1.15 Characteristic quantities (recommended problem)

[[It’s a good idea to develop a sense of typical, or “characteristic”,

sizes: if a problem in classical mechanics asks you to calculate the

mass of a squirrel, and you find 937 kg, then you know you’ve made

a mistake somewhere. In classical mechanics this sense of typical

quantities comes from everyday experience. In atomic physics this

sense has to be built.24 Although the Bohr model is not correct, it

does provide a reasonable picture of typical sizes for atomic quan-

tities, and this problem is your first step toward such a “tangible

picture”.]]

The “characteristic length” for atomic systems is the so-called

“Bohr radius”, the radius of the smallest allowed orbit, which is

(see equation 1.28)

a0 ≡
(h/2π)2

me(e2/4πε0)
. (1.31)

a. Evaluate the Bohr radius numerically in nanometers. Com-

pare to a wavelength of blue light.

The “characteristic time” for atomic systems is conventionally de-

fined not as the period of the smallest allowed Bohr orbit, but as

this period divided by 2π. (Not the time for the electron to make

one orbit, but the time for it to sweep out an angle of one radian.)

b. Derive a formula for this time and evaluate it numerically in

femtoseconds. Compare to a period of blue light.

[[Characteristic quantities for atomic systems will be explored fur-

ther in problem 7.7, “Characteristic quantities for the Coulomb

problem”, on page 246. That problem shows why it makes sense

to divide the period by 2π.]]

24When the mathematician Stanislaw Ulam became interested in nuclear physics he

“discovered that if one gets a feeling for no more than a dozen. . . nuclear constants, one
can imagine the subatomic world almost tangibly, and manipulate the picture dimen-
sionally and qualitatively, before calculating more precise relationships.” [Stanislaw M.
Ulam, Adventures of a Mathematician (Charles Scribner’s Sons, New York, 1976) pages
147–148. (From the chapter “Life among the Physicists: Los Alamos”.)]
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1.6 Quantization of magnetic moment

An electric current flowing in a loop produces a magnetic moment, so it

makes sense that the electron orbiting (or whatever it does) an atomic

nucleus would produce a magnetic moment for that atom. And of course, it

also makes sense that physicists would be itching to measure that magnetic

moment.

It is not difficult to measure the magnetic moment of, say, a scout

compass. Place the magnetic compass needle in a known magnetic field

and measure the torque that acts to align the needle with the field. You

will need to measure an angle and you might need to look up a formula in

your magnetism textbook, but there is no fundamental difficulty.

Measuring the magnetic moment of an atom is a different matter. You

can’t even see an atom, so you can’t watch it twist in a magnetic field like a

compass needle. Furthermore, because the atom is very small, you expect

the associated magnetic moment to be very small, and hence very hard to

measure. The technical difficulties are immense.

These difficulties must have deterred but certainly did not stop Otto

Stern and Walter Gerlach.25 They realized that the twisting of a magnetic

moment in a uniform magnetic field could not be observed for atomic-sized

magnets, and also that the moment would experience zero net force. But

they also realized that a magnetic moment in a non-uniform magnetic field

would experience a net force, and that this force could be used to measure

the magnetic moment.

25Otto Stern (1888–1969) was a Polish-German-Jewish physicist who made contributions

to both theory and experiment. He left Germany for the United States in 1933 upon

the Nazi ascension to power. Walter Gerlach (1889–1979) was a German experimental
physicist. During the Second World War he led the physics section of the Reich Research

Council and for a time directed the German effort to build a nuclear bomb.
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~µ

~B

z

6

A classical magnetic moment in a non-uniform magnetic field.

A classical magnetic moment ~µ, situated in a magnetic field ~B that

points in the z direction and increases in magnitude in the z direction, is

subject to a force

µz
∂B

∂z
, (1.32)

where µz is the z-component of the magnetic moment or, in other words,

the projection of ~µ on the z axis. (If this is not obvious to you, then work

problem 2.16, “Force on a classical magnetic moment”, on page 46.)

Stern and Gerlach used this fact to measure the z-component of the

magnetic moment of an atom. First, they heated silver in an electric “oven”.

The vaporized silver atoms emerged from a pinhole in one side of the oven,

and then passed through a non-uniform magnetic field. At the far side of

the field the atoms struck and stuck to a glass plate. The entire apparatus

had to be sealed within a good vacuum, so that collisions with nitrogen

molecules would not push the silver atoms around. The deflection of an

atom away from straight-line motion is proportional to the magnetic force,

and hence proportional to the projection µz. In this ingenious way, Stern

and Gerlach could measure the z-component of the magnetic moment of an

atom even though any single atom is invisible.

Before turning the page, pause and think about what results you would

expect from this experiment.
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Here are the results that I expect: I expect that an atom which happens

to enter the field with magnetic moment pointing straight up (in the z

direction) will experience a large upward force. Hence it will move upward

and stick high up on the glass-plate detector. I expect that an atom which

happens to enter with magnetic moment pointing straight down (in the −z
direction) will experience a large downward force, and hence will stick far

down on the glass plate. I expect that an atom entering with magnetic

moment tilted upward, but not straight upward, will move upward but

not as far up as the straight-up atoms, and the mirror image for an atom

entering with magnetic moment tilted downward. I expect that an atom

entering with horizontal magnetic moment will experience a net force of

zero, so it will pass through the non-uniform field undeflected.

Furthermore, I expect that when a silver atom emerges from the oven

source, its magnetic moment will be oriented randomly — as likely to point

in one direction as in any other. There is only one way to point straight up,

so I expect that very few atoms will stick high on the glass plate. There are

many ways to point horizontally, so I expect many atoms to pass through

undeflected. There is only one way to point straight down, so I expect very

few atoms to stick far down on the glass plate.26

In summary, I expect that atoms would leave the magnetic field in any of

a range of deflections: a very few with large positive deflection, more with a

small positive deflection, a lot with no deflection, some with a small negative

deflection, and a very few with large negative deflection. This continuity of

deflections reflects a continuity of magnetic moment projections.

26To be specific, this reasoning suggests that the number of atoms with moment tilted

at angle θ relative to the z direction is proportional to sin θ, where θ ranges from 0◦ to
180◦. You might want to prove this to yourself, but we’ll never use this result so don’t

feel compelled.
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In fact, however, this is not what happens at all! The projection µz
does not take on a continuous range of values. Instead, it is quantized and

takes on only two values, one positive and one negative. Those two values

are called µz = ±µB where µB , the so-called “Bohr magneton”, has the

measured value of

µB = 9.274 010 078× 10−24 J/T, (1.33)

with an uncertainty of 3 in the last decimal digit.

0 0

+µB

−µB

µz µz

Expected: Actual:

Distribution of µz

The Stern-Gerlach experiment was initially performed with silver atoms

but has been repeated with many other types of atoms. When nitrogen is

used, the projection µz takes on one of the four quantized values of +3µB ,

+µB , −µB , or −3µB . When sulfur is used, it takes on one of the five

quantized values of +4µB , +2µB , 0, −2µB , and −4µB . For no atom do the

values of µz take on the broad continuum of my classical expectation. For

all atoms, the projection µz is quantized.
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Problems

1.16 Force on a classical magnetic moment

The force on a classical magnetic moment is most easily calculated using

“magnetic charge fiction”: Consider the magnetic moment to consist of

two “magnetic charges” of magnitude +m and −m, separated by the

position vector ~d running from −m to +m. The magnetic moment is

then ~µ = m~d.

a. Use B+ for the magnitude of the magnetic field at +m, and B−
for the magnitude of the magnetic field at −m. Show that the net

force on the magnetic moment is in the z direction with magnitude

mB+ −mB−.

b. Use dz for the z-component of the vector ~d. Show that to high

accuracy

B+ = B− +
∂B

∂z
dz.

Surely, for distances of atomic scale, this accuracy is more than

adequate.

c. Derive expression (1.32) for the force on a magnetic moment.

1.17 Questions (recommended problem)

Answering questions is an important scientific skill and, like any skill,

it is sharpened through practice. This book gives you plenty of oppor-

tunities to develop that skill. Asking questions is another important

scientific skill.27 To hone that skill, write down a list of questions you

have about quantum mechanics at this point. Be brief and pointed:

you will not be graded for number or for verbosity. In future problems,

I will ask you to add to your list.

[[For example, one of my questions would be: “In ocean waves, the water

is doing the ‘waving’. In sound waves, it’s the air. In light waves, it’s

the abstract electromagnetic field. What is ‘waving’ in a de Broglie

wave?”]]

27“The important thing is not to stop questioning,” said Einstein. “Never lose a holy
curiosity.” [Interview by William Miller, “Death of a Genius”, Life magazine, volume 38,

number 18 (2 May 1955) pages 61–64 on page 64.]



Chapter 2

What Is Quantum Mechanics About?

The story of Planck’s discovery of the quantization of light energy is a

fascinating one, but it’s a difficult and elaborate story because it involves

not just quantization, but also thermal equilibrium and electromagnetic

radiation. The story of the discovery of atomic energy quantization is just

as fascinating, but again fraught with intricacies. In an effort to remove

the extraneous and dive deep to the heart of the matter, we focus on the

measurement of the magnetic moment of a silver atom. We will, to the

extent possible, do a quantum-mechanical treatment of an atom’s magnetic

moment while maintaining a classical treatment of all other aspects — such

as its energy and momentum and position. (In chapter 4, “The Quantum

Mechanics of Position”, we take up a quantum-mechanical treatment of

position and energy.)

The previous chapter attempted to apply classical pictures to atomic

entities — electrons pictured as small, hard marbles; magnetic moments

pictured as classical pointing arrows — and it found that the results were

untenable. So this chapter will not impose the classical pictures in our

minds onto nature. Instead we will perform experiments and let the atoms

themselves tell us how they behave.

2.1 Quantization

2.1.1 The conundrum of projections

The Stern-Gerlach result — that µz is quantized rather than continuous —

is counterintuitive and unexpected, but we can live with the counterintuitive

and unexpected. It happens all the time in politics.

47
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However, this fact of quantization appears to result in a logical con-

tradiction, because there are many possible axes upon which the magnetic

moment can be projected. The figures below make it clear that it is impos-

sible for any vector to have a projection of either ±µB on all axes!

Because if the projection of ~µ on the z axis is +µB . . .

~µ
+µB

z

. . . then the projection of ~µ on this second axis must be more than +µB . . .

~µ

z

. . . while the projection of ~µ on this third axis must be less than +µB .

~µ

z
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Whenever we measure the magnetic moment, projected onto any axis,

the result is either +µB or −µB . Yet is it impossible for the projection

of any classical arrow on all axes to be either +µB or −µB ! This seeming

contradiction is called “the conundrum of projections”. We can live with

the counterintuitive, the unexpected, the strange, but we cannot live with

a logical contradiction. How can we resolve it?

The resolution comes not from meditating on the question, but from

experimenting about it. Let us actually measure the projection on one

axis, and then on a second. To do this easily, we modify the Stern-Gerlach

apparatus and package it into a box called a “Stern-Gerlach analyzer”. This

box consists of a Stern-Gerlach apparatus followed by “pipes” that channel

the outgoing atoms into horizontal paths.1 This chapter treats only silver

atoms, so we use analyzers with two exit ports.

packaged into

An atom enters a vertical analyzer through the single hole on the left.

If it exits through the upper hole on the right (the “+ port”) then the

outgoing atom has µz = +µB . If it exits through the lower hole on the

right (the “− port”) then the outgoing atom has µz = −µB .
1In general, the “pipes” will manipulate the atoms through electromagnetic fields, not

through touching. One way way to make such “pipes” is to insert a second Stern-Gerlach

apparatus, oriented upside-down relative to the first. The atoms with µz = +µB , which

had experienced an upward force in the first half, will experience an equal downward
force in the second half, and the net impulse delivered will be zero. But whatever their

manner of construction, the pipes must not change the magnetic moment of an atom
passing through them.
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µz = +µB

µz = −µB

2.1.2 Two vertical analyzers

In order to check the operation of our analyzers, we do preliminary exper-

iments. Atoms are fed into a vertical analyzer. Any atom exiting from the

+ port is then channeled into a second vertical analyzer. That atom exits

from the + port of the second analyzer. This makes sense: the atom had

µz = +µB when exiting the first analyzer, and the second analyzer confirms

that it has µz = +µB .

µz = +µB

µz = −µB

(ignore these)

all

none

Furthermore, if an atom exiting from the − port of the first analyzer

is channeled into a second vertical analyzer, then that atom exits from the

− port of the second analyzer.

2.1.3 One vertical and one upside-down analyzer

Atoms are fed into a vertical analyzer. Any atom exiting from the + port is

then channeled into a second analyzer, but this analyzer is oriented upside-

down. What happens? If the projection on an upward-pointing axis is +µB
(that is, µz = +µB), then the projection on a downward-pointing axis is

−µB (we write this as µ(−z) = −µB). So I expect that these atoms will

emerge from the − port of the second analyzer (which happens to be the

higher port). And this is exactly what happens.



What Is Quantum Mechanics About? 51

µz = +µB

µz = −µB

(ignore these)

all

none

Similarly, if an atom exiting from the − port of the first analyzer is

channeled into an upside-down analyzer, then that atom emerges from the

+ port of the second analyzer.

2.1.4 One vertical and one horizontal analyzer

Atoms are fed into a vertical analyzer. Any atom exiting from the + port is

then channeled into a second analyzer, but this analyzer is oriented horizon-

tally. The second analyzer doesn’t measure the projection µz, it measures

the projection µx. What happens in this case? Experiment shows that the

atoms emerge randomly: half from the + port, half from the − port.

 

µz = +µB

µz = −µB
(ignore these)

half (µx = −µB)

half (µx = +µB)

x

y

z

This makes some sort of sense. If a classical magnetic moment were

vertically oriented, it would have µx = 0, and such a classical moment

would go straight through a horizontal Stern-Gerlach analyzer. We’ve seen

that atomic magnetic moments never go straight through. If you “want” to

go straight but are forced to turn either left or right, the best you can do is
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turn left half the time and right half the time. (Don’t take this paragraph

literally. . . atoms have no personalities and they don’t “want” anything.

But it is a useful mnemonic.)

2.1.5 One vertical and one backwards horizontal analyzer

Perform the same experiment as above (section 2.1.4), except insert the

horizontal analyzer in the opposite sense, so that it measures the projection

on the negative x axis rather than the positive x axis. Again, half the atoms

emerge from the + port, and half emerge from the − port.

 

µz = +µB

µz = −µB
(ignore these)

half (µ(−x) = +µB)

half (µ(−x) = −µB)

x

y

z

2.1.6 One horizontal and one vertical analyzer

A +x analyzer followed by a +z analyzer is the same apparatus as above

(section 2.1.5), except that both analyzers are rotated as a unit by 90◦ about

the y axis. So of course it has the same result: half the atoms emerge from

the + port, and half emerge from the − port.



What Is Quantum Mechanics About? 53

 

µx = −µB

µx = +µB

µz = +µB

µz = −µB

x

y

z

2.1.7 Three analyzers

Atoms are fed into a vertical analyzer. Any atom exiting from the + port

is then channeled into a horizontal analyzer. Half of these atoms exit from

the + port of the horizontal analyzer (see section 2.1.4), and these atoms

are channeled into a third analyzer, oriented vertically. What happens at

the third analyzer?

 

µz=+µB

µz=−µB

µx=−µB

µx=+µB

?

?

x

y

z

There are two ways to think of this: (I) When the atom emerged from

the + port of the first analyzer, it was determined to have µz = +µB .

When that same atom emerged from the + port of the second analyzer,

it was determined to have µx = +µB . Now we know two projections

of the magnetic moment. When it enters the third analyzer, it still has

µz = +µB , so it will emerge from the + port. (II) The last two analyzers

in this sequence are a horizontal analyzer followed by a vertical analyzer,

and from section 2.1.6 we know what happens in this case: a 50/50 split.

That will happen in this case, too.
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So, analysis (I) predicts that all the atoms entering the third analyzer

will exit through the + port and none through the − port. Analysis (II)

predicts that half the atoms will exit through the + port and half through

the − port.

Experiment shows that analysis (II) gives the correct result. But what

could possibly be wrong with analysis (I)? Let’s go through line by line:

“When the atom emerged from the + port of the first analyzer, it was

determined to have µz = +µB .” Nothing wrong here — this is what an

analyzer does. “When that same atom emerged from the + port of the

second analyzer, it was determined to have µx = +µB .” Ditto. “Now we

know two projections of the magnetic moment.” This has got to be the

problem. To underscore that problem, look at the figure below.

 

 

 
 +µB

+µB
~µ

z

x

If an atom did have both µz = +µB and µx = +µB , then the projection

on an axis rotated 45◦ from the vertical would be µ45◦ = +
√

2µB . But

the Stern-Gerlach experiment assures us that whenever µ45◦ is measured,

the result is either +µB or −µB , and never +
√

2µB . In summary, it is not

possible for a moment to have a projection on both the z axis and on the

x axis. Passing to the fourth sentence of analysis (I) — “When the atom

enters the third analyzer, it still has µz = +µB , so it will emerge from the

+ port” — we immediately see the problem. The atom emerging from the

+ port of the second analyzer does not have µz = +µB — it doesn’t have

a projection on the z axis at all.
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Because it’s easy to fall into misconceptions, let me emphasize what I’m

saying and what I’m not saying:

I’m saying that if an atom has a value for µx, then it doesn’t have

a value for µz.

I’m not saying that the atom has a value for µz but no one knows

what it is.

I’m not saying that the atom has a value for µz but that value is

changing rapidly.

I’m not saying that the atom has a value for µz but that value is

changing unpredictably.

I’m not saying that a random half of such atoms have the value

µz = +µB and the other half have the value µz = −µB .

I’m not saying that the atom has a value for µz which will be

disturbed upon measurement.

The atom with a value for µx does not have a value for µz in the same way

that love does not have a color.

This is a new phenomenon, and it deserves a new name. That name

is “indeterminacy”. This is perhaps not the best name, because it might

suggest, incorrectly, that an atom with a value for µx has a value for µz and

we merely haven’t yet determined what that value is. The English language

was invented by people who didn’t understand quantum mechanics, so it is

not surprising that there are no perfectly appropriate names for quantum

mechanical phenomena. This is a defect in our language, not a defect in

quantum mechanics or in our understanding of quantum mechanics, and it

is certainly not a defect in nature.2

How can a vector have a projection on one axis but not on another? It

is the job of the rest of this book to answer that question, but one thing

is clear already: The visualization of an atomic magnetic moment as a

classical arrow must be wrong.
2In exactly the same manner, the name “orange” applies to light within the wavelength

range 590–620 nm and the name“red” applies to light within the wavelength range 620–

740 nm, but the English language has no word to distinguish the wavelength range

1590–1620 nm from the wavelength range 1620–1740 nm. This is not because optical
light is “better” or “more deserving” than infrared light. It is due merely to the accident

that our eyes detect optical light but not infrared light.
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2.1.8 The upshot

We escape from the conundrum of projections through probability. If an

atom has µz = +µB , and if the projection on some other axis is measured,

then the result cannot be predicted with certainty: we instead give proba-

bilities for the various results. If the second analyzer is rotated by angle θ

relative to the vertical, the probability of emerging from the + port of the

second analyzer is called P+(θ).

µz = +µB

µz = −µB

µθ = +µB

µθ = −µB

z

θ

We already know some special values: from section 2.1.2, P+(0◦) = 1;

from section 2.1.4, P+(90◦) = 1
2 ; from section 2.1.3, P+(180◦) = 0; from

section 2.1.5, P+(270◦) = 1
2 ; from section 2.1.2, P+(360◦) = 1. It is not

hard to guess the curve that interpolates between these values:

P+(θ) = cos2(θ/2), (2.1)

and experiment confirms this guess.

0◦ 90◦ 180◦

θ
270◦ 360◦

0

1
2

1

P+(θ)
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Problems

2.1 Exit probabilities (essential problem)

a. An analyzer is tilted from the vertical by angle α. An atom leaving

its + port is channeled into a vertical analyzer. What is the proba-

bility that this atom emerges from the + port? The− port? (Clue:

Use the “rotate as a unit” concept introduced in section 2.1.6.)

z

α

b. An atom exiting the − port of a vertical analyzer behaves exactly

like one exiting the + port of an upside-down analyzer (see sec-

tion 2.1.3). Such an atom is channeled into an analyzer tilted from

the vertical by angle β. What is the probability that this atom

emerges from the + port? The − port?

z

β

(Problem continues on next page.)
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c. An analyzer is tilted from the vertical by angle γ. An atom leav-

ing its − port is channeled into a vertical analyzer. What is the

probability that this atom emerges from the + port? The − port?

z

γ

2.2 Multiple analyzers

An atom with µz = +µB is channeled through the following line of

three Stern-Gerlach analyzers.

- or -

A

B

C

α
β

γ

Find the probability that it emerges from (a) the − port of analyzer

A; (b) the + port of analyzer B; (c) the + port of analyzer C; (d) the

− port of analyzer C.

2.3 Properties of the P+(θ) function

a. An atom exits the + port of a vertical analyzer; that is, it has

µz = +µB . Argue that the probability of this atom exiting from

the − port of a θ analyzer is the same as the probability of it

exiting from the + port of a (180◦ − θ) analyzer.

b. Conclude that the P+(θ) function introduced in section 2.1.8 must

satisfy

P+(θ) + P+(180◦ − θ) = 1.

c. Does the experimental result (2.1) satisfy this condition?
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2.2 Interference

There are more quantum mechanical phenomena to uncover. To support

our exploration, we build a new experimental device called the “analyzer

loop”.3 This is nothing but a Stern-Gerlach analyzer followed by “piping”

that channels the two exit paths together again.4

packaged into

a

b

The device must be constructed to high precision, so that there can be

no way to distinguish whether the atom passed through by way of the top

path or the bottom path. For example, the two paths must have the same

length: If the top path were longer, then an atom going through via the top

path would take more time, and hence there would be a way to tell which

way the atom passed through the analyzer loop.

In fact, the analyzer loop is constructed so precisely that it doesn’t

change the character of the atom passing through it. If the atom enters
3We build it in our minds. The experiments described in this section have never been

performed exactly as described here, although researchers are getting close. [See Shi-
mon Machluf, Yonathan Japha, and Ron Folman, “Coherent Stern–Gerlach momentum

splitting on an atom chip” Nature Communications 4 (9 September 2013) 2424.] We
know the results that would come from these experiments because conceptually parallel
(but more complex!) experiments have been performed on photons, neutrons, atoms,
and molecules. (See page 33.)
4If you followed the footnote on page 49, you will recall that these “pipes” manipulate

atoms through electromagnetic fields, not through touching. One way to make them

would be to insert two more Stern-Gerlach apparatuses, the first one upside-down and

the second one rightside-up relative to the initial apparatus. But whatever the manner of
their construction, the pipes must not change the magnetic moment of an atom passing

through them.
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with µz = +µB , it exits with µz = +µB . If it enters with µx = −µB , it exits

with µx = −µB . If it enters with µ17◦ = −µB , it exits with µ17◦ = −µB .

It is hard to see why anyone would want to build such a device, because

they’re expensive (due to the precision demands), and they do absolutely

nothing!

Once you made one, however, you could convert it into something useful.

For example, you could insert a piece of metal blocking path a. In that case,

all the atoms exiting would have taken path b, so (if the analyzer loop were

oriented vertically) all would emerge with µz = −µB .

Using the analyzer loop, we set up the following apparatus: First, chan-

nel atoms with µz = +µB into a horizontal analyzer loop.5 Then, channel

the atoms emerging from that analyzer loop into a vertical analyzer. Ignore

atoms emerging from the + port of the vertical analyzer and look for atoms

emerging from the − port.

a

b
input

µz = +µB

ignore

output
µz = −µB

We execute three experiments with this set-up: first we pass atoms

through when path a is blocked, then when path b is blocked, finally when

neither path is blocked.

2.2.1 Path a blocked

(1) Atoms enter the analyzer loop with µz = +µB .

(2) Half of them attempt path a, and end up impaled on the blockage.

(3) The other half take path b, and emerge from the analyzer loop with

µx = −µB .

(4) Those atoms then enter the vertical analyzer. Similar to the result

of section 2.1.6, half of these atoms emerge from the + port and are

ignored. Half of them emerge from the − port and are counted.

(5) The overall probability of passing through the set-up is 1
2 ×

1
2 = 1

4 .

If you perform this experiment, you will find that this analysis is correct

and that these results are indeed obtained.
5To make sure that all of these atoms have µz = +µB , they are harvested from the

+ port of a vertical analyzer.
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2.2.2 Path b blocked

(1) Atoms enter the analyzer loop with µz = +µB .

(2) Half of them attempt path b, and end up impaled on the blockage.

(3) The other half take path a, and emerge from the analyzer loop with

µx = +µB .

(4) Those atoms then enter the vertical analyzer. Exactly as in sec-

tion 2.1.6, half of these atoms emerge from the + port and are ignored.

Half of them emerge from the − port and are counted.

(5) The overall probability of passing through the set-up is 1
2 ×

1
2 = 1

4 .

Once again, experiment confirms these results.

2.2.3 Neither path blocked

Here, I have not just one, but two ways to analyze the experiment:

Analysis I:

(1) An atom passes through the set-up either via path b or via path a.

(2) From section 2.2.1, the probability of passing through via path b is 1
4 .

(3) From section 2.2.2, the probability of passing through via path a is 1
4 .

(4) Thus the probability of passing through the entire set-up is 1
4 + 1

4 = 1
2 .

Analysis II:

(1) Because “the analyzer loop is constructed so precisely that it doesn’t

change the character of the atom passing through it”, the atom emerges

from the analyzer loop with µz = +µB .

(2) When such atoms enter the vertical analyzer, all of them emerge

through the + port. (See section 2.1.2.)

(3) Thus the probability of passing through the entire set-up is zero.

These two analyses cannot both be correct. Experiment confirms the

result of analysis II, but what could possibly be wrong with analysis I?

Item (2) is already confirmed through the experiment of section 2.2.1,

item (3) is already confirmed through the experiment of section 2.2.2, and

don’t tell me that I made a mistake in the arithmetic of item (4). The only

thing left is item (1): “An atom passes through the set-up either via path b
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or via path a.” This simple, appealing, common-sense statement must be

wrong !

Just a moment ago, the analyzer loop seemed like a waste of money and

skill. But in fact, a horizontal analyzer loop is an extremely clever way of

correlating the path through the analyzer loop with the value of µx: If the

atom has µx = +µB , then it takes path a. If the atom has µx = −µB , then

it takes path b. If the atom has µz = +µB , then it doesn’t have a value of

µx and hence it doesn’t take a path.

Notice again what I’m saying: I’m not saying the atom takes one path

or the other but we don’t know which. I’m not saying the atom breaks

into two pieces and each half traverses its own path. I’m saying the atom

doesn’t take a path. The µz = +µB atoms within the horizontal analyzer

loop do not have a position in the same sense that love does not have a

color. If you think of an atom as a smaller, harder version of a classical

marble, then you’re visualizing the atom incorrectly.

Once again, our experiments have uncovered a phenomenon that doesn’t

happen in daily life, so there is no word for it in conventional language.6

Sometimes people say that “the atom takes both paths”, but that phrase

does not really get to the heart of the new phenomenon. I have asked

students to invent a new word to represent this new phenomenon, and

my favorite of their many suggestions is “ambivate” — a combination of

ambulate and ambivalent — as in “an atom with µz = +µB ambivates

through both paths of a horizontal analyzer loop”. While this is a great

word, it hasn’t caught on. The conventional name for this phenomenon is

“quantal interference”.

The name “quantal interference” comes from a (far-fetched) analogy

with interference in wave optics. Recall that in the two-slit interference of

light, there are some observation points that have a light intensity if light

passes through slit a alone, and the same intensity if light passes through

slit b alone, but zero intensity if light passes through both slits. This is

called “destructive interference”. There are other observation points that

have a light intensity if the light passes through slit a alone, and the same

intensity if light passes through slit b alone, but four times that intensity if
6In exactly the same way, there was no need for the word “latitude” or the word

“longitude” when it was thought that the Earth was flat. The discovery of the near-
spherical character of the Earth forced our forebears to invent new words to represent

these new concepts. Words do not determine reality; instead reality determines which
words are worth inventing.
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light passes through both slits. This is called “constructive interference”.

But in fact the word “interference” is a poor name for this phenomenon as

well. It’s adapted from a football term, and football players never (or at

least never intentionally) run “constructive interference”.

One last word about language: The device that I’ve called the “analyzer

loop” is more conventionally called an “interferometer”. I didn’t use that

name at first because that would have given away the ending.

Back on page 47 I said that, to avoid unnecessary distraction, this chap-

ter would “to the extent possible, do a quantum-mechanical treatment of

an atom’s magnetic moment while maintaining a classical treatment of all

other aspects — such as its energy and momentum and position”. You

can see now why I put in that qualifier “to the extent possible”: we have

found that within an interferometer, a quantum-mechanical treatment of

magnetic moment demands a quantum-mechanical treatment of position as

well.

2.2.4 Sample Problem: Constructive interference

Consider the same set-up as on page 60, but now ignore atoms leaving the

− port of the vertical analyzer and consider as output atoms leaving the

+ port. What is the probability of passing through the set-up when path

a is blocked? When path b is blocked? When neither path is blocked?

Solution: 1
4 ; 1

4 ; 1. Because 1
4 + 1

4 < 1, this is an example of constructive

interference.
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2.2.5 Sample Problem: Two analyzer loops

1a

1b
2a

2b

input

µz = +µB

output

Atoms with µz = +µB are channeled through a horizontal analyzer loop

(number 1), then a vertical analyzer loop (number 2). If all paths are open,

100% of the incoming atoms exit from the output. What percentage of the

incoming atoms leave from the output if the following paths are blocked?

(a) 2a (d) 1b

(b) 2b (e) 1b and 2a

(c) 1a (f) 1a and 2b

Solution: Only two principles are needed to solve this problem: First,

an atom leaving an unblocked analyzer loop leaves in the same condition

it had when it entered. Second, an atom leaving an analyzer loop with

one path blocked leaves in the condition specified by the path that it took,

regardless of the condition it had when it entered. Use of these principles

gives the solution in the table on the next page. Notice that in changing

from situation (a) to situation (e), you add blockage, yet you increase the

output!



What Is Quantum Mechanics About? 65

p
a
th

s
b
lo

ck
ed

in
p
u
t

co
n
d
it

io
n

p
a
th

ta
k
en

th
ro

u
g
h

#
1

in
te

rm
ed

ia
te

co
n
d
it

io
n

p
a
th

ta
k
en

th
ro

u
g
h

#
2

o
u
tp

u
t

co
n
d
it

io
n

p
ro

b
a
b
il
it

y
o
f

in
p
u
t
→

o
u
tp

u
t

n
o
n
e

µ
z

=
+
µ
B

“
b

o
th

”
µ
z

=
+
µ
B

a
µ
z

=
+
µ
B

1
0
0
%

2
a

µ
z

=
+
µ
B

“
b

o
th

”
µ
z

=
+
µ
B

1
0
0
%

b
lo

ck
ed

a
t
a

n
o
n
e

0
%

2
b

µ
z

=
+
µ
B

“
b

o
th

”
µ
z

=
+
µ
B

a
µ
z

=
+
µ
B

1
0
0
%

1
a

µ
z

=
+
µ
B

5
0
%

b
lo

ck
ed

a
t
a

5
0
%

p
a
ss

th
ro

u
g
h
b

µ
x

=
−
µ
B

“
b

o
th

”
µ
x

=
−
µ
B

5
0
%

1
b

µ
z

=
+
µ
B

5
0
%

p
a
ss

th
ro

u
g
h
a

5
0
%

b
lo

ck
ed

a
t
b

µ
x

=
+
µ
B

“
b

o
th

”
µ
x

=
+
µ
B

5
0
%

1
b

a
n
d
2
a
µ
z

=
+
µ
B

5
0
%

p
a
ss

th
ro

u
g
h
a

5
0
%

b
lo

ck
ed

a
t
b

µ
x

=
+
µ
B

2
5
%

b
lo

ck
ed

a
t
a

2
5
%

p
a
ss

th
ro

u
g
h
b

µ
z

=
−
µ
B

2
5
%

1
a

a
n
d
2
b
µ
z

=
+
µ
B

5
0
%

b
lo

ck
ed

a
t
a

5
0
%

p
a
ss

th
ro

u
g
h
b

µ
x

=
−
µ
B

2
5
%

p
a
ss

th
ro

u
g
h
a

2
5
%

b
lo

ck
ed

a
t
b

µ
z

=
+
µ
B

2
5
%



66 Interference

Problems

2.4 Tilted analyzer loop (recommended problem)

a

b

z

θ

input

µz=+µB output

An atom with µz = +µB enters the analyzer loop (interferometer)

shown above, tilted at angle θ to the vertical. The outgoing atom

enters a z-analyzer, and whatever comes out the − port is considered

output. What is the probability for passage from input to output when:

a. Paths a and b are both open?

b. Path b is blocked?

c. Path a is blocked?

2.5 Find the flaw: Tilted analyzer loop7

Five students — Aldo, Beth, Celine, Denzel, and Ellen — work the

above problem. All find the same answer for part (a), namely zero,

but for parts (b) and (c) they produce five different answers! Their

candidate answers are:

(b) (c)

Aldo cos4(θ/2) sin4(θ/2)

Beth 1
4 sin2(θ) 1

4 sin2(θ)

Celine 1
4 sin(θ) 1

4 sin(θ)

Denzel 1
4

√
2 sin(θ/2) 1

4

√
2 sin(θ/2)

Ellen 1
2 sin2(θ) 1

2 sin2(θ)

Provide simple reasons showing that four of these candidates must be

wrong.

7Background concerning “find the flaw” type problems is provided in sample prob-
lem 1.2.1 on page 26.
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2.6 Three analyzer loops (recommended problem)

Atoms with µz = +µB are channeled into a horizontal analyzer loop,

followed by a vertical analyzer loop, followed by a horizontal analyzer

loop.

1a

1b

3a

3b
2a

2b

µz=+µB output

If all paths are open, 100% of the incoming atoms exit from the out-

put. What percent of the incoming atoms leave from the output if the

following paths are blocked?

(a) 3a (d) 2b (g) 1b and 3b

(b) 3b (e) 1b (h) 1b and 3a

(c) 2a (f) 2a and 3b (i) 1b and 3a and 2a

(Note that in going from situation (h) to situation (i) you get more

output from increased blockage.)

2.3 Aharonov-Bohm effect

We have seen how to sort atoms using a Stern-Gerlach analyzer, made

of a non-uniform magnetic field. But how do atoms behave in a uniform

magnetic field? In general, this is an elaborate question, and the answer

will depend on the initial condition of the atom’s magnetic moment, on the

magnitude of the field, and on the amount of time that the atom spends in

the field. But for one special case the answer, determined experimentally,

is easy. If an atom is exposed to uniform magnetic field ~B for exactly the

right amount of time [which turns out to be a time of h/(2µBB)], then the

atom emerges with exactly the same magnetic condition it had initially:

If it starts with µz = −µB , it ends with µz = −µB . If it starts with

µx = +µB , it ends with µx = +µB . If it starts with µ29◦ = +µB , it ends

with µ29◦ = +µB . Thus for atoms moving at a given speed, we can build a

box containing a uniform magnetic field with just the right length so that

any atom passing through it will spend just the right amount of time to
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emerge in the same condition it had when it entered. We call this box a

“replicator”.

If you play with one of these boxes you’ll find that you can build any

elaborate set-up of sources, detectors, blockages, and analyzers, and that

inserting a replicator into any path will not affect the outcome of any exper-

iment. But notice that this apparatus list does not include interferometers

(our “analyzer loops”)! Build the interference experiment of page 60. Do

not block either path. Instead, slip a replicator into one of the two paths a

or b — it doesn’t matter which.

a

b
µz=+µB

replicator

ignore

output

µz=−µB

Without the replicator no atom emerges at output. But experiment shows

that after inserting the replicator, all the atoms emerge at output.

How can this be? Didn’t we just say of a replicator that “any atom pass-

ing through it will. . . emerge in the same condition it had when it entered”?

Indeed we did, and indeed this is true. But an atom with µz = +µB doesn’t

pass through path a or path b — it ambivates through both paths.

If the atom did take one path or the other, then the replicator would

have no effect on the experimental results. The fact that it does have an

effect is proof that the atom doesn’t take one path or the other.

The fact8 that one can perform this remarkable experiment was pre-

dicted theoretically (in a different context) by Walter Franz. He announced

his result in Danzig (now Gdańsk, Poland) in May 1939, just months before

the Nazi invasion of Poland, and his prediction was largely forgotten in the

resulting chaos. The effect was rediscovered theoretically by Werner Ehren-

berg and Raymond Siday in 1949, but they published their result under the

opaque title of “The refractive index in electron optics and the principles of

dynamics” and their prediction was also largely forgotten. The effect was

rediscovered theoretically a third time by Yakir Aharonov and David Bohm

in 1959, and this time it sparked enormous interest, both experimental and

theoretical. The phenomenon is called today the “Aharonov-Bohm effect”.
8See B.J. Hiley, “The early history of the Aharonov-Bohm effect” (17 April 2013)

https://arxiv.org/abs/1304.4736.
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Problem

2.7 Bomb-testing interferometer9 (recommended problem)

The Acme Bomb Company sells a bomb triggered by the presence of

silver, and claims that the trigger is so sensitive that the bomb explodes

when its trigger absorbs even a single silver atom. You have heard sim-

ilar extravagant claims from other manufacturers, so you’re suspicious.

You purchase a dozen bombs, then shoot individual silver atoms at

each in turn. The first bomb tested explodes! The trigger worked as

advertised, but now it’s useless because it’s blasted to pieces. The sec-

ond bomb tested doesn’t explode — the atom slips through a hole in

the trigger. This confirms your suspicion that not all the triggers are

as sensitive as claimed, so this bomb is useless to you as well. If you

continue testing in this fashion, at the end all your good bombs will be

blown up and you will be left with a stash of bad bombs.

So instead, you set up the test apparatus sketched here:

a

b
µz=+µB

bomb with trigger

?

?

An atom with µz = +µB enters the interferometer. If the bomb trigger

has a hole, then the atom ambivates through both paths, arrives at the

analyzer with µz = +µB , and exits the + port of the analyzer. But if

the bomb trigger is good, then either (a) the atom takes path a and

sets off the bomb, or else (b) the atom takes path b.

a. If the bomb trigger is good, what is the probability of option (a)?

Of option (b)?

b. If option (b) happens, what kind of atom arrives at the analyzer?

What is the probability of that atom exiting through the + port?

The − port?

Conclusion: If the atom exits through the − port, then the bomb is

good. If it exits through the + port then the bomb might be good or

bad and further testing is required. But you can determine that the

bomb trigger is good without blowing it up!
9Avshalom C. Elitzur and Lev Vaidman, “Quantum mechanical interaction-free mea-

surements” Foundations of Physics 23 (July 1993) 987–997.
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2.4 Light on the atoms

Our conclusion that, under some circumstances, the atom “does not have

a position” is so dramatically counterintuitive that you might — no, you

should — be tempted to test it experimentally. Set up the interference ex-

periment on page 60, but instead of simply allowing atoms to pass through

the interferometer, watch to see which path the atom takes through the

set-up. To watch them, you need light. So set up the apparatus with lamps

trained on the two paths a and b.

Send in one atom. There’s a flash of light at path a.

Another atom. Flash of light at b.

Another atom. Flash at b again.

Then a, then a, then b.

You get the drift. Always the light appears at one path or the other. (In

fact, the flashes come at random with probability 1
2 for a flash at a and 1

2

for a flash at b.) Never is there no flash. Never are there “two half flashes”.

The atom always has a position when passing through the interferometer.

“So much”, say the skeptics, “for this metaphysical nonsense about ‘the

atom takes both paths’.”

But wait. Go back and look at the output of the vertical analyzer.

When we ran the experiment with no light, the probability of coming out

the − port was 0. When we turn the lamps on, then the probability of

coming out the − port becomes 1
2 .

When the lamps are off, analysis II on page 61 is correct: the atoms

ambivate through both paths, and the probability of exiting from the− port

is 0. When the lamps are on and a flash is seen at path a, then the atom

does take path a, and now the analysis of section 2.2.2 on page 61 is correct:

the probability of exiting from the − port is 1
2 .

The process when the lamps are on is called “observation” or “measure-

ment”, and a lot of nonsense has come from the use of these two words.

The important thing is whether the light is present or absent. Whether

or not the flashes are “observed” by a person is irrelevant. To prove this

to yourself, you may, instead of observing the flashes in person, record the

flashes on video. If the lamps are on, the probability of exiting from the

− port is 1
2 . If the lamps are off, the probability of exiting from the − port
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is 0. Now, after the experiment is performed, you may either destroy the

video, or play it back to a human audience, or play it back to a feline au-

dience. Surely, by this point it is too late to change the results at the exit

port.

It’s not just light. Any method you can dream up for determining the

path taken will show that the atom takes just one path, but that method

will also change the output probability from 0 to 1
2 . No person needs to

actually read the results of this mechanism: as long as the mechanism is at

work, as long as it is in principle possible to determine which path is taken,

then one path is taken and no interference happens.

What happens if you train a lamp on path a but leave path b in the

dark? In this case a flash means the atom has taken path a. No flash means

the atom has taken path b. In both cases the probability of passage for the

atom is 1
2 .

How can the atom taking path b “know” that the lamp at path a is

turned on? The atom initially “sniffs out” both paths, like a fog creeping

down two passageways. The atom that eventually does take path b in

the dark started out attempting both paths, and that’s how it “knows”

the lamp at path a is on. This is called the “Renninger negative-result

experiment”.

It is not surprising that the presence or absence of light should affect an

atom’s motion: this happens even in classical mechanics. When an object

absorbs or reflects light, that object experiences a force, so its motion is

altered. For example, a baseball tossed upward in a gymnasium with the

overhead lamps off attains a slightly greater height that an identical baseball

experiencing an identical toss in the same gymnasium with the overhead

lamps on, because the downward-directed light beams push the baseball

downward. (This is the same “radiation pressure” that is responsible for

the tails of comets. And of course, the effect occurs whenever the lamps are

turned on: whether any person actually watches the illuminated baseball

is irrelevant.) This effect is negligible for typical human-scale baseballs

and tosses and lamps, but atoms are far smaller than baseballs and it is

reasonable that the light should alter the motion of an atom more than it

alters the motion of a baseball.

One last experiment: Look for the atoms with dim light. In this case,

some of the atoms will pass through with a flash. But — because of the

dimness — some atoms will pass through without any flash at all. For those
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atoms passing through with a flash, the probability for exiting the − port

is 1
2 . For those atoms passing through without a flash, the probability of

exiting the − port is 0.

2.5 Entanglement

I have claimed that an atom with µz = +µB doesn’t have a value of µx,

and that when such an atom passes through a horizontal interferometer, it

doesn’t have a position. You might say to yourself, “These claims are so

weird, so far from common sense, that I just can’t accept them. I believe

the atom does have a value of µx and does have a position, but something

else very complicated is going on to make the atom appear to lack a µx and

a position. I don’t know what that complicated thing is, but just because

I haven’t yet thought it up yet doesn’t mean that it doesn’t exist.”

If you think this, you’re in good company: Einstein thought it too. This

section introduces a new phenomenon of quantum mechanics, and shows

that no local deterministic mechanism, no matter how complex or how

fantastic, can give rise to all the results of quantum mechanics. Einstein

was wrong.

2.5.1 Flipping Stern-Gerlach analyzer

A new piece of apparatus helps us uncover this new phenomenon of nature.

Mount a Stern-Gerlach analyzer on a stand so that it can be oriented either

vertically (0◦), or tilted one-third of a circle clockwise (+120◦), or tilted

one-third of a circle counterclockwise (−120◦). Call these three orientations

V (for vertical), O (for out of the page), or I (for into the page). As an atom

approaches the analyzer, select one of these three orientations at random,

flip the analyzer to that orientation, and allow the atom to pass through as

usual. As a new atom approaches, again select an orientation at random,

flip the analyzer, and let the atom pass through. Repeat many times.
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V

OI

V

OI

120◦

Flipping Stern-Gerlach analyzer. The arrows V, O, and I, oriented 120◦

apart, all lie within the plane perpendicular to the atom’s approach path.

What happens if an atom with µz = +µB enters a flipping analyzer?

With probability 1
3 , the atom enters a vertical analyzer (orientation V), and

in that case it exits the + port with probability 1. With probability 1
3 , the

atom enters an out-of-the-page analyzer (orientation O), and in that case

(see equation 2.1) it exits the + port with probability

cos2(120◦/2) = 1
4 .

With probability 1
3 , the atom enters an into-the-page analyzer (orientation

I), and in that case it exits the + port with probability 1
4 . Thus the overall

probability of this atom exiting through the + port is

1
3 × 1 + 1

3 ×
1
4 + 1

3 ×
1
4 = 1

2 . (2.2)

A similar analysis shows that if an atom with µz = −µB enters the flipping

analyzer, it exits the + port with probability 1
2 .

You could repeat the analysis for an atom entering with µ(+120◦) = +µB ,

but you don’t need to. Because the three orientations are exactly one-third

of a circle apart, rotational symmetry demands that an atom entering with

µ(+120◦) = +µB behaves exactly as an atom entering with µz = +µB .

In conclusion, an atom entering in any of the six conditions µz = +µB ,

µz = −µB , µ(+120◦) = +µB , µ(+120◦) = −µB , µ(−120◦) = +µB , or

µ(−120◦) = −µB will exit through the + port with probability 1
2 .
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2.5.2 EPR source of atom pairs

Up to now, our atoms have come from an oven. For the next experiments we

need a special source10 that expels two atoms at once, one moving to the left

and the other to the right. For the time being we call this an “EPR” source,

which produces an atomic pair in an “EPR” condition. The letters come

from the names of those who discovered this condition: Albert Einstein,

Boris Podolsky, and Nathan Rosen. After investigating this condition we

will develop a more descriptive name.

The following four experiments investigate the EPR condition:

(1) Each atom encounters a vertical Stern-Gerlach analyzer. The ex-

perimental result: the two atoms exit through opposite ports. To be precise:

with probability 1
2 , the left atom exits + and the right atom exits −, and

with probability 1
2 , the left atom exits − and the right atom exits +, but

it never happens that both atoms exit + or that both atoms exit −.

probability 1
2

probability 1
2

never

never

10The question of how to build this special source need not concern us at the moment: it
is an experimental fact that such sources do exist. One way to make one would start with
a diatomic molecule with zero magnetic moment. Cause the molecule to disintegrate and
eject the two daughter atoms in opposite directions. Because the initial molecule had
zero magnetic moment, the pair of daughter atoms will have the properties of magnetic

moment described. In fact, it’s easier to build a source, not for a pair of atoms, but for

a pair of photons using a process called spontaneous parametric down-conversion.
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You might suppose that this is because for half the pairs, the left atom
is generated with µz = +µB while the right atom is generated with
µz = −µB , while for the other half of the pairs, the left atom is generated
with µz = −µB while the right atom is generated with µz = +µB . This
supposition seems suspicious, because it singles out the z axis as special,
but at this stage in our experimentation it’s possible.

(2) Repeat the above experiment with horizontal Stern-Gerlach analyz-

ers. The experimental result: Exactly the same as in experiment (1)! The

two atoms always exit through opposite ports.

Problem 2.9 on page 83 demonstrates that the results of this experiment
rule out the supposition presented at the bottom of experiment (1).

(3) Repeat the above experiment with the two Stern-Gerlach analyzers

oriented at +120◦, or with both oriented at −120◦, or with both oriented

at 57◦, or for any other angle, as long as both have the same orientation.

The experimental result: Exactly the same for any orientation!

(4) In an attempt to trick the atoms, we set the analyzers to vertical,

then launch the pair of atoms, then (while the atoms are in flight) switch

both analyzers to, say, 42◦, and have the atoms encounter these analyzers

both with switched orientation. The experimental result: Regardless of

what the orientation is, and regardless of when that orientation is set, the

two atoms always exit through opposite ports.

Here is one way to picture this situation: The pair of atoms has a total

magnetic moment of zero. But whenever the projection of a single atom

on any axis is measured, the result must be +µB or −µB , never zero.

The only way to insure that that total magnetic moment, projected on

any axis, sums to zero is the way described above. Do not put too much

weight on this picture: like the “wants to go straight” story of section 2.1.4

(page 51), this is a classical story that happens to give the correct result.

The definitive answer to any question is always experiment, not any picture

or story, however appealing it may be.

These four experiments show that it is impossible to describe the con-

dition of the atoms through anything like “the left atom has µz = +µB ,

the right atom has µz = −µB”. How can we describe the condition of the

pair? This will require further experimentation. For now, we say it has an

EPR condition.
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2.5.3 EPR atom pair encounters flipping Stern-Gerlach

analyzers

A pair of atoms leaves the EPR source, and each atom travels at the same

speed to vertical analyzers located 100 meters away. The left atom exits the

− port, the right atom exits the + port. When the pair is flying from source

to analyzer, it’s not correct to describe it as “the left atom has µz = −µB ,

the right atom has µz = +µB”, but after the atoms leave their analyzers,

then this is a correct description.

Now shift the left analyzer one meter closer to the source. The left atom

encounters its analyzer before the right atom encounters its. Suppose the

left atom exits the − port, while the right atom is still in flight toward its

analyzer. We know that when the right atom eventually does encounter

its vertical analyzer, it will exit the + port. Thus it is correct to describe

the right atom as having “µz = +µB”, even though that atom hasn’t yet

encountered its analyzer.

Replace the right vertical analyzer with a flipping Stern-Gerlach ana-

lyzer. (In the figure below, it is in orientation O, out of the page.) Suppose

the left atom encounters its vertical analyzer and exits the − port. Through

the reasoning of the previous paragraph, the right atom now has µz = +µB .

We know that when such an atom encounters a flipping Stern-Gerlach an-

alyzer, it exits the + port with probability 1
2 .

Similarly, if the left atom encounters its vertical analyzer and exits the

+ port, the right atom now has µz = −µB , and once it arrives at its flipping

analyzer, it will exit the − port with probability 1
2 . Summarizing these two

paragraphs: Regardless of which port the left atom exits, the right atom

will exit the opposite port with probability 1
2 .

Now suppose that the left analyzer were not vertical, but instead in

orientation I, tilted into the page by one-third of a circle. It’s easy to see

that, again, regardless of which port the left atom exits, the right atom will

exit the opposite port with probability 1
2 .
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Finally, suppose that the left analyzer is a flipping analyzer. Once again,

the two atoms will exit from opposite ports with probability 1
2 .

The above analysis supposed that the left analyzer was one meter closer

to the source than the right analyzer, but clearly it also works if the right

analyzer is one meter closer to the source than the left analyzer. Or one

centimeter. One suspects that the same result will hold even if the two

analyzers are exactly equidistant from the source, and experiment bears

out this suspicion.

In summary: Each atom from this EPR source enters a flipping Stern-

Gerlach analyzer.

(A) The atoms exit from opposite ports with probability 1
2 .

(B) If the two analyzers happen to have the same orientation, the atoms

exit from opposite ports.

This is the prediction of quantum mechanics, and experiment confirms this

prediction.

2.5.4 The prediction of local determinism

Suppose you didn’t know anything about quantum mechanics, and you

were told the result that “if the two analyzers have the same orientation,

the atoms exit from opposite ports.” Could you explain it?

I am sure you could. In fact, there are two possible explanations: First,

the communication explanation. The left atom enters its vertical analyzer,

and notices that it’s being pulled toward the + port. It calls up the right

atom with its walkie-talkie and says “If your analyzer has orientation I or O

then you might go either way, but if your analyzer has orientation V you’ve

got to go to the − port!” This is a possible explanation, but it’s not a local

explanation. The two analyzers might be 200 meters apart, or they might

be 200 light-years apart. In either case, the message would have to get from

the left analyzer to the right analyzer instantaneously. The walkie-talkies

would have to use not radio waves, which propagate at the speed of light,

but some sort of not-yet-discovered “insta-rays”. Physicists have always

been skeptical of non-local explanations, and since the advent of relativity

they have grown even more skeptical, so we set this explanation aside. Can

you find a local explanation?
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Again, I am sure you can. Suppose that when the atoms are launched,

they have some sort of characteristic that specifies which exit port they will

take when they arrive at their analyzer. This very reasonable supposition,

called “determinism”, pervades all of classical mechanics. It is similar to

saying “If I stand atop a 131 meter cliff and toss a ball horizontally with

speed 23.3 m/s, I can predict the angle with which the ball strikes the

ground, even though that event will happen far away and long in the fu-

ture.” In the case of the ball, the resulting strike angle is encoded into the

initial position and velocity. In the case of the atoms, it’s not clear how the

exit port will be encoded: perhaps through the orientation of its magnetic

moment, perhaps in some other, more elaborate way. But the method of

encoding is irrelevant: if local determinism holds, then something within

the atom determines which exit port it will take when it reaches its ana-

lyzer.11 I’ll represent this “something” through a code like (+ + −). The

first symbol means that if the atom encounters an analyzer in orientation V,

it will exit through the + port. The second means that if it encounters an

analyzer in orientation O, it will exit through the + port. The third means

that if it encounters an analyzer in orientation I, it will exit through the

− port. The only way to ensure that “if the two analyzers have the same

orientation, the atoms exit from opposite ports” is to assume that when the

two atoms separate from each other within the source, they have opposite

codes. If the left atom has (+−+), the right atom must have (−+−). If

the left atom has (−−−), the right atom must have (+ + +). This is the

local deterministic scheme for explaining fact (B) that “if the two analyzers

have the same orientation, the atoms exit from opposite ports”.

But can this scheme explain fact (A)? Let’s investigate. Consider first

the case mentioned above: the left atom has (+−+) and the right atom has

(−+−). These atoms will encounter analyzers set to any of 32 = 9 possible

pairs of orientations. We list them below, along with with exit ports taken

by the atoms. (For example, the third line of the table considers a left

analyzer in orientation V and a right analyzer in orientation I. The left

atom has code (+ − +), and the first entry in that code determines that

the left atom will exit from the V analyzer through the + port. The right

atom has code (− + −), and the third entry in that code determines that

the right atom will exit from the I analyzer through the − port.)
11But remember that in quantum mechanics determinism does not hold. The infor-
mation can’t be encoded within the three projections of a classical magnetic moment

vector, because at any one instant, the quantum magnetic moment vector has only one
projection.
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left left right right opposite?

port analyzer analyzer port

+ V V − yes

+ V O + no

+ V I − yes

− O V − no

− O O + yes

− O I − no

+ I V − yes

+ I O + no

+ I I − yes

Each of the nine orientation pairs (VV, OI, etc.) are equally likely, five of

the orientation pairs result in atoms exiting from opposite ports, so when

atoms of this type emerge from the source, the probability of these atoms

exiting from opposite ports is 5
9 .

What about a pair of atoms generated with different codes? Suppose the

left atom has (−−+) so the right atom must have (+ +−). If you perform

the analysis again, you will find that the probability of atoms exiting from

opposite ports is once again 5
9 .

Suppose the left atom has (−−−), so the right atom must have (+++).

The probability of the atoms exiting from opposite ports is of course 1.

There are, in fact, just 23 = 8 possible codes:

code probability

for of exiting

left atom opposite

+ + + 1

−+ + 5/9

+−+ 5/9

+ +− 5/9

+−− 5/9

−+− 5/9

−−+ 5/9

−−− 1
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If the source makes left atoms of only type (−−+), then the probability

of atoms exiting from opposite ports is 5
9 . If the source makes left atoms

of only type (+ + +), then the probability of atoms exiting from opposite

ports is 1. If the source makes left atoms of type (− − +) half the time,

and of type (+ + +) half the time, then the probability of atoms exiting

from opposite ports is halfway between 5
9 and 1, namely 7

9 . But no matter

how the source makes atoms, the probability of atoms exiting from opposite

ports must be somewhere between 5
9 and 1.

But experiment and quantum mechanics agree: That probability is ac-

tually 1
2 — and 1

2 is not between 5
9 and 1. No local deterministic scheme

— no matter how clever, or how elaborate, or how baroque — can give the

result 1
2 . There is no “something within the atom that determines which

exit port it will take when it reaches its analyzer”. If the magnetic moment

has a projection on axis V, then it doesn’t have a projection on axis O or

axis I.

There is a reason that Einstein, despite his many attempts, never pro-

duced a scheme that explained quantum mechanics in terms of some more

fundamental, local and deterministic mechanism. It is not that Einstein

wasn’t clever. It is that no such scheme exists.

2.5.5 The upshot

This is a new phenomenon — one totally absent from classical physics — so

it deserves a new name, something more descriptive than “EPR”. Einstein

called it “spooky action at a distance”.12 The phenomenon is spooky all

right, but this phrase misses the central point that the phenomenon involves

“correlations at a distance”, whereas the word “action” suggests “cause-

and-effect at a distance”. Schrödinger coined the term “entanglement” for

this phenomenon and said it was “not. . . one but rather the characteristic

trait of quantum mechanics, the one that enforces its entire departure from

classical lines of thought”.13 The world has followed Schrödinger and the

phenomenon is today called entanglement. We will later investigate en-

tanglement in more detail, but for now we will just call our EPR source a
12Letter from Einstein to Max Born, 3 March 1947, The Born-Einstein Letters (Macmil-

lan, New York, 1971) translated by Irene Born.
13Erwin Schrödinger, “Discussion of probability relations between separated systems”
Mathematical Proceedings of the Cambridge Philosophical Society 31 (October 1935)

555–563.
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“source of entangled atom pairs” and describe the condition of the atom

pair as “entangled”.

The failure of local determinism described above is a special case of

“Bell’s Theorem”, developed by John Bell14 in 1964. The theorem has

by now been tested experimentally numerous times in numerous contexts

(various different angles; various distances between the analyzers; various

sources of entangled pairs; various kinds of particles flying apart — gamma

rays, or optical photons, or ions). In every test, quantum mechanics has

been shown correct and local determinism wrong. What do we gain from

these results?

First, they show that nature does not obey local determinism. To our

minds, local determinism is common sense and any departure from it is

weird. Thus whatever theory of quantum mechanics we eventually develop

will be, to our eyes, weird. This will be a strength, not a defect, in the

theory. The weirdness lies in nature, not in the theory used to describe

nature.

Each of us feels a strong psychological tendency to reject the unfamil-

iar. In 1633, the Holy Office of the Inquisition found Galileo Galilei’s idea

that the Earth orbited the Sun so unfamiliar that they rejected it. The

inquisitors put Galileo on trial and forced him to abjure his position. From

the point of view of nature, the trial was irrelevant, Galileo’s abjuration

was irrelevant: the Earth orbits the Sun whether the Holy Office finds that

fact comforting or not. It is our job as scientists to change our minds to fit

nature; we do not change nature to fit our preconceptions. Don’t make the

inquisitors’ mistake.

Second, the Bell’s theorem result guides not just our calculations about

nature but also our visualizations of nature, and even the very idea of

what it means to “understand” nature. Lord Kelvin15 framed the situation

perfectly in his 1884 Baltimore lectures: “I never satisfy myself until I can
14John Stewart Bell (1928–1990), a Northern Irish physicist, worked principally in accel-

erator design, and his investigation of the foundations of quantum mechanics was some-
thing of a hobby. Concerning tests of his theorem, he remarked that “The reasonable

thing just doesn’t work.” [Jeremy Bernstein, Quantum Profiles (Princeton University

Press, Princeton, NJ, 1991) page 84.]
15William Thomson, the first Baron Kelvin (1824–1907), was an Irish mathematical
physicist and engineer who worked in Scotland. He is best known today for establishing
the thermodynamic temperature scale that bears his name, but he also made fundamen-
tal contributions to electromagnetism. He was knighted for his engineering work on the

first transatlantic telegraph cable.
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make a mechanical model of a thing. If I can make a mechanical model

I can understand it. As long as I cannot make a mechanical model all

the way through I cannot understand, and this is why I cannot get the

electromagnetic theory.”16 If we take this as our meaning of “understand”,

then the experimental tests of Bell’s theorem assure us that we will never be

able to understand quantum mechanics.17 What is to be done about this?

There are only two choices. Either we can give up on understanding, or we

can develop a new and more appropriate meaning for “understanding”.

Max Born18 argued for the first choice: “The ultimate origin of the

difficulty lies in the fact (or philosophical principle) that we are compelled to

use the words of common language when we wish to describe a phenomenon,

not by logical or mathematical analysis, but by a picture appealing to the

imagination. Common language has grown by everyday experience and can

never surpass these limits.”19 Born felt that it was impossible to visualize

or “understand” quantum mechanics: all you could do was grind through

the “mathematical analysis”.

Humans are visual animals, however, and I have found that when we are

told not to visualize, we do so anyway. But we do so in an illicit and uncrit-

ical way. For example, many people visualize an atom passing through an

interferometer as a small, hard, marble, with a definite position, despite the

already-discovered fact that this visualization is untenable. Many people

visualize a photon as a “ball of light” despite the fact that a photon (as

conventionally defined) has a definite energy and hence can never have a

position.

It is possible to develop a visualization and understanding of quantum

mechanics. This can’t be done by building a “mechanical model all the

way through”. It must be done through both analogy and contrast: atoms
16William Thomson, “Baltimore lectures on wave theory and molecular dynamics,” in
Robert Kargon and Peter Achinstein, editors, Kelvin’s Baltimore Lectures and Modern

Theoretical Physics (MIT Press, Cambridge, MA, 1987) page 206.
17The first time I studied quantum mechanics seriously, I wrote in the margin of my
textbook “Good God they do it! But how?” I see now that I was looking for a mechanical

mechanism undergirding quantum mechanics. It doesn’t exist, but it’s very natural for
anyone to want it to exist.
18Max Born (1882–1970) was a German-Jewish theoretical physicist with a particular in-
terest in optics. At the University of Göttingen in 1925 he directed Heisenberg’s research

which resulted in the first formulation of quantum mechanics. His granddaughter, the
British-born Australian actress and singer Olivia Newton-John, is famous for her 1981

hit song “Physical”.
19Max Born, Atomic Physics, sixth edition (Hafner Press, New York, 1957) page 97.
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behave in some ways like small hard marbles, in some ways like classical

waves, and in some ways like a cloud or fog of probability. Atoms don’t

behave exactly like any of these things, but if you keep in mind both the

analogy and its limitations, then you can develop a pretty good visualization

and understanding.

And that brings us back to the name “entanglement”. It’s an important

name for an important phenomenon, but it suggests that the two distant

atoms are connected mechanically, through strings. They aren’t. The two

atoms are correlated — if the left comes out +, the right comes out −, and

vice versa — but they aren’t correlated because of some signal sent back

and forth through either strings or walkie-talkies. Entanglement involves

correlation without causality.

Problems

2.8 An atom walks into an analyzer

Execute the “similar analysis” mentioned in the sentence below equa-

tion (2.2).

2.9 A supposition squashed (essential problem)

If atoms were generated according to the supposition presented below

experiment (1) on page 74, then would would happen when they en-

countered the two horizontal analyzers of experiment (2)?

2.10 A probability found through local determinism

Suppose that the codes postulated on page 78 did exist. Suppose also

that a given source produces the various possible codes with these prob-

abilities:

code probability

for of making

left atom such a pair

+ + + 1/2

+ +− 1/4

+−− 1/8

−−+ 1/8

If this given source were used in the experiment of section 2.5.3 with

distant flipping Stern-Gerlach analyzers, what would be the probability

of the two atoms exiting from opposite ports?
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2.11 A probability found through quantum mechanics

In the test of Bell’s inequality (the experiment of section 2.5.3), what

is the probability given by quantum mechanics that, if the orientation

settings are different, the two atoms exit from opposite ports?

2.6 Quantum cryptography

We’ve seen a lot of new phenomena, and the rest of this book is devoted

to filling out our understanding of these phenomena and applying that

understanding to various circumstances. But first, can we use them for

anything?

We can. The sending of coded messages used to be the province of

armies and spies and giant corporations, but today everyone does it. All

transactions through automatic teller machines are coded. All Internet

commerce is coded. This section describes a particular, highly reliable

encoding scheme and then shows how quantal entanglement may someday

be used to implement this scheme. (Quantum cryptography was used to

securely transmit voting ballots cast in the Geneva canton of Switzerland

during parliamentary elections held 21 October 2007. But it is not today

in regular use anywhere.)

In this section I use names conventional in the field of coded messages

(called cryptography). Alice and Bob wish to exchange private messages,

but they know that Eve is eavesdropping on their communication. How

can they encode their messages to maintain their privacy?

2.6.1 The Vernam cipher

The Vernam cipher or “one-time pad” technique is the only coding scheme

proven to be absolutely unbreakable (if used correctly). It does not rely on

the use of computers — it was invented by Gilbert Vernam in 1919 — but

today it is mostly implemented using computers, so I’ll describe it in that

context.

Data are stored on computer disks through a series of magnetic patches

on the disk that are magnetized either “up” or “down”. An “up” patch

is taken to represent 1, and a “down” patch is taken to represent 0. A

string of seven patches is used to represent a character. For example, by a
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convention called ASCII, the letter “a” is represented through the sequence

1100001 (or, in terms of magnetizations, up, up, down, down, down, down,

up). The letter “W” is represented through the sequence 1010111. Any

computer the world around will represent the message “What?” through

the sequence

1010111 1101000 1100001 1110100 0111111

This sequence is called the “plaintext”.

But Alice doesn’t want a message recognizable by any computer the

world around. She wants to send the message “What?” to Bob in such a

way that Eve will not be able to read the message, even though Eve has

eavesdropped on the message. Here is the scheme invented by Vernam:

Before sending her message, Alice generates a string of random 0s and 1s

just as long as the message she wants to send — in this case, 7 × 5 = 35

bits. She might do this by flipping 35 coins, or by flipping one coin 35

times. I’ve just done that, producing the random number

0100110 0110011 1010110 1001100 1011100

Then Alice gives Bob a copy of that random number – the “key”.

Instead of sending the plaintext, Alice modifies her plaintext into a

coded “ciphertext” using the key. She writes down her plaintext and writes

the key below it, then works through column by column. For each position,

if the key is 0 the plaintext is left unchanged; but if the key is 1 the plaintext

is reversed (from 0 to 1 or vice versa). For the first column, the key is 0, so

Alice doesn’t change the plaintext: the first character of ciphertext is the

same as the first character of plaintext. For the second column, the key is

1, so Alice does change the plaintext: the second character of ciphertext

is the reverse of the second character of plaintext. Alice goes through all

the columns, duplicating the plaintext where the key is 0 and reversing the

plaintext where the key is 1.

plaintext: 1010111 1101000 1100001 1110100 0111111

key: 0100110 0110011 1010110 1001100 1011100

ciphertext: 1110001 1011011 0110111 0111000 1100011

Then, Alice sends out her ciphertext over open communication lines.



86 Quantum cryptography

Now, the ciphertext that Bob (and Eve) receive translates to some mes-

sage through the ASCII convention – in fact, it translates to “q[78c” — but

because the key is random, the ciphertext is just as random. Bob deciphers

Alice’s message by carrying out the encoding process on the ciphertext,

namely, duplicating the ciphertext where the key is 0 and reversing the

ciphertext where the key is 1. The result is the plaintext. Eve does not

know the key, so she cannot produce the plaintext.

The whole scheme relies on the facts that the key is (1) random and

(2) unknown to Eve. The very name “one-time pad” underscores that a

key can only be used once and must then be discarded. If a single key is

used for two messages, then the second key is not “random” — it is instead

perfectly correlated with the first key. There are easy methods to break the

code when a key is reused.

Generating random numbers is not easy, and the Vernam cipher de-

mands keys as long as the messages transmitted. As recently as 1992,

high-quality computer random-number generators were classified by the

U.S. government as munitions, along with tanks and fighter planes, and

their export from the country was prohibited.

And of course Eve must not know the key. So there must be some way

for Alice to get the key to Bob securely. If they have some secure method

for transmitting keys, why don’t they just use that same secure method for

sending their messages?

In common parlance, the word “random” can mean “unimportant, not

worth considering” (as in “Joe made a random comment”). So it may

seem remarkable that a major problem for government, the military, and

commerce is the generation and distribution of randomness, but that is

indeed the case.

2.6.2 Quantum mechanics to the rescue

Since quantum mechanics involves randomness, it seems uniquely posi-

tioned to solve this problem. Here’s one scheme.

Alice and Bob set up a source of entangled atoms halfway between their

two homes. Both of them erect vertical Stern-Gerlach analyzers to detect

the atoms. If Alice’s atom comes out +, she will interpret it as a 1, if −,

a 0. Bob interprets his atoms in the opposite sense. Since the entangled
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atoms always exit from opposite ports, Alice and Bob end up with the

same random number, which they use as a key for their Vernam-cipher

communications over conventional telephone or computer lines.

This scheme will indeed produce and distribute copious, high-quality

random numbers. But Eve can get at those same numbers through the

following trick: She cuts open the atom pipe leading from the entangled

source to Alice’s home, and inserts a vertical interferometer.20 She watches

the atoms pass through her interferometer. If the atom takes path a, Eve

knows that when Alice receives that same atom, it will exit from Eve’s

+ port. If the atom takes path b, the opposite holds. Eve gets the key, Eve

breaks the code.

It’s worth looking at this eavesdropping in just a bit more detail. When

the two atoms depart from their source, they are entangled. It is not true

that, say, Alice’s atom has µz = +µB while Bob’s atom has µz = −µB
— the pair of atoms is in the condition we’ve called “entangled”, but the

individual atoms themselves are not in any condition. However, after Eve

sees the atom taking path a of her interferometer, then the two atoms are

no longer entangled — now it is true that Alice’s atom has the condition

µz = +µB while Bob’s atom has the condition µz = −µB . The key received

by Alice and Bob will be random whether or not Eve is listening in. To

test for evesdropping, Alice and Bob must examine it in some other way.

Replace Alice and Bob’s vertical analyzers with flipping Stern-Gerlach

analyzers. After Alice receives her random sequence of pluses and minuses,

encountering her random sequence of analyzer orientations, she sends both

these sequences to Bob over an open communication line. (Eve will in-

tercept this information but it won’t do her any good, because she won’t

know the corresponding information for Bob.) Bob now knows both the

results at his analyzer and the results at Alice’s analyzer, so he can test

to see whether the atom pairs were entangled. If he finds that they were,

then Eve is not listening in. If he finds that they were not entangled, then

he knows for certain that Eve is listening in, and they must not use their

compromised key.

Is there some other way for Eve to tap the line? No! If the atom pairs

pass the test for entanglement, then no one can know the values of their
20Inspired by James Bond, I always picture Eve as exotic beauty in a little black dress

slinking to the back of an eastern European café to tap the diplomatic cable which
conveniently runs there. But in point of fact Eve would be a computer.
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µz projections because those projections don’t exist! We have guaranteed

that no one has intercepted the key by the interferometer method, or by

any other method whatsoever.

Once Alice has tested Bell’s theorem, she and Bob still have a lot of

work to do. For a key they must use only those random numbers produced

when their two analyzers happen to have the same orientations. There are

detailed protocols specifying how Alice and Bob must exchange information

about their analyzer orientations, in such a way that Eve can’t uncover

them. I won’t describe these protocols because while they tell you how

clever people are, they tell you nothing about how nature behaves. But

you should take away that entanglement is not merely a phenomenon of

nature: it is also a natural resource.

2.7 What is a qubit?

We’ve devoted an entire chapter to the magnetic moment of a silver atom.

Perhaps you find this inappropriate: do you really care so much about

silver atoms? Yes you do, because the phenomena and principles we’ve

established concerning the magnetic moment of a silver atom apply to a

host of other systems: the polarization of a light photon, the hybridization

of a benzene molecule, the position of the nitrogen atom within an ammonia

molecule, the neutral kaon, and more. Such systems are called “two-state

systems” or “spin- 1
2 systems” or “qubit systems”. The ideas we establish

concerning the magnetic moment of a silver atom apply equally well to all

these systems.

After developing these ideas in the next chapter, we will (in chapter 4,

“The Quantum Mechanics of Position”) generalize them to continuum sys-

tems like the position of an electron.

Problem

2.12 Questions (recommended problem)

Update your list of quantum mechanics questions that you started at

problem 1.17 on page 46. Write down new questions and, if you have un-

covered answers to any of your old questions, write them down briefly.



Chapter 3

Forging Mathematical Tools

When you walked into your introductory classical mechanics course, you

were already familiar with the phenomena of introductory classical mechan-

ics: flying balls, spinning wheels, colliding billiard balls. Your introductory

mechanics textbook didn’t need to introduce these things to you, but in-

stead jumped right into describing these phenomena mathematically and

explaining them in terms of more general principles.

The last chapter of this book made you familiar with the phenomena

of quantum mechanics: quantization, interference, and entanglement —

at least, insofar as these phenomena are manifest in the behavior of the

magnetic moment of a silver atom. You are now, with respect to quan-

tum mechanics, at the same level that you were, with respect to classical

mechanics, when you walked into your introductory mechanics course. It

is now our job to describe these quantal phenomena mathematically, to

explain them in terms of more general principles, and (eventually) to inves-

tigate situations more complex than the magnetic moment of one or two

silver atoms.

3.1 What is a quantal state?

We’ve been talking about the state of the silver atom’s magnetic moment

by saying things like “the projection of the magnetic moment on the z axis

is µz = −µB” or “µx = +µB” or “µθ = −µB”. This notation is clumsy.

First of all, it requires you to write down the same old µs time and time

again. Second, the most important thing is the axis (z or x or θ), and the

symbol for the axis is also the smallest and easiest to overlook.

89
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P.A.M. Dirac1 invented a notation that overcomes these faults. He

looked at descriptions like

µz = −µB or µx = +µB or µθ = −µB

and noted that the only difference from one expression to the other was

the axis subscript and the sign in front of µB . Since the only thing that

distinguishes one expression from another is (z,−), or (x,+), or (θ,−),

Dirac thought, these should be the only things we need to write down. He

denoted these three states as

|z−〉 or |x+〉 or |θ−〉.

The placeholders | 〉 are simply ornaments to remind us that we’re talking

about quantal states, just as the arrow atop ~r is simply an ornament to

remind us that we’re talking about a vector. States expressed using this

notation are sometimes called “kets”.

Simply establishing a notation doesn’t tell us much. Just as in classical

mechanics, we say we know a state when we know all the information needed

to describe the system now and to predict its future. In our universe the

classical time evolution law is

~F = m
d2~r

dt2

and so the state is specified by giving both a position ~r and a velocity ~v. If

nature had instead provided the time evolution law

~F = m
d3~r

dt3

then the state would have been specified by giving a position ~r, a velocity

~v, and an acceleration ~a. The specification of state is dictated by nature,

not by humanity, so we can’t know how to specify a state until we know the

laws of physics governing that state. Since we don’t yet know the laws of

quantal physics, we can’t yet know exactly how to specify a quantal state.

Classical intuition makes us suppose that, to specify the magnetic mo-

ment of a silver atom, we need to specify all three components µz, µx, and

µy. We have already seen that nature precludes such a specification: if the

magnetic moment has a value for µz, then it doesn’t have a value for µx,
1The Englishman Paul Adrien Maurice Dirac (1902–1984) in 1928 formulated a rela-

tivistically correct quantum mechanical equation that turns out to describe the electron.

In connection with this so-called Dirac equation, he predicted the existence of antimatter.
Dirac was painfully shy and notoriously cryptic.
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and it’s absurd to demand a specification for something that doesn’t ex-

ist. As we learn more and more quantum physics, we will learn better and

better how to specify states. There will be surprises. But always keep in

mind that (just as in classical mechanics) it is experiment, not philosophy

or meditation, and certainly not common sense, that tells us how to specify

states.

3.2 Amplitude

a

b
input

|z+〉 output

|z−〉

An atom in state |z+〉 ambivates through the apparatus above. We have

already seen that, when the atom ambivates in darkness,

probability to go from input to output 6=
probability to go from input to output via path a

+ probability to go from input to output via path b.

(3.1)

On the other hand, it makes sense to associate some sort of “influence

to go from input to output via path a” with the path through a and a

corresponding “influence to go from input to output via path b” with the

path through b. This postulated influence is called “probability amplitude”

or just “amplitude”.2 Whatever amplitude is, its desired property is that

amplitude to go from input to output =

amplitude to go from input to output via path a

+ amplitude to go from input to output via path b.

(3.2)

For the moment, the very existence of amplitude is nothing but a hopeful

surmise. Scientists cannot now and indeed never will be able to prove that

the concept of amplitude applies to all situations. That’s because new

situations are being investigated every day, and perhaps tomorrow a new
2The name “amplitude” is a poor one, because it is also used for the maximum value of

a sinusoidal signal — in the function A sin(ωt), the symbol A represents the amplitude —

and this sinusoidal signal “amplitude” has nothing to do with the quantal “amplitude”.
One of my students correctly suggested that a better name for quantal amplitude would
be “proclivity”. But it’s too late now to change the word.
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situation will be discovered that cannot be described in terms of amplitudes.

But as of today, that hasn’t happened.

The role of amplitude, whatever it may prove to be, is to calculate

probabilities. We establish three desirable rules:

(1) From amplitude to probability. For every possible action there is an

associated amplitude, such that

probability for the action = |amplitude for the action|2.

(2) Actions in series. If an action takes place through several successive

stages, the amplitude for that action is the product of the amplitudes

for each stage.

(3) Actions in parallel. If an action could take place in several possible

ways, the amplitude for that action is the sum of the amplitudes for

each possibility.

The first rule is a simple way to make sure that probabilities are al-

ways positive. The second rule is a natural generalization of the rule for

probabilities in series — that if an action happens through several stages,

the probability for the action as a whole is the product of the probabilities

for each stage. And the third rule simply restates the “desired property”

presented in equation (3.2).

We apply these rules to various situations that we’ve already encoun-

tered, beginning with the interference experiment sketched above. Recall

the probabilities already established (first column in table):

probability |amplitude| amplitude

go from input to output 0 0 0

go from input to output via path a 1
4

1
2 + 1

2

go from input to output via path b 1
4

1
2 − 1

2

If rule (1) is to hold, then the amplitude to go from input to output must

also be 0, while the amplitude to go via a path must have magnitude 1
2

(second column in table). According to rule (3), the two amplitudes to

go via a and via b must sum to zero, so they cannot both be represented

by positive numbers. Whatever mathematical entity is used to represent

amplitude, it must enable two such entities, each with non-zero magnitude,

to sum to zero. There are many such entities: real numbers, complex
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numbers, hypercomplex numbers, and vectors in three dimensions are all

possibilities. For this particular interference experiment, it suffices to assign

real numbers to amplitudes: the amplitude to go via path a is + 1
2 , and the

amplitude to go via path b is − 1
2 . (Third column in table. The negative

sign could have been assigned to path a rather than to path b: this choice is

merely conventional.) For other interference experiments complex numbers

are required. It turns out that, for all situations yet encountered, one can

represent amplitude mathematically as a complex number. Once again,

this reflects the results of experiment, not of philosophy or meditation.

The second situation we’ll consider is a Stern-Gerlach analyzer.

z

θ

|z+〉
|θ+〉

|θ−〉

The amplitude that an atom entering the θ-analyzer in state |z+〉 exits in

state |θ+〉 is called3 〈θ+|z+〉. That phrase is a real mouthful, so the symbol

〈θ+|z+〉 is pronounced “the amplitude that |z+〉 is in |θ+〉”, even though

this briefer pronunciation leaves out the important role of the analyzer.4

From rule (1), we know that

|〈θ+|z+〉|2 = cos2(θ/2) (3.3)

|〈θ−|z+〉|2 = sin2(θ/2). (3.4)

You can also use rule (1), in connection with the experiments described in
3The states appear in the symbol in the opposite sequence from their appearance in

the description.
4The ultimate source of such problems is that the English language was invented by

people who did not understand quantum mechanics, hence they never produced concise,

accurate phrases to describe quantal phenomena. In the same way, the ancient phrase
“search the four corners of the Earth” is still colorful and practical, and is used today

even by those who know that the Earth doesn’t have four corners.
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problem 2.1, “Exit probabilities” (on page 57) to determine that

|〈z+|θ+〉|2 = cos2(θ/2)

|〈z−|θ+〉|2 = sin2(θ/2)

|〈θ+|z−〉|2 = sin2(θ/2)

|〈θ−|z−〉|2 = cos2(θ/2)

|〈z+|θ−〉|2 = sin2(θ/2)

|〈z−|θ−〉|2 = cos2(θ/2).

Clearly analyzer experiments like these find the magnitude of an am-

plitude. No analyzer experiment can find the phase of an amplitude.5 To

determine phases, we must perform interference experiments.

So the third situation is an interference experiment.

a

b

input

|z+〉

z

θ

output

|z−〉

Rule (2), actions in series, tells us that the amplitude to go from |z+〉 to

|z−〉 via path a is the product of the amplitude to go from |z+〉 to |θ+〉
times the amplitude to go from |θ+〉 to |z−〉:

amplitude to go via path a = 〈z−|θ+〉〈θ+|z+〉.

Similarly

amplitude to go via path b = 〈z−|θ−〉〈θ−|z+〉.

And then rule (3), actions in parallel, tells us that the amplitude to go from

|z+〉 to |z−〉 is the sum of the amplitude to go via path a and the amplitude

to go via path b. In other words

〈z−|z+〉 = 〈z−|θ+〉〈θ+|z+〉+ 〈z−|θ−〉〈θ−|z+〉. (3.5)

5The terms phase and magnitude are explained in appendix C, “Complex Arithmetic”.
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We know the magnitude of each of these amplitudes from analyzer ex-

periments:

amplitude magnitude

〈z−|z+〉 0

〈z−|θ+〉 | sin(θ/2)|
〈θ+|z+〉 | cos(θ/2)|
〈z−|θ−〉 | cos(θ/2)|
〈θ−|z+〉 | sin(θ/2)|

The task now is to assign phases to these magnitudes in such a way that

equation (3.5) is satisfied. In doing so we are faced with an embarrassment

of riches: there are many consistent ways to make this assignment. Here

are two commonly used conventions:

amplitude convention I convention II

〈z−|z+〉 0 0

〈z−|θ+〉 sin(θ/2) i sin(θ/2)

〈θ+|z+〉 cos(θ/2) cos(θ/2)

〈z−|θ−〉 cos(θ/2) cos(θ/2)

〈θ−|z+〉 − sin(θ/2) −i sin(θ/2)

There are two things to notice about these amplitude assignments.

First, one normally assigns values to physical quantities by experiment, or

by calculation, but not “by convention”. Second, both of these conventions

show unexpected behaviors: Because the angle 0◦ is the same as the angle

360◦, one would expect that 〈0◦+|z+〉 would equal 〈360◦+|z+〉, whereas

in fact the first amplitude is +1 and the second is −1. Because the state

|180◦−〉 (that is, |θ−〉 with θ = 180◦) is the same as the state |z+〉, one

would expect that 〈180◦−|z+〉 = 1, whereas in fact 〈180◦−|z+〉 is either

−1 or −i, depending on convention. These two observations underscore

the fact that amplitude is a mathematical tool that enables us to calculate

physically observable quantities, like probabilities. It is not itself a physical

entity. No experiment measures amplitude. Amplitude is not “out there,

physically present in space” in the way that, say, a nitrogen molecule is.

A good analogy is that an amplitude convention is like a language. Any

language is a human convention: there is no intrinsic connection between a

physical horse and the English word “horse”, or the German word “pferd”,
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or the Swahili word “farasi”. The fact that language is pure human con-

vention, and that there are multiple conventions for the name of a horse,

doesn’t mean that language is unimportant: on the contrary language is

an immensely powerful tool. And the fact that language is pure human

convention doesn’t mean that you can’t develop intuition about language:

on the contrary if you know the meaning of “arachnid” and the meaning

of “phobia”, then your intuition for English tells you that “arachnopho-

bia” means fear of spiders. Exactly the same is true for amplitude: it is a

powerful tool, and with practice you can develop intuition for it.

When I introduced the phenomenon of quantal interference on page 62,

I said that there was no word or phrase in the English language that ac-

curately represents what’s going on: It’s flat-out wrong to say “the atom

takes path a” and it’s flat-out wrong to say “the atom takes path b”. It

gives a wrong impression to say “the atom takes no path” or “the atom

takes both paths”. I introduced the phrase “the atom ambivates through

the two paths of the interferometer”. Now we have a technically correct

way of describing the phenomenon: “the atom has an amplitude to take

path a and an amplitude to take path b”.

Here’s another warning about language: If an atom in state |ψ〉 enters

a vertical analyzer, the amplitude for it to exit from the + port is 〈z+|ψ〉.
(And of course the amplitude for it exit from the − port is 〈z−|ψ〉.) This is

often stated “If the atom is in state |ψ〉, the amplitude of it being in state

|z+〉 is 〈z+|ψ〉.” This is an acceptable shorthand for the full explanation,

which requires thinking about an analyzer experiment, even though the

shorthand never mentions the analyzer. But never say “If the atom is in

state |ψ〉, the probability of it being in state |z+〉 is |〈z+|ψ〉|2.” This gives

the distinct and incorrect impression that before entering the analyzer, the

atom was either in state |z+〉 or in state |z−〉, and you just didn’t know

which it was. Instead, say “If an atom in state |ψ〉 enters a vertical analyzer,

the probability of exiting from the + port in state |z+〉 is |〈z+|ψ〉|2.”
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3.2.1 Sample Problem: Two paths

Find an equation similar to equation (3.5) representing the amplitude to

start in state |ψ〉 at input, ambivate through a vertical interferometer, and

end in state |φ〉 at output.

1a

1b

|ψ〉
input

|φ〉
output

Solution: Because of rule (2), actions in series, the amplitude for the

atom to take the top path is the product

〈φ|z+〉〈z+|ψ〉.

Similarly the amplitude for it to take the bottom path is

〈φ|z−〉〈z−|ψ〉.

Because of rule (3), actions in parallel, the amplitude for it to ambivate

through both paths is the sum of these two, and we conclude that

〈φ|ψ〉 = 〈φ|z+〉〈z+|ψ〉+ 〈φ|z−〉〈z−|ψ〉. (3.6)

3.2.2 Sample Problem: Three paths

Stretch apart a vertical interferometer, so that the recombining rear end

is far from the splitting front end, and insert a θ interferometer into the

bottom path. Now there are three paths from input to output. Find an

equation similar to equation (3.5) representing the amplitude to start in

state |ψ〉 at input and end in state |φ〉 at output.
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1a

1b

2a

2b

|ψ〉
input

|φ〉
output

θ

Solution:

〈φ|ψ〉 = 〈φ|z+〉〈z+|ψ〉
+ 〈φ|z−〉〈z−|θ+〉〈θ+|z−〉〈z−|ψ〉 (3.7)

+ 〈φ|z−〉〈z−|θ−〉〈θ−|z−〉〈z−|ψ〉

Problems

3.1 Talking about interference

An atom in state |ψ〉 ambivates through a vertical analyzer. We say,

appropriately, that “the atom has an amplitude to take the top path

and an amplitude to take the bottom path”. For the benefit of students

in next year’s offering of this class (see page 20), find expressions for

those two amplitudes and describe, in ten sentences or fewer, why it is

not appropriate to say “the atom has probability |〈z+|ψ〉|2 to take the

top path and probability |〈z−|ψ〉|2 to take the bottom path”.

3.2 Other conventions

Two conventions for assigning amplitudes are given in the table on

page 95. Show that if 〈z−|θ+〉 and 〈z−|θ−〉 are multiplied by phase

factor eiα, and if 〈z+|θ+〉 and 〈z+|θ−〉 are multiplied by phase factor

eiβ (where α and β are both real), then the resulting amplitudes are

just as good as the original (for either convention I or convention II).
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3.3 Peculiarities of amplitude

Page 95 pointed out some of the peculiarities of amplitude; this problem

points out another. Since the angle θ is the same as the angle 360◦+ θ,

one would expect that 〈θ+|z+〉 would equal 〈(360◦ + θ)+|z+〉. Show,

using either of the conventions given in the table on page 95, that this

expectation is false. What is instead correct?

3.3 Reversal-conjugation relation

The “complex conjugate” of any complex number is the same number but

with every “i” changed to “−i”: if x and y are real numbers, then

z = x+ iy has complex conjugate z∗ = x− iy. (3.8)

A useful theorem says that the amplitude to go from state |ψ〉 to state

|φ〉 and the amplitude to go in the opposite direction are related through

complex conjugation:

〈φ|ψ〉 = 〈ψ|φ〉∗. (3.9)

The proof below works for states of the magnetic moment of a silver atom

— the kind of states we’ve worked with so far — but in fact the result holds

for any quantal system.

The proof relies on three facts: First, the probability for one state to

be analyzed into another depends only on the magnitude of the angle be-

tween the incoming magnetic moment and the analyzer, and not on the

sense of that angle. (An atom in state |z+〉 has the same probability of

leaving the + port of an analyzer whether it is rotated 17◦ clockwise or 17◦

counterclockwise.) Thus

|〈φ|ψ〉|2 = |〈ψ|φ〉|2. (3.10)

Second, an atom exits an interferometer in the same state in which it en-

tered, so

〈φ|ψ〉 = 〈φ|θ+〉〈θ+|ψ〉+ 〈φ|θ−〉〈θ−|ψ〉. (3.11)

Third, an atom entering an analyzer comes out somewhere, so

1 = |〈θ+|ψ〉|2 + |〈θ−|ψ〉|2. (3.12)
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The proof also relies on a mathematical result called “the triangle in-

equality for complex numbers”: If a and b are real numbers with a+ b = 1,

and in addition eiαa + eiβb = 1, with α and β real, then α = β = 0. You

can find very general, very abstract, proofs of the triangle inequality, but

the complex plane sketch below encapsulates the idea:

real

imaginary

a b 1

eiαa eiβb

From the first fact (3.10), the two complex numbers 〈φ|ψ〉 and 〈ψ|φ〉
have the same magnitude, so they differ only in phase. Write this statement

as

〈φ|ψ〉 = eiδ〈ψ|φ〉∗ (3.13)

where the phase δ is a real number that might depend on the states |φ〉 and

|ψ〉. Apply this general result first to the particular state |φ〉 = |θ+〉:
〈θ+|ψ〉 = eiδ+〈ψ|θ+〉∗, (3.14)

and then to the particular state |φ〉 = |θ−〉:
〈θ−|ψ〉 = eiδ−〈ψ|θ−〉∗, (3.15)

where the two real numbers δ+ and δ− might be different. Our objective is

to prove that δ+ = δ− = 0.

Apply the second fact (3.11) with |φ〉 = |ψ〉, giving

1 = 〈ψ|θ+〉〈θ+|ψ〉+ 〈ψ|θ−〉〈θ−|ψ〉
= eiδ+〈ψ|θ+〉〈ψ|θ+〉∗ + eiδ−〈ψ|θ−〉〈ψ|θ−〉∗

= eiδ+ |〈ψ|θ+〉|2 + eiδ− |〈ψ|θ−〉|2

= eiδ+ |〈θ+|ψ〉|2 + eiδ− |〈θ−|ψ〉|2. (3.16)

Compare this result to the third fact (3.12)

1 = |〈θ+|ψ〉|2 + |〈θ−|ψ〉|2 (3.17)

and use the triangle inequality with a = |〈θ+|ψ〉|2 and b = |〈θ−|ψ〉|2. The

two phases δ+ and δ− must vanish, so the “reversal-conjugation relation”

is proven.



3.4. Establishing a phase convention 101

3.4 Establishing a phase convention

Although there are multiple alternative phase conventions for amplitudes

(see problem 3.2 on page 98), we will from now on use only phase conven-

tion I from page 95:

〈z+|θ+〉 = cos(θ/2)

〈z−|θ+〉 = sin(θ/2)

〈z+|θ−〉 = − sin(θ/2)

〈z−|θ−〉 = cos(θ/2)

(3.18)

In particular, for θ = 90◦ we have

〈z+|x+〉 = 1/
√

2

〈z−|x+〉 = 1/
√

2

〈z+|x−〉 = −1/
√

2

〈z−|x−〉 = 1/
√

2

(3.19)

This convention has a desirable special case for θ = 0◦, namely

〈z+|θ+〉 = 1

〈z−|θ+〉 = 0

〈z+|θ−〉 = 0

〈z−|θ−〉 = 1

(3.20)

but an unexpected special case for θ = 360◦, namely

〈z+|θ+〉 = −1

〈z−|θ+〉 = 0

〈z+|θ−〉 = 0

〈z−|θ−〉 = −1

(3.21)

This is perplexing, given that the angle θ = 0◦ is the same as the angle θ =

360◦! Any convention will have similar perplexing cases. Such perplexities

underscore the fact that amplitudes are important mathematical tools used

to calculate probabilities, but are not “physically real”.

Given these amplitudes, we can use the interference result (3.6) to cal-

culate any amplitude of interest:

〈φ|ψ〉 = 〈φ|z+〉〈z+|ψ〉+ 〈φ|z−〉〈z−|ψ〉
= 〈z+|φ〉∗〈z+|ψ〉+ 〈z−|φ〉∗〈z−|ψ〉 (3.22)

where in the last line we have used the reversal-conjugation relation (3.9).
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Problems

3.4 Other conventions, other peculiarities

Write what this section would have been had we adopted convention II

rather than convention I from page 95. In addition, evaluate the four

amplitudes of equation (3.18) for θ = +180◦ and θ = −180◦.

3.5 Finding amplitudes (recommended problem)

Using the interference idea embodied in equation (3.22), calculate the

amplitudes 〈θ+|54◦+〉 and 〈θ−|54◦+〉 as a function of θ. Do these

amplitudes have the values you expect for θ = 54◦? For θ = 234◦?

Plot 〈θ+|54◦+〉 for θ from 0◦ to 360◦. Compare the result for θ = 0◦

and θ = 360◦.

3.6 Rotations

Use the interference idea embodied in equation (3.22) to show that

〈x+|θ+〉 = 1√
2
[cos(θ/2) + sin(θ/2)]

〈x−|θ+〉 = − 1√
2
[cos(θ/2)− sin(θ/2)]

〈x+|θ−〉 = 1√
2
[cos(θ/2)− sin(θ/2)]

〈x−|θ−〉 = 1√
2
[cos(θ/2) + sin(θ/2)]

(3.23)

If and only if you enjoy trigonometric identities, you should then show

that these results can be written equivalently as

〈x+|θ+〉 = cos((θ − 90◦)/2)

〈x−|θ+〉 = sin((θ − 90◦)/2)

〈x+|θ−〉 = − sin((θ − 90◦)/2)

〈x−|θ−〉 = cos((θ − 90◦)/2)

(3.24)

This makes perfect geometric sense, as the angle relative to the x axis

is 90◦ less than the angle relative to the z axis:

  

 x

z

θ
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3.5 How can I specify a quantal state?

We introduced the Dirac notation for quantal states on page 90, but haven’t

yet fleshed out that notation by specifying a state mathematically. Start

with an analogy:

3.5.1 How can I specify a position vector?

We are so used to writing down the position vector ~r that we rarely stop

to ask ourselves what it means. But the plain fact is that whenever we

measure a length (say, with a meter stick) we find not a vector, but a single

number! Experiments measure never the vector ~r but always a scalar —

the dot product between ~r and some other vector, call it ~s for “some other”.

If we know the dot product between ~r and every vector ~s, then we know

everything there is to know about ~r. Does this mean that to specify ~r, we

must keep a list of all possible dot products ~s · ~r ? Of course not. . . such a

list would be infinitely long!

You know that if you write ~r in terms of an orthonormal basis {̂i, ĵ, k̂},
namely

~r = rxî+ ry ĵ + rz k̂ (3.25)

where rx = î · ~r, ry = ĵ · ~r, and rz = k̂ · ~r, then you’ve specified the vector.

Why? Because if you know the triplet (rx, ry, rz) and the triplet (sx, sy, sz),

then you can easily find the desired dot product

~s · ~r =
(
sx sy sz

) rx
ry
rz

 = sxrx + syry + szrz. (3.26)

It’s a lot more compact to specify the vector through three dot products

— namely î · ~r, ĵ · ~r, and k̂ · ~r — from which you can readily calculate an

infinite number of desired dot products, than it is to list all infinity dot

products themselves!

3.5.2 How can I specify a quantal state?

Like the position vector ~r, the quantal state |ψ〉 cannot by itself be mea-

sured. But if we determine (through some combination of analyzer exper-

iments, interference experiments, and convention) the amplitude 〈σ|ψ〉 for
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every possible state |σ〉, then we know everything there is to know about

|ψ〉. Is there some compact way of specifying the state, or do we have to

keep an infinitely long list of all these amplitudes?

This nut is cracked through the interference experiment result

〈σ|ψ〉 = 〈σ|θ+〉〈θ+|ψ〉+ 〈σ|θ−〉〈θ−|ψ〉, (3.27)

which simply says, in symbols, that the atom exits an interferometer in the

same state in which it entered (see equation 3.11). It gets hard to keep

track of all these symbols, so I’ll introduce the names

〈θ+|ψ〉 = ψ+

〈θ−|ψ〉 = ψ−

and

〈θ+|σ〉 = σ+

〈θ−|σ〉 = σ−.

From the reversal-conjugation relation, this means

〈σ|θ+〉 = σ∗+

〈σ|θ−〉 = σ∗−.

In terms of these symbols, the interference result (3.27) is

〈σ|ψ〉 = σ∗+ψ+ + σ∗−ψ− =
(
σ∗+ σ∗−

)(ψ+

ψ−

)
. (3.28)

And this is our shortcut! By keeping track of only two amplitudes, ψ+ and

ψ−, for each state, we can readily calculate any amplitude desired. We

don’t have to keep an infinitely long list of amplitudes.

This dot product result for computing amplitude is so useful and so

convenient that sometimes people say the amplitude is a dot product. No.

The amplitude reflects analyzer experiments, plus interference experiments,

plus convention. The dot product is a powerful mathematical tool for com-

puting amplitudes. (A parallel situation: There are many ways to find the

latitude and longitude coordinates for a point on the Earth’s surface, but

the easiest is to use a GPS device. Some people are so enamored of this

ease that they call the latitude and longitude the “GPS coordinates”. But

in fact the coordinates were established long before the Global Positioning

System was built.)
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3.5.3 What is a basis?

For vectors in three-dimensional space, an orthonormal basis such as

{̂i, ĵ, k̂} is a set of three vectors of unit magnitude perpendicular to each

other. As we’ve seen, the importance of a basis is that every vector ~r can

be represented as a sum over these basis vectors,

~r = rxî+ ry ĵ + rz k̂,

and hence any vector ~r can be conveniently represented through the triplet rx
ry
rz

 =

 î · ~r
ĵ · ~r
k̂ · ~r

 .

For quantal states, we’ve seen that a set of two states such as

{|θ+〉, |θ−〉} plays a similar role, so it too is called a basis. For the magnetic

moment of a silver atom, two states |a〉 and |b〉 constitute a basis when-

ever 〈a|b〉 = 0, and the analyzer experiment of section 2.1.3 shows that

the states |θ+〉 and |θ−〉 certainly satisfy this requirement. In the basis

{|a〉, |b〉} an arbitrary state |ψ〉 can be conveniently represented through

the pair of amplitudes (
〈a|ψ〉
〈b|ψ〉

)
.

3.5.4 Hilbert space

We have learned to express a physical state as a mathematical entity —

namely, using the {|a〉, |b〉} basis, the state |ψ〉 is represented as a column

matrix of amplitudes (
〈a|ψ〉
〈b|ψ〉

)
.

This mathematical entity is called a “state vector in Hilbert6 space”.

For example, in the basis {|z+〉, |z−〉} the state |θ+〉 is represented by(
〈z+|θ+〉
〈z−|θ+〉

)
=

(
cos(θ/2)

sin(θ/2)

)
. (3.29)

6The German mathematician David Hilbert (1862–1943) made contributions to func-

tional analysis, geometry, mathematical physics, and other areas. He formalized and
extended the concept of a vector space. Hilbert and Albert Einstein raced to uncover

the field equations of general relativity, but Einstein beat Hilbert by a matter of weeks.
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Whereas (in light of equation 3.23) in the basis {|x+〉, |x−〉} that same

state |θ+〉 is represented by the different column matrix(
〈x+|θ+〉
〈x−|θ+〉

)
=

(
1√
2
[cos(θ/2) + sin(θ/2)]

− 1√
2
[cos(θ/2)− sin(θ/2)]

)
. (3.30)

Write down the interference experiment result twice

〈a|ψ〉 = 〈a|z+〉〈z+|ψ〉+ 〈a|z−〉〈z−|ψ〉
〈b|ψ〉 = 〈b|z+〉〈z+|ψ〉+ 〈b|z−〉〈z−|ψ〉

and then write these two equations as one using column matrix notation(
〈a|ψ〉
〈b|ψ〉

)
=

(
〈a|z+〉
〈b|z+〉

)
〈z+|ψ〉+

(
〈a|z−〉
〈b|z−〉

)
〈z−|ψ〉.

Notice the column matrix representations of states |ψ〉, |z+〉, and |z−〉, and

write this equation as

|ψ〉 = |z+〉〈z+|ψ〉+ |z−〉〈z−|ψ〉. (3.31)

And now we have a new thing under the sun. We never talk about adding

together two classical states, nor multiplying them by numbers, but this

equation gives us the meaning of such state addition in quantum mechan-

ics. This is a new mathematical tool, it deserves a new name, and that

name is “superposition”. Superposition is the mathematical reflection of

the physical phenomenon of interference, as in the sentence: “When an

atom ambivates through an interferometer, its state is a superposition of

the state of an atom taking path a and the state of an atom taking path b.”

Superposition is not familiar from daily life or from classical mechanics,

but there is a story7 that increases understanding: “A medieval European

traveler returns home from a journey to India, and describes a rhinoceros

as a sort of cross between a dragon and a unicorn.” In this story the

rhinoceros, an animal that is not familiar but that does exist, is described

as intermediate (a “sort of cross”) between two fantasy animals (the dragon

and the unicorn) that are familiar (to the medieval European) but that do

not exist.

Similarly, an atom in state |z+〉 ambivates through both paths of a

horizontal interferometer. This action is not familiar but does happen, and

it is characterized as a superposition (a “sort of cross”) between two actions
7Invented by John D. Roberts, but first published in Robert T. Morrison and Robert

N. Boyd, Organic Chemistry, second edition (Allyn & Bacon, Boston, 1966) page 318.
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(“taking path a” and “taking path b”) that are familiar (to all of us steeped

in the classical approximation) but that do not happen.

In principle, any calculation performed using the Hilbert space rep-

resentation of states could be performed by considering suitable, cleverly

designed analyzer and interference experiments. But it’s a lot easier to use

the abstract Hilbert space machinery. (Similarly, any result in electrostatics

could be found using Coulomb’s Law, but it’s a lot easier to use the ab-

stract electric field and electric potential. Any calculation involving vectors

could be performed graphically, but it’s a lot easier to use abstract compo-

nents. Any addition or subtraction of whole numbers could be performed

by counting out marbles, but it’s a lot easier to use abstract mathematical

tools like carrying and borrowing.)

3.5.5 Peculiarities of state vectors

Because state vectors are built from amplitudes, and amplitudes have pe-

culiarities (see pages 95 and 101), it is natural that state vectors have

similar peculiarities. For example, since the angle θ is the same as the an-

gle θ + 360◦, I would expect that the state vector |θ+〉 would be the same

as the state vector |(θ + 360◦)+〉.

But in fact, in the {|z+〉, |z−〉} basis, the state |θ+〉 is represented by(
〈z+|θ+〉
〈z−|θ+〉

)
=

(
cos(θ/2)

sin(θ/2)

)
, (3.32)

so the state |(θ + 360◦)+〉 is represented by(
〈z+|(θ + 360◦)+〉
〈z−|(θ + 360◦)+〉

)
=

(
cos((θ + 360◦)/2)

sin((θ + 360◦)/2)

)
(3.33)

=

(
cos(θ/2 + 180◦)

sin(θ/2 + 180◦)

)
=

(
− cos(θ/2)

− sin(θ/2)

)
.

So in fact |θ+〉 = −|(θ + 360◦)+〉. Bizarre!

This bizarreness is one facet of a general rule: If you multiply any state

vector by a complex number with magnitude unity — a number such as

−1, or i, or 1√
2
(−1 + i), or e2.7i — a so-called “complex unit” or “phase

factor” — then you get a different state vector that represents the same

state. This fact is called “global phase freedom” — you are free to set the

overall phase of your state vector for your own convenience. This general
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rule applies only for multiplying both elements of the state vector by the

same complex unit: if you multiply the two elements with different complex

units, you will obtain a vector representing a different state (see problem 3.8

on page 110).

3.5.6 Names for position vectors

The vector ~r is specified in the basis {̂i, ĵ, k̂} by the three components rx
ry
rz

 =

 î · ~r
ĵ · ~r
k̂ · ~r

 .

Because this component specification is so convenient, it is sometimes said

that the vector ~r is not just specified, but is equal to this triplet of numbers.

That’s false.

Think of the vector ~r = 5̂i+5ĵ. It is represented in the basis {̂i, ĵ, k̂} by

the triplet (5, 5, 0). But this is not the only basis that exists. In the basis

{̂i′ = (̂i+ĵ)/
√

2, ĵ′ = (−î+ĵ)/
√

2, k̂}, that same vector is represented by the

triplet (5
√

2, 0, 0). If we had said that ~r = (5, 5, 0) and that ~r = (5
√

2, 0, 0),

then we would be forced to conclude that 5 = 5
√

2 and that 5 = 0!

-

6

�
�
�
�
�
���

@
@

@
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@@I

î

ĵ

î′ĵ′

To specify a position vector ~r, we use the components of ~r in a particular

basis, usually denoted (rx, ry, rz). We often write “~r = (rx, ry, rz)” but in

fact that’s not exactly correct. The vector ~r represents a position — it is

independent of basis. The row matrix (rx, ry, rz) represents the components

of that position vector in a particular basis — it is the “name” of the

position in a particular basis. Instead of using an equals sign = we use

the symbol
.
= to mean “represented by in a particular basis”, as in “~r

.
=
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(5, 5, 0)” meaning “the vector ~r = 5̂i + 5ĵ is represented by the triplet

(5, 5, 0) in the basis {̂i, ĵ, k̂}”.

Vectors are physical things: a caveman throwing a spear at a mam-

moth was performing addition of position vectors, even though the caveman

didn’t understand basis vectors or Cartesian coordinates. The concept of

“position” was known to cavemen who did not have any concept of “basis”.

3.5.7 Names for quantal states

We’ve been specifying a state like |ψ〉 = |17◦+〉 by stating the axis upon

which the projection of ~µ is definite and equal to +µB — in this case, the

axis tilted 17◦ from the vertical.

Another way to specify a state |ψ〉 would be to give the amplitude

that |ψ〉 is in any possible state: that is, to list 〈θ+|ψ〉 and 〈θ−|ψ〉 for

all values of θ: 0◦ ≤ θ < 360◦. One of those amplitudes (in this case

〈17◦+|ψ〉) will have value 1, and finding this one amplitude would give

us back the information in the specification |17◦+〉. In some ways this is a

more convenient specification because we don’t have to look up amplitudes:

they’re right there in the list. On the other hand it is an awful lot of

information to have to carry around.

The Hilbert space approach is a third way to specify a state that com-

bines the brevity of the first way with the convenience of the second way.

Instead of listing the amplitude 〈σ|ψ〉 for every state |σ〉 we list only the

two amplitudes 〈a|ψ〉 and 〈b|φ〉 for the elements {|a〉, |b〉} of a basis. We’ve

already seen (equation 3.28) how quantal interference then allows us to

readily calculate any amplitude.

Just as we said “the position vector ~r is represented in the basis {̂i, ĵ, k̂}
as (1, 1, 0)” or

~r
.
= (1, 1, 0),

so we say “the quantal state |ψ〉 is represented in the basis {|z+〉, |z−〉} as

|ψ〉 .=
(
〈z+|ψ〉
〈z−|ψ〉

)
.”
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Problems

3.7 Superposition and interference (recommended problem)

On page 106 I wrote that “When an atom ambivates through an in-

terferometer, its state is a superposition of the state of an atom taking

path a and the state of an atom taking path b.”

a. Write down a superposition equation reflecting this sentence for

the interference experiment sketched on page 91.

b. Do the same for the interference experiment sketched on page 94.

3.8 Representations (recommended problem)

In the {|z+〉, |z−〉} basis the state |ψ〉 is represented by(
ψ+

ψ−

)
.

(In other words, ψ+ = 〈z+|ψ〉 and ψ− = 〈z−|ψ〉.)
a. If ψ+ and ψ− are both real, show that there is one and only one

axis upon which the projection of ~µ has a definite, positive value,

and find the angle between that axis and the z axis in terms of

ψ+ and ψ−.

b. What would change if you multiplied both ψ+ and ψ− by the same

phase factor (complex unit)?

c. What would change if you multiplied ψ+ and ψ− by different phase

factors?

This problem invites the question “What if the ratio of ψ+/ψ− is not

pure real?” When you study more quantum mechanics, you will find

that in this case the axis upon which the projection of ~µ has a definite,

positive value is not in the x-z plane, but instead has a component in

the y direction as well.

3.9 Addition of states

Some students in your class wonder “What does it mean to ‘add two

quantal states’? You never add two classical states.” For the Under-

ground Guide to Quantum Mechanics (see page 20) you decide to write

four sentences interpreting the equation

|ψ〉 = a|z+〉+ b|z−〉 (3.34)

describing why you can add quantal states but can’t add classical states.

Your four sentences should include a formula for the amplitude a in

terms of the states |ψ〉 and |z+〉.
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3.10 Names of six states, in two bases

Write down the representations (the “names”) of the states |z+〉, |z−〉,
|x+〉, |x−〉, |θ+〉, and |θ−〉 in (a) the basis {|z+〉, |z−〉} and in (b) the

basis {|x+〉, |x−〉}.

3.11 More peculiarities of states

Because a vector pointing down at angle θ is the same as a vector point-

ing up at angle θ − 180◦, I would expect that |θ−〉 = |(θ − 180◦)+〉.
Show that this expectation is false by uncovering the true relation be-

tween these two state vectors.

3.12 Translation matrix

(This problem requires background knowledge in the mathematics of

matrix multiplication.)

Suppose that the representation of |ψ〉 in the basis {|z+〉, |z−〉} is(
ψ+

ψ−

)
=

(
〈z+|ψ〉
〈z−|ψ〉

)
.

The representation of |ψ〉 in the basis {|θ+〉, |θ−〉} is just as good, and

we call it (
ψ′+
ψ′−

)
=

(
〈θ+|ψ〉
〈θ−|ψ〉

)
.

Show that you can “translate” between these two representations using

the matrix multiplication(
ψ′+
ψ′−

)
=

(
cos(θ/2) sin(θ/2)

− sin(θ/2) cos(θ/2)

)(
ψ+

ψ−

)
.
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3.6 States for entangled systems

In the Einstein-Podolsky-Rosen experiment (1) on page 74, with two ver-

tical analyzers, the initial state is represented by |ψ〉, and various possible

final states are represented by |↑↓ 〉 and so forth, as shown below. (In this

section all analyzers will be vertical, so we adopt the oft-used convention

that writes |z+〉 as |↑ 〉 and |z−〉 as |↓ 〉.)

|ψ〉

|↑↓ 〉

|↓↑ 〉

|↑↑ 〉

|↓↓ 〉

The experimental results tell us that

|〈 ↑↓ |ψ〉|2 = 1
2

|〈 ↓↑ |ψ〉|2 = 1
2 (3.35)

|〈 ↑↑ |ψ〉|2 = 0

|〈 ↓↓ |ψ〉|2 = 0.

Additional analysis (sketched in problem 6.8, “Normalization of singlet spin

state”) is needed to assign phases to these amplitudes. The results are

〈 ↑↓|ψ〉 = + 1√
2

〈 ↓↑|ψ〉 = − 1√
2

(3.36)

〈 ↑↑|ψ〉 = 0

〈 ↓↓|ψ〉 = 0.
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Using the generalization of equation (3.31) for a four-state basis, these

results tell us that

|ψ〉 = |↑↓ 〉〈↑↓|ψ〉+ |↓↑ 〉〈↓↑|ψ〉+ |↑↑ 〉〈↑↑|ψ〉+ |↓↓ 〉〈↓↓|ψ〉
= 1√

2
(|↑↓ 〉 − |↓↑ 〉). (3.37)

A simple derivation, with profound implications.

3.6.1 State pertains to system, not to atom

In this entangled situation there is no such thing as an “amplitude for the

right atom to exit from the + port,” because the probability for the right

atom to exit from the + port depends on whether the left atom exits the

+ or the − port. The pair of atoms has a state, but the right atom by

itself doesn’t have a state, in the same way that an atom passing through

an interferometer doesn’t have a position and that love doesn’t have a color.

Leonard Susskind8 puts it this way: If entangled states existed in auto

mechanics as well as quantum mechanics, then an auto mechanic might tell

you “I know everything about your car but . . . I can’t tell you anything

about any of its parts.”

3.6.2 “Collapse of the state vector”

Set up this EPR experiment with the left analyzer 100 kilometers from the

source, and the right analyzer 101 kilometers from the source. As soon as

the left atom comes out of its − port, then it is known that the right atom

will come out if its + port. The system is no longer in the entangled state
1√
2
(|↑↓ 〉 − |↓↑ 〉); instead the left atom is in state |↓ 〉 and the right atom

is in state |↑ 〉. The state of the right atom has changed (some say it has

“collapsed”) despite the fact that it is 200 kilometers from the left analyzer

that did the state changing!

This fact disturbs those who hold the misconception that states are

physical things located out in space like nitrogen molecules, because it

seems that information about state has made an instantaneous jump across

200 kilometers. In fact no information has been transferred from left to

right: true, Alice at the left interferometer knows that the right atom will
8Leonard Susskind and Art Friedman, Quantum Mechanics: The Theoretical Minimum

(Basic Books, New York, 2014) page xii.



114 States for entangled systems

exit the + port 201 kilometers away, but Bob at the right interferome-

ter doesn’t have this information and won’t unless she tells him in some

conventional, light-speed-or-slower fashion.9

If Alice could in some magical way manipulate her atom to ensure that

it would exit the − port, then she could send a message instantaneously.

But Alice does not possess magic, so she cannot manipulate the left-bound

atom in this way. Neither Alice, nor Bob, nor even the left-bound atom

itself knows from which port it will exit. Neither Alice, nor Bob, nor even

the left-bound atom itself can influence from which port it will exit.

3.6.3 Measurement and entanglement

Back in section 2.4, “Light on the atoms” (page 70), we discussed the

character of “observation” or “measurment” in quantum mechanics. Let’s

bring our new machinery concerning quantal states to bear on this situation.

The figure on the next page shows, in the top panel, a potential mea-

surement about to happen. An atom (represented by a black dot) in state

|z+〉 approaches a horizontal interferometer at the same time that a photon

(represented by a white dot) approaches path a of that interferometer.

We employ a simplified model in which the photon either misses the

atom, in which case it continues undeflected upward, or else the photon

interacts with the atom, in which case it is deflected outward from the

page. In this model there are four possible outcomes, shown in the bottom

four panels of the figure.

After this potential measurement, the system of photon plus atom is

in an entangled state: the states shown on the right must list both the

condition of the photon (“up” or “out”) and the condition of the atom (+

or −).

If the photon misses the atom, then the atom must emerge from the +

port of the analyzer: there is zero probability that the system has final state

|up;−〉. But if the photon interacts with the atom, then the atom might

emerge from either port: there is non-zero probability that the system has
9If you are familiar with gauges in electrodynamics, you will find quantal state similar

to the Coulomb gauge. In the Coulomb gauge, the electric potential at a point in

space changes the instant that any charged particle moves, regardless of how far away
that charged particle is. This does not imply that information moves instantly, because

electric potential by itself is not measurable. The same applies for quantal state.
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final state |out;−〉. These two states are exactly the same as far as the

atom is concerned; they differ only in the position of the photon.

If we focus only on the atom, we would say that something strange has

happened (a “measurement” at path a) that enabled the atom to emerge

from the − port which (in the absence of “measurement”) that atom would

never do. But if we focus on the entire system of photon plus atom, then

it is an issue of entanglement, not of measurement.

a

b

a

b

a

b

a

b

a

b

|z+〉
|ψ〉

|up; +〉

|up;−〉

|out; +〉

|out;−〉
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Problem

3.13 Amplitudes for “Measurement and entanglement”

Suppose that, in the “simplified model” for measurement and entan-

glement, the probability for photon deflection is 1
5 . Find the four prob-

abilities |〈up; +|ψ〉|2, |〈up;−|ψ〉|2, |〈out; +|ψ〉|2, and |〈out;−|ψ〉|2.

3.7 Are states “real”?

This is a philosophical question for which there is no specific meaning and

hence no specific answer. But in my opinion, states are mathematical tools

that enable us to efficiently and accurately calculate the probabilities that

can be found through repeated analyzer experiments, interference experi-

ments, and indeed all experiments. They are not physically “real”.

Indeed, it is possible to formulate quantum mechanics in such a way that

probabilities and amplitudes are found without using the mathematical tool

of “state” at all. Richard Feynman and Albert Hibbs do just this in their

1965 book Quantum Mechanics and Path Integrals. States do not make an

appearance until deep into their book, and even when they do appear they

are not essential. The Feynman “sum over histories” formulation described

in that book is, for me, the most intuitively appealing approach to quantum

mechanics. There is, however, a price to be paid for this appeal: it’s very

difficult to work problems in the Feynman formulation.

3.8 What is a qubit?

At the end of the last chapter (on page 88) we listed several so-called “two-

state systems” or “spin- 1
2 systems” or “qubit systems”. You might have

found these terms strange: There are an infinite number of states for the

magnetic moment of a silver atom: |z+〉, |1◦+〉, |2◦+〉, and so forth. Where

does the name “two-state system” come from? You now see the answer:

it’s short for “two-basis-state system”.

The term “spin” originated in the 1920s when it was thought that an

electron was a classical charged rigid sphere that created a magnetic mo-

ment through spinning about an axis. A residual of that history is that
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people still call10 the state |z+〉 by the name “spin up” and by the symbol

|↑ 〉, and the state |z−〉 by “spin down” and |↓ 〉. (Sometimes the associa-

tion is made in the opposite way.) Meanwhile the state |x+〉 is given the

name “spin sideways” and the symbol |→ 〉.

Today, two-basis-state systems are more often called “qubit” systems

from the term used in quantum information processing. In a classical com-

puter, like the ones we use today, a bit of information can be represented

physically by a patch of magnetic material on a disk: the patch magnetized

“up” is interpreted as a 1, the patch magnetized “down” is interpreted as

a 0. Those are the only two possibilities. In a quantum computer, a qubit

of information can be represented physically by the magnetic moment of a

silver atom: the atom in state |z+〉 is interpreted as |1〉, the atom in state

|z−〉 is interpreted as |0〉. But the atom might be in any (normalized) su-

perposition a|1〉+ b|0〉, so rather than two possibilities there are an infinite

number.

Furthermore, qubits can interfere with and become entangled with other

qubits, options that are simply unavailable to classical bits. With more

states, and more ways to interact, quantum computers can only be faster

than classical computers, and even as I write these possibilities are being

explored.

In today’s state of technology, quantum computers are hard to build,

and they may never live up to their promise. But maybe they will.

Chapters 2 and 3 have focused on two-basis-state systems, but of course

nature provides other systems as well. For example, the magnetic moment

of a nitrogen atom (mentioned on page 45) is a “four-basis-state” system,

where one basis is

|z; +2〉, |z; +1〉, |z;−1〉, |z;−2〉. (3.38)

In fact, the next chapter shifts our focus to a system with an infinite number

of basis states.

10The very most precise and pedantic people restrict the term “spin” to elementary
particles, such as electrons and neutrinos. For composite systems like the silver atom
they speak instead of “the total angular momentum ~J of the silver atom in its ground

state, projected on a given axis, and divided by ~.” For me, the payoff in precision is
not worth the penalty in polysyllables.
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Problem

3.14 Questions (recommended problem)

Update your list of quantum mechanics questions that you started at

problem 1.17 on page 46. Write down new questions and, if you have un-

covered answers to any of your old questions, write them down briefly.

[[For example, one of my questions would be: “I’d like to see a proof

that the global phase freedom mentioned on page 107, which obviously

changes the amplitudes computed, does not change any experimentally

accessible result.”]]



Chapter 4

The Quantum Mechanics of Position

In the last two chapters we’ve studied the quantum mechanics of a silver

atom’s magnetic moment, and we got a lot out of it: we uncovered the

phenomena of quantization and interference and entanglement; we found

how to use amplitude as a mathematical tool to predict probabilities; we

learned about quantum mechanical states. If all of this makes you feel weak

and dizzy, that’s a good thing: Niels Bohr pointed out that “those who are

not shocked when they first come across quantum theory cannot possibly

have understood it.”1 As profitable as this has been, we knew from the start

(page 47) that eventually we would need to treat the quantum mechanics

of position. Now is the time.

Chapters 2 and 3 treated the atom’s magnetic moment but (to the extent

possible) ignored the atom’s position. This chapter starts off with the

opposite approach: it treats only position and ignores magnetic moment.

Section 4.12, “Position plus spin”, at the end of this chapter welds the two

aspects together.

4.1 Probability and probability density:

One particle in one dimension

A single particle ambivates in one dimension. You know the story of quan-

tum mechanics: The particle doesn’t have a position. Yet if we measure

the position (say, by shining a lamp), then we will find that it has a sin-

gle position. However, because the particle started out without a position,
1Recalled by Werner Heisenberg in Physics and Beyond (Harper and Row, New York,

1971) page 206.

119
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there is no way to predict the position found beforehand: instead, quantum

mechanics predicts probabilities.

But what exactly does this mean? There are an infinite number of points

along any line, no matter how short. If there were a finite probability at

each of these points, the total probability would be infinity. But the total

probability must be one! To resolve this essential technical issue, we look

at a different situation involving probability along a line.

You are studying the behavior of ants in an ant farm. (Ant farm: two

panes of glass close together, with sand and ants and ant food between the

panes.) The ant farm is 100.0 cm long. You paint one ant red, and 9741

times you look at the ant farm and measure (to the nearest millimeter) the

distance of the red ant from the left edge of the farm.

You are left with 9741 raw numbers, and a conundrum: how should you

present these numbers to help draw conclusions about ant behavior?

The best way is to conceptually divide the ant farm into bins. Start

with five equal bins: locations from 0.0 cm to 20.0 cm are in the first bin,

from 20.0 cm to 40.0 cm in the second, from 40.0 cm to 60.0 cm in the third,

from 60.0 cm to 80.0 cm in the fourth, and from 80.0 cm to 100.0 cm in

the fifth. Find the number of times the ant was in the first bin, and divide

by the total number of observations (9741) to find the probability that the

ant was in the first bin. Similarly for the other bins. You will produce a

graph like this:

probability of finding ant in bin

position (cm)

0.0

0.1

0.2

0.3

00 20 40 60 80 100

The five probabilities sum to 1, as they must.
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Now you want more detail about the ant’s location. Instead of dividing

the ant farm into five conceptual bins each of width 20.0 cm, divide it into

ten bins each of width 10.0 cm. The probabilities now look like:

probability of finding ant in bin

position (cm)

0.0

0.1

0.2

0.3

00 20 40 60 80 10010 30 50 70 90

There are now ten probabilities, yet they still sum to 1, so the probabilities

are each smaller. (For example, the first graph shows a probability of 0.28

for the ant appearing between 0.0 cm and 20.0 cm. The second graph

shows probability 0.18 for the ant appearing between 0.0 cm and 10.0 cm

and probability 0.10 for the ant appearing between 10.0 cm and 20.0 cm.

Sure enough 0.28 = 0.18 + 0.10.)
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If you want still more detail, you can divide the ant farm into fifty bins,

each of width 2.0 cm, as in:

probability of finding ant in bin

position (cm)

0.0

0.1

0.2

0.3

00 20 40 60 80 10010 30 50 70 90

These fifty probabilities must still sum to 1, so the individual probabilities

are smaller still.

You could continue this process, making the bins smaller and smaller,

and every bin probability would approach zero. In symbols, if the proba-

bility for appearing in the bin surrounding point x0 is called P0, and the

width of each bin is called ∆x, we have that

lim
∆x→0

P0 = 0

for all points x0. This is true but provides no information whatsoever about

ant behavior!

To get information, focus not on the bin probability but on the so-called

probability density, defined as

lim
∆x→0

P0

∆x
≡ ρ(x0).

In terms of probability density, we say that “the probability of finding

the ant in a small window of width w centered on x0 is approximately

ρ(x0)w, and this approximation grows better and better as the window

grows narrower and narrower.” And that “the probability of finding the

ant between xA and xB is ∫ xB

xA

ρ(x) dx.”
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The fact that the bin probabilities, summed over all bins, is unity, or in

symbols ∑
i

Pi = 1,

becomes, in the limit ∆x→ 0,∑
i

Pi ≈
∑
i

ρ(xi)∆x→
∫ 100.0 cm

0.0 cm

ρ(x) dx = 1.

This property of probability densities is called “normalization”.

Problem

4.1 Mean and standard deviation for an ant (essential problem)

The mean2 ant position 〈x〉 is given by summing all the position mea-

surements and dividing that sum by the number of measurements (in

this case 9741). Using Pi for the probability of the ant appearing in

bin i and xi for the position of the center of bin i, argue that this mean

position is given approximately by∑
bin i

xiPi

and that the approximation grows better and better as the bins grow

narrower and narrower. The formula becomes exact when ∆x→ 0, so

show that the mean value is given by

〈x〉 =

∫ 100.0 cm

0.0 cm

xρ(x) dx. (4.1)

In the same way, argue that the standard deviation of ant position is√∫ 100.0 cm

0.0 cm

(x− 〈x〉)2ρ(x) dx. (4.2)

2The “mean value” is also called the “average value” and sometimes the “expectation
value”. The latter name is particularly poor. If you toss a die, the mean value of the

number facing up is 3.5. Yet no one expects to toss a die and find the number 3.5 facing
up!
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4.2 Probability amplitude

The probability considerations for one ant walking in one dimension are

directly analogous to the probability considerations for one quantal parti-

cle ambivating in one dimension. A graph with five bins like the one on

page 120 approximates the quantal particle as a five-state system. A graph

with ten bins like the one on page 121 approximates the quantal particle

as a ten-state system. A graph with fifty bins like the one on page 122

approximates the quantal particle as a fifty-state system. You know the

drill of quantum mechanics: in all these cases the bin probability P0 will

be related to some sort of bin amplitude ψ0 through P0 = |ψ0|2. How does

bin amplitude behave as ∆x→ 0? Because

P0

∆x
=
|ψ0|2

∆x
→ ρ(x0), we will have

ψ0√
∆x
→ ψ(x0),

where, for any point x0, the probability density is

ρ(x0) = |ψ(x0)|2. (4.3)

What would be a good name for this function ψ(x)? I like the name

“amplitude density”. It’s not really a density: a density would have di-

mensions 1/[length], whereas ψ(x) has dimensions 1/
√

[length]. But it’s

closer to a density than it is to anything else. Unfortunately, someone else

(namely Schrödinger3) got to name it before I came up with this sensible

name, and that name has stuck. It’s called “wavefunction”.

The normalization condition for wavefunction is∫ +∞

−∞
|ψ(x)|2 dx = 1. (4.4)

You should check for yourself that this equation is dimensionally consistent.

The global phase freedom described for qubit systems on page 107 ap-

plies for wavefunctions as well: If you multiply any wavefunction by a com-

plex number with magnitude unity — called a “complex unit” or “phase
3Erwin Schrödinger (1887–1961) had interests in physics, biology, philosophy, and East-

ern religion. Born in Vienna, he held physics faculty positions in Germany, Poland, and

Switzerland. In 1926 he developed the concept of wavefunction and discovered the quan-
tum mechanical time evolution equation (4.12) that now bears his name. This led, in

1927, to a prestigious appointment in Berlin. In 1933, disgusted with the Nazi regime, he
left Berlin for Oxford, England. He held several positions in various cities before ending
up in Dublin. There, in 1944, he wrote a book titled What is Life? which stimulated

interest in what had previously been a backwater of science: biochemistry.
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factor” — then you get a different wavefunction that represents the same

state. You must multiply by a number with magnitude unity, not a function

with magnitude unity: the wavefunctions ψ(x) and eiδψ(x) represent the

same state, but the wavefunction eiδ(x)ψ(x) represents a different state.

Keep in mind that to specify a quantal state we must know amplitudes

(wavefunction) rather than merely probabilities (probability density). Just

as in classical mechanics (see page 90) we say that we know a state when we

know all the information needed to describe the system now and to predict

its future. The probability density ρ(x) alone tells you a lot about the

state right now, but cannot predict how the state will change in the future.

Knowing probability density alone in quantum mechanics is like knowing

the position alone in classical mechanics: The probability density gives a

lot of information about now, but not enough information to predict the

future.

Problems

4.2 Mean and standard deviation for a quantal particle

(essential problem)

For any function f(x), define the mean value

〈f(x)〉 =

∫ +∞

−∞
f(x)|ψ(x)|2 dx. (4.5)

Show that the mean position is 〈x〉 and that the standard deviation of

position ∆x is given through

(∆x)2 = 〈x2〉 − 〈x〉2. (4.6)

4.3 What we say makes no sense. What do we mean?

It sounds strange to say “The particle with wavefunction ψ(x) doesn’t

have a position and its mean position is∫ +∞

−∞
x|ψ(x)|2 dx.”

Write two or three sentences unpacking what this sentence really means.

4.4 Bump wavefunction

The parabolic bump wavefunction is defined as

ψ(x) =


0 x < 0

−ax(x− L) 0 ≤ x ≤ L
0 L < x

.

Find the mean position and standard deviation of position.
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4.3 How does wavefunction change with time?

I’m going to throw down three equations. First, the classical formula for

energy,

E =
p2

2m
+ V, (4.7)

where V is the potential energy. Second, the Einstein and de Broglie rela-

tions for energy and momentum (1.21) and (1.24)

E = ~ω and p = ~k. (4.8)

Third, the particular wavefunction

ψ(x, t) = Aei(kx−ωt). (4.9)

Plugging equations (4.8) mindlessly into equation (4.7) we obtain

~ω =
~2k2

2m
+ V

and multiplying both sides by ψ(x, t) gives

~ωψ(x, t) =
~2k2

2m
ψ(x, t) + V ψ(x, t). (4.10)

Meanwhile, the particular wavefunction (4.9) satisfies

ωψ(x, t) =
1

−i
∂ψ

∂t
; kψ(x, t) =

1

i

∂ψ

∂x
; k2ψ(x, t) =

1

i2
∂2ψ

∂x2
= −∂

2ψ

∂x2
.

Plugging these into equation (4.10) gives

~
(

1

−i
∂ψ

∂t

)
=

~2

2m

(
−∂

2ψ

∂x2

)
+ V ψ(x, t), (4.11)

which rearranges to

∂ψ(x, t)

∂t
= − i

~

[
− ~2

2m

∂2ψ(x, t)

∂x2
+ V (x)ψ(x, t)

]
. (4.12)

I concede from the very start that this is a stupid argument, and that if

you had proposed it to me I would have gone ballistic. First, equation (4.7)

is a classical fact plopped mindlessly into a quantal argument. Second,

the Einstein relation (4.8) applies to photons, not to massive particles.

Third, there are many possible wavefunctions other than equation (4.9).

The unjustified change of potential energy value V in equation (4.11) to

potential energy function V (x) in equation (4.12) merely adds insult to



4.4. Wavefunction: Two particles 127

injury. The only good thing I can say about this equation is that it’s

dimensionally consistent.

Oh, and one more thing. The equation is correct. Despite its dubious

provenance, experimental tests have demonstrated to everyone’s satisfac-

tion that wavefunction really does evolve in time this way. (I must qualify:

wavefunction evolves this way in a wide range of situations: non-relativistic,

no magnetic field, no friction or any other non-conservative force, and where

the particle’s magnetic moment is unimportant.)

This equation for time evolution in quantal systems plays the same cen-

tral role in quantum mechanics that ~F = m~a does in classical mechanics.

And just as ~F = m~a cannot be derived, only motivated and then tested

experimentally, so this time-evolution result cannot be derived. The mo-

tivation is lame, but the experimental tests are impressive and cannot be

ignored.

This time evolution equation has a name: it is “the Schrödinger equa-

tion”.

4.4 Wavefunction: Two particles in one or three dimensions

We will soon work on solving the Schrödinger equation for one particle

in one dimension, but first we ask how to describe two particles in one

dimension.

Two particles, say an electron and a neutron, ambivate in one dimension.

As before, we start with a grid of bins in one-dimensional space:

� - x
∆x- �

ji

We ask for the probability that the electron will be found in bin i and

the neutron will be found in bin j, and call the result Pi,j . Although

our situation is one-dimensional, this question generates a two-dimensional

array of probabilities.
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� - bin of electron

?

6

bin of neutron

j

i

Pi,j

To produce a probability density, we must divide the bin probability Pi,j
by (∆x)2, and then take the limit as ∆x→ 0, resulting in

Pi,j
(∆x)2

→ ρ(xe, xn).

So the probability of finding an electron within a narrow window of width w

centered on xe = 5 and finding the neutron within a narrow window of width

u centered on xn = 9 is approximately ρ(5, 9)wu, and this approximation

grows better and better as the two windows grow narrower and narrower.

The bin amplitude is ψi,j with Pi,j = |ψi,j |2. To turn a bin amplitude

into a wavefunction, divide by
√

(∆x)2 = ∆x and take the limit

lim
∆x→0

ψi,j
∆x

= ψ(xe, xn). (4.13)

This wavefunction has dimensions 1/[length].

The generalization to more particles and higher dimensionality is

straightforward. For a single electron in three-dimensional space, the wave-

function ψ(~x) has dimensions 1/[length]3/2. For an electron and a neu-

tron in three-dimensional space, the wavefunction ψ(~xe, ~xn) has dimensions

1/[length]3. Note carefully: For a two-particle system, the state is speci-

fied by one function ψ(~xe, ~xn) of six variables. It is not specified by two

functions of three variables, with ψe(~x) giving the state of the electron and
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ψn(~x) giving the state of the neutron. There are four consequences of this

simple yet profound observation.

First, the wavefunction (like amplitude in general) is a mathematical

tool for calculating the results of experiments; it is not physically “real”.

I have mentioned this before, but it particularly stands out here. Even

for a system as simple as two particles, the wavefunction does not exist in

ordinary three-dimensional space, but in the six-dimensional “configuration

space”, as it is called. I don’t care how clever or talented an experimentalist

you are: you cannot insert an instrument into six-dimensional space in order

to measure wavefunction.

Second, wavefunction is associated with a system, not with a particle. If

you’re interested in a single electron and you say “the wavefunction of the

electron”, then you’re technically incorrect — you should say “the wave-

function of the system consisting of a single electron” — but no one will go

ballistic and say that you are in thrall of a deep misconception. However,

if you’re interested in a pair of particles (an electron and a neutron, for

instance) and you say “the wavefunction of the electron”, then someone

(namely me) will go ballistic because you are in thrall of a deep misconcep-

tion.

Third, it might happen that the wavefunction factorizes:

ψ(~xe, ~xn) = ψe(~xe)ψn(~xn).

In this case the electron has state ψe(~xe) and the neutron has state ψn(~xn).

Such a peculiar case is called “non-entangled”. But in all other cases the

state is called “entangled” and the individual particles making up the sys-

tem do not have states. The system has a state, namely ψ(~xe, ~xn), but

there is no state for the electron and no state for the neutron, in exactly

the same sense that there is no position for a silver atom ambivating through

an interferometer.

Fourth, quantum mechanics is intricate. To understand this point, con-

trast the description needed in classical versus quantum mechanics.

How does one describe the state of a single classical particle moving

in one dimension? It requires two numbers: a position and a velocity.

Two particles moving in one dimension require merely that we specify the

state of each particle: four numbers. Similarly specifying the state of three

particles require six numbers and N particles require 2N numbers. Exactly

the same specification counts hold if the particle moves relativistically.
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How, in contrast, does one describe the state of a single quantal par-

ticle ambivating in one dimension? Here an issue arises at the very start,

because the specification is given through a complex-valued wavefunction

ψ(x). Technically the specification requires an infinite number of numbers!

Let’s approximate the wavefunction through its value on a grid of, say, 100

points. This suggests that a specification requires 200 real numbers, a com-

plex number at each grid point, but global phase freedom means that we

can always set one of those numbers to zero through an overall phase factor,

and one number is not independent through the normalization requirement.

The specification actually requires 198 independent real numbers.

How does one describe the state of two quantal particles ambivating

in one dimension? Now the wavefunction is a function of two variables,

ψ(xe, xn). The wavefunction of the system is a function of two-dimensional

configuration space, so an approximation of the accuracy established previ-

ously requires a 100×100 grid of points. Each grid point carries one complex

number, and again overall phase and normalization reduce the number of

real numbers required by two. For two particles the specification requires

2× (100)2 − 2 = 19 998 independent real numbers.

Similarly, specifying the state of N quantal particles moving in one

dimension requires a wavefunction in N -dimensional configuration space

which (for a grid of the accuracy we’ve been using) is specified through

2× (100)N − 2 independent real numbers.

The specification of a quantal state not only requires more real numbers

than the specification of the corresponding classical state, but that number

increases exponentially rather than linearly with particle number N .

The fact that a quantal state holds more information than a classical

state is the fundamental reason that a quantal computer can be (in prin-

ciple) faster than a classical computer, and the basis for much of quantum

information theory.

Relativity is different from classical physics, but no more complicated.

Quantum mechanics, in contrast, is both different from and richer than

classical physics. You may refer to this richness using terms like “splendor”,

or “abounding”, or “intricate”, or “ripe with possibilities”. Or you may

refer to it using terms like “complicated”, or “messy”, or “full of details

likely to trip the innocent”. It’s your choice how to react to this richness,

but you can’t deny it.
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4.5 Solving the Schrödinger time evolution equation

for the infinite square well

Setup. A single particle is restricted to one dimension. In classical me-

chanics, the state of the particle is given through position and velocity:

that is, we want to know the two functions of time

x(t); v(t).

These functions stem from the solution to the ordinary differential equation

(ODE)
∑ ~F = m~a, or, in this case,

d2x(t)

dt2
=

1

m
F (x(t)) (4.14)

subject to the given initial conditions

x(0) = x0; v(0) = v0.

In quantum mechanics, the state of the particle is given through the

wavefunction: that is, we want to know the two-variable function

ψ(x, t).

This is the solution of the Schrödinger partial differential equation (PDE)

∂ψ(x, t)

∂t
= − i

~

[
− ~2

2m

∂2ψ(x, t)

∂x2
+ V (x)ψ(x, t)

]
, (4.15)

subject to the given initial condition

ψ(x, 0) = ψ0(x).

[[The classical time evolution equation (4.14) is second order in time,

so there are two initial conditions: initial position and initial velocity. The

quantal time evolution equation (4.15) is first order in time, so there is only

one initial condition: initial wavefunction.]]

Infinite square well. Since this is our first quantal time evolution

problem, let’s start out cautiously by choosing the easiest potential energy

function: the so-called infinite square well4 or “particle in a box”:

V (x) =


∞ for x ≤ 0

0 for 0 < x < L

∞ for L ≤ x
4Any potential energy function with a minimum is called a “well”.
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This is an approximate potential energy function for an electron added to

a hydrocarbon chain molecule (a “conjugated polymer”), or for an atom

trapped in a capped carbon nanotube.

The infinite square well is like the “perfectly rigid cylinder that rolls

without slipping” in classical mechanics. It does not exactly exist in reality:

any cylinder will be dented or cracked if hit hard enough. But it is a good

model for some real situations. And it’s certainly better to work with this

model than it is to shrug your shoulders and say “I have no idea.”

 

0 L
x

x

ψ(x)

V (x)

The infinite square well potential energy function V (x) in olive green, and

a possible wavefunction ψ(x) in red.

It is reasonable (although not rigorously proven) that for the infinite

square well

ψ(x, t) =


0 for x ≤ 0

something for 0 < x < L

0 for L ≤ x
and we adopt these conditions.

Strategy. The PDE is linear, so if we find some special solutions

f1(x, t), f2(x, t), f3(x, t), . . . , then we can generate many more solutions

through ∑
n

Dnfn(x, t),

where D1, D2, D3, . . . represent constants. Because any Dn can be any

possible complex number, this is a big set of solutions; indeed it might be

a big enough set to be the most general solution. Once we have the most

general solution, we will need to find the values of Dn that correspond to

the particular initial condition ψ(x, 0).
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Casting about for special solutions: separation of variables. So,

how do we find even one solution of the PDE? Let’s try a solution f(x, t)

that is a product of a function X(x) of position alone and a function T (t)

of time alone, that is, try a solution of the form

f(x, t) = X(x)T (t).

Plugging this guess into the PDE, we find

X(x)
dT (t)

dt
= − i

~

[
− ~2

2m

d2X(x)

dx2
T (t) + V (x)X(x)T (t)

]
,

where the partial derivatives have become ordinary derivatives because they

now act upon functions of a single variable. Divide both sides by X(x)T (t)

to find

1

T (t)

dT (t)

dt
= − i

~

[
− ~2

2m

1

X(x)

d2X(x)

dx2
+ V (x)

]
.

In this equation, there is a function of time alone on the left-hand side, and

a function of position alone on the right-hand side. But time and position

are independent variables. It seems as if the left-hand side will vary with

time, even while the position is held constant so the right-hand side stays

constant! Similarly the other way around. There is only one way a function

of t alone can always be equal to a function of x alone, and that’s if both

sides are equal to the same constant.

We don’t yet know what that constant is, or how many such constants

there might be. To allow for the possibility that there might be many such

constants, we call the constant value of the quantity in square brackets by

the name En. (This name suggests, correctly, that this constant must have

the dimensions of energy.) We conclude that

1

T (t)

dT (t)

dt
= − i

~
En (4.16)

− ~2

2m

1

X(x)

d2X(x)

dx2
+ V (x) = En.

We started with one partial differential equation in two variables but (for

solutions of the form f(x, t) = X(x)T (t)) ended with two ordinary differen-

tial equations. And we know a lot about how to solve ordinary differential

equations! This technique for finding special solutions of the PDE is called

“separation of variables”.

Solving the first ODE. When faced with solving two equations, I

always solve the easy one first. That way, if the result is zero, I won’t have

to bother solving the second equation.
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So first we try to solve

1

T (t)

dT (t)

dt
= − i

~
En

dT (t)

T (t)
= − i

~
En dt∫

dT

T
= − i

~
En

∫
dt

lnT = − i
~
En(t+ constant )

Tn(t) = T0e
−(i/~)Ent

Well, that went well. I don’t know about you, but it was easier than I

expected. In the last step, I changed the name of T (t) to Tn(t) to reflect

the fact that we get different solutions for different values of En.

Solving the second ODE. We move on to

− ~2

2m

1

X(x)

d2X(x)

dx2
+ V (x) = En.

Remembering the form of the infinite square well potential, and the bound-

ary conditions ψ(0, t) = 0 plus ψ(L, t) = 0, the problem to solve is

− ~2

2m

d2X(x)

dx2
= EnX(x) with X(0) = 0;X(L) = 0. (4.17)

Perhaps you regard this sort of ordinary differential equation as unfair.

After all, you don’t yet know the permissible values of En. I’m not just

asking you to solve an ODE with given coefficients, I’m asking you find find

out what the coefficients are! Fair or not, we plunge ahead.

You are used to solving differential equations of this form. If I wrote

M
d2f(t)

dt2
= −kf(t),

you’d respond: “Of course, this is the ODE for a classical mass on a spring!

The solution is

f(t) = C cos(ωt) +D sin(ωt) where ω =
√
k/M.”

Well, then, the solution for X(x) has to be

Xn(x) = Cn cos(ωx) +Dn sin(ωx) where ω =
√

2mEn/~2,

where again I have taken to calling X(x) by the name Xn(x) to reflect the

fact there there are different solutions for different values of En. Writing

this out neatly,

Xn(x) = Cn cos((
√

2mEn/~)x) +Dn sin((
√

2mEn/~)x). (4.18)



The Quantum Mechanics of Position 135

When you solved the classical problem of a mass on a spring, you had to

supplement the ODE solution with the initial values f(0) = x0, f ′(0) = v0,

to find the constants C and D. This is called an “initial value problem”. For

the problem of a particle in a box, we don’t have an initial value problem;

instead we are given Xn(0) = 0 and Xn(L) = 0, which is called a “boundary

value problem”.

Plugging x = 0 into equation (4.18) will be easier than plugging in

x = L, so I’ll do that first. The result gives

Xn(0) = Cn cos(0) +Dn sin(0) = Cn,

so the boundary value Xn(0) = 0 means that Cn = 0 — for all values of n!

Thus

Xn(x) = Dn sin((
√

2mEn/~)x). (4.19)

Now plug x = L into equation (4.19), giving

Xn(L) = Dn sin((
√

2mEn/~)L),

so the boundary value Xn(L) = 0 means that
√

2mEn
~

L = nπ where n = 0,±1,±2,±3, . . .

and it follows that

Xn(x) = Dn sin((nπ/L)x).

If you think about it for a minute, you’ll realize that n = 0 gives rise to

X0(x) = 0. True, this is a solution to the differential equation, but it’s not

an interesting one. Similarly, the solution for n = −3 is just the negative

of the solution for n = +3, so we get the same effect by changing the sign

of D3. We don’t have to worry about negative or zero values for n.

In short, the solutions for the boundary value problem are

Xn(x) = Dn sin(nπx/L) where n = 1, 2, 3, . . .

and with

En = n2 π
2~2

2mL2
.

We have accomplished the “unfair”: we have not only solved the differential

equation, we have also determined the permissible values of En.
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Pulling things together. We now know that a solution to the

Schrödinger time evolution equation for the infinite square well of width

L is

ψ(x, t) =

∞∑
n=1

Dne
−(i/~)Ent sin(nπx/L),

where

En = n2 π
2~2

2mL2
.

This is a lot of solutions — there are an infinite number of adjustable

parameters Dn, after all! — but the question is whether it is the most

general solution. In fact it is the most general solution, although that’s

not obvious. The branch of mathematics devoted to such questions, called

Sturm-Liouville5 theory, is both powerful and beautiful, but this is not the

place to explore it.

Fitting the initial conditions. Remember that our problem is not

simply to solve a PDE, it is to find how a given initial wavefunction

ψ(x, 0) = ψ0(x)

changes with time. To do this, we fit our solution to the given initial

conditions.

To carry out this fitting, we must find Dn such that

ψ(x, 0) =

∞∑
n=1

Dn sin(nπx/L) = ψ0(x).

The problem seems hopeless at first glance, because there are an infinite

number of unknowns Dn, yet only one equation! But there’s a valuable

trick, worth remembering, that renders it straightforward.

The trick relies on the fact that, for n, m integers,∫ L

0

sin(nπx/L) sin(mπx/L) dx =

{
L/2 for n = m

0 for n 6= m
. (4.20)

You can work this integral out for yourself, using either

sinA sinB = 1
2 [cos(A−B)− cos(A+B)]

5Charles-François Sturm (1803–1855), French mathematician, also helped make the first

experimental determination of the speed of sound in water. Joseph Liouville (1809–1882),
another French mathematician, made contributions in complex analysis, number theory,
differential geometry, and classical mechanics. He was also a public servant elected to

the French Constituent Assembly of 1848, which established the Second Republic.



The Quantum Mechanics of Position 137

or else

sin θ =
e+iθ − e−iθ

2i
,

whichever you like better. (Or you can look at problem 4.5, “Informal inte-

gration”, on page 138, for an informal but easily remembered treatment.)

To employ this fact, start with

∞∑
n=1

Dn sin(nπx/L) = ψ0(x),

multiply both sides by sin(mπx/L), and integrate from 0 to L:

∞∑
n=1

Dn

∫ L

0

sin(nπx/L) sin(mπx/L) dx =

∫ L

0

ψ0(x) sin(mπx/L) dx.

This looks even worse, until you realize that all but one of the terms on the

left vanish! Once you do make that realization, you find

Dm(L/2) =

∫ L

0

ψ0(x) sin(mπx/L) dx

and you have a formula for Dm.

Pulling all things together. For a particle of mass m ambivating

in an infinite square well of width L, how does the quantal wave function

change (“evolve”) with time? If the initial wavefunction is ψ0(x), then the

wavefunction at time t is

ψ(x, t) =

∞∑
n=1

Dne
−(i/~)Ent sin(nπx/L), (4.21)

where

En = n2 π
2~2

2mL2
(4.22)

and

Dn =
2

L

∫ L

0

ψ0(x) sin(nπx/L) dx. (4.23)
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Problem

4.5 Informal integration (recommended problem)

The integral (4.20) undergirds the Fourier sine series technique, and

it’s useful to remember. Here’s how I do it. If n 6= m the integrand is

sometimes positive, sometimes negative over its range from 0 to L, so

it’s plausible that the two signs cancel out and result in a zero integral.

If n = m the integrand is always positive, so it must not be zero. But

what is it?

a. Below is a graph of sin2(3πx/L).

- x

0 L

6

sin2(3πx/L)

0

1

What is the area within the dashed box? Does it look like the area

above the curve within the box is the same as the area below the

curve within the box? What can you conclude about the value of

the integral ∫ L

0

sin2(3πx/L) dx ?

b. Make the above argument rigorous using the relationship

sin2 θ + cos2 θ = 1.

Your result should be that the integral∫ L

0

sin2(nπx/L) dx

has the same value whenever n is a non-zero integer.
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4.6 What did we learn by solving

the Schrödinger time evolution equation

for the infinite square well?

In one sense, we learned that the time evolution of a particle of mass m in

an infinite square well of width L, with initial wavefunction ψ0(x), is given

by equation (4.21). But we should delve more deeply than simply saying

“There’s the answer, now let’s go to sleep.”

Quantal revivals. Does this jumble of symbols tell us anything about

nature? Does it have any peculiar properties? Here’s one. Suppose there

were a time Trev such that

e−(i/~)EnTrev = 1 for n = 1, 2, 3, . . .. (4.24)

What would the wavefunction ψ(x, t) look like at time t = Trev? It would

be exactly equal to the initial wavefunction ψ0(x)! If there is such a time,

it’s called the “revival time”.

But it’s not clear that such a revival time exists. After all, equa-

tion (4.24) lists an infinite number of conditions to be satisfied for revival

to occur. Let’s investigate. Because e−i 2π integer = 1 for any integer, the

revival conditions (4.24) are equivalent to

(1/~)EnTrev = 2π(an integer) for n = 1, 2, 3, . . ..

Combined with the separation constant values (4.22), these conditions are

n2 π~
4mL2

Trev = (an integer) for n = 1, 2, 3, . . ..

And, looked at this way, it’s clear that yes, there is a time Trev that satisfies

this infinite number of conditions. The smallest such time is

Trev =
4mL2

π~
. (4.25)

Cute and unexpected! This behavior is packed into equations (4.21) and

(4.22), but no one would have uncovered this from a glance.
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Moving across a node. Think about the wavefunction

D sin(3πx/L).

This wavefunction and corresponding probability density are graphed below

the infinite square well potential energy function.
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x

|η(x)|2

η(x)

V (x)

This particular wavefunction has two interior zeros, also called nodes. A

common question is “There is zero probability of finding the particle at

the node, so how can it move from one side of the node to the other?”

People who ask this question suffer from the misconception that the particle

is an infinitely small, infinitely hard version of a classical marble, which

hence has a definite position. They think that the definite position of

this infinitely small marble is changing rapidly, or changing erratically, or

changing unpredictably, or changing subject to the slings and arrows of

outrageous fortune. In truth, the quantal particle in this state doesn’t have

a definite position: it doesn’t have a position at all! The quantal particle

in the state above doesn’t, can’t, change its position from one side of the

node to the other, because the particle doesn’t have a position.

Investigating the solution technique. But I want to do more than

investigate the properties of the solution, I want to investigate the charac-

teristics of the solution technique. In his book Mathematics in Action,

O. Graham Sutton writes that “A technique succeeds in mathematical
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physics, not by a clever trick, or a happy accident, but because it expresses

some aspect of a physical truth.” What aspect of physical truth is exposed

through the techniques we developed to solve this time evolution problem?

First, let’s review the problem we solved, then the techniques we used.

The problem was solving the partial differential equation

∂ψ(x, t)

∂t
= − i

~

[
− ~2

2m

∂2ψ(x, t)

∂x2
+ V (x)ψ(x, t)

]
,

subject to the initial condition

ψ(x, 0) = ψ0(x).

The three techniques used were:

(1) Finding many particular solutions of the PDE that happen to factorize:

f(x, t) = X(x)T (t) (“separation of variables”).

(2) Summing all of these particular solutions to find a more general (and,

as it turns out, the most general) PDE solution:
∑
DnXn(x)Tn(t)

(“superposition”).

(3) Finding the coefficients Dn that match up to initial value ψ0(x)

(“Fourier6 sine series”).

Fourier sine series. Let’s look at the last step first. The technique of

Fourier sine series is generally powerful. Any function f(x) with f(0) = 0

and f(L) = 0 can be expressed as

f(x) =

∞∑
n=1

fn sin(nπx/L) where fn =
2

L

∫ L

0

f(x) sin(nπx/L) dx.

This seems paradoxical: complete information about the function is ob-

tained through knowing f(x) at every real number 0 ≤ x ≤ L. Alterna-

tively, complete information about the function is obtained through know-

ing the coefficients fn for every positive integer n. But there are more real

numbers between 0 and L than there are positive integers! I have no res-

olution for this paradox — I’ll just remark that in knowing the function

through its Fourier coefficients fn, it seems that we’re getting something

for nothing.
6Joseph Fourier (1768–1830) was French, so his name is pronounced “Four - e - a” with

a silent “r”. He arrived at the series which today bears his name through studies of heat
flow. He was the first to propose the phenomenon that we today call “the greenhouse
effect”. (So much for the climate-change denialist claim that the greenhouse effect is a

modern day liberal/Chinese hoax.)
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Well, there are lots of times when we want to get something for nothing!

Fourier sine series are useful in data compression. For example, suppose

you want to record a sound that starts with silence at time 0, proceeds

through several notes, then ends with silence at time L. You could do this

by keeping track of the air pressure f(t) at every instant from 0 to L, or

you could do it by keeping track of the corresponding Fourier coefficients

fn. In either case an infinite amount of data are required, so some will have

to be thrown out to let it fit within a finite computer. It is more efficient to

store this information in the form of fn than in the form of f(t): for a given

amount of storage space, the fn provide a more accurate reproduction of

the sound than the f(t). There are many schemes for the details of exactly

when the Fourier series should be truncated: one such scheme is called

“MP3”.

Or, for pictures rather than sounds: A black-and-white photograph is a

two-dimensional intensity function f(x, y). You could store the image on a

computer by breaking space (x, y) into a grid (“pixels”) and storing a value

for the intensity at each grid point (the so-called bitmap or BMP format)

or you could store the information through Fourier coefficients fn,m (the

so-called JPEG format). For a given level of image quality, the JPEG file

is considerably smaller than the BMP file.

Stationary states. Okay, this is fun and profitable, but it tells us

about how clever humans are; it doesn’t tell us anything about nature. I’m

going to probe in another direction: We see that, as far as time evolution is

concerned, functions like sin(nπx/L) play a special role. What if the initial

wavefunction ψ0(x) happens to have this form? We investigate n = 3.

Once you see how things work in this case, you can readily generalize to

any positive integer n.

So the initial wavefunction is

ψ0(x) = A sin(3πx/L).

We need the constant A so that the initial wavefunction will (1) have di-

mensions and (2) be normalized. For all wavefunctions, the probability of

being somewhere is 1, that is∫ +∞

−∞
|ψ(x)|2 dx = 1.

This requirement is called “normalization”. Applying the general normal-

ization requirement to this initial wavefunction for our particle in a box
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results in ∫ L

0

A2 sin2(3πx/L) dx = 1,

whence (remembering the sine-squared integral 4.20)

A2(L/2) = 1 so A =
√

2/L.

Notice that then

ψ0(x) =

√
2

L
sin(3πx/L)

has the proper dimensions.

Well, for this initial wavefunction, what are the values of

Dn =
2

L

∫ L

0

ψ0(x) sin(nπx/L) dx ?

They are

Dn =
2

L

√
2

L

∫ L

0

sin(3πx/L) sin(nπx/L) dx

=
2

L

√
2

L
×
{
L/2 for n = 3

0 for n 6= 3

=

√
2

L
×
{

1 for n = 3

0 for n 6= 3
,

so

ψ(x, t) =

√
2

L
e−(i/~)E3t sin(3πx/L). (4.26)

That’s it! For this particular initial wavefunction, the system remains al-

ways in that same wavefunction, except multiplied by an time-dependent

phase factor of e−(i/~)E3t. This uniform phase factor has no effect whatso-

ever on the probability density! Such states are called “stationary states”.

Generic states. Contrast the time evolution of stationary states with

the time evolution of generic states. For example, suppose the initial wave-

function were

ψ0(x) =
4

5

√
2

L
sin(3πx/L) +

3

5

√
2

L
sin(7πx/L).

How does this state change with time? You should check two things: First,

the wavefunction ψ0(x) given here is normalized. Second, it evolves in time

to

ψ(x, t) =
4

5

√
2

L
e−(i/~)E3t sin(3πx/L) +

3

5

√
2

L
e−(i/~)E7t sin(7πx/L).

(4.27)
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Although it takes a little effort to see exactly how the probability density

changes with time, it’s clear from a glance that it does change with time.

This is not a stationary state.

Let’s go back to the Einstein relation

E = ~ω.

Neither Einstein nor de Broglie was ever clear about what it was that was

“oscillating” with frequency ω, but now we have a better idea. In stationary

state (4.26), the amplitude at every point oscillates with frequency E3/~.

Using the Einstein relation, we say this state has energy E3.

In contrast, the amplitude in generic state (4.27) has no single oscilla-

tion: there’s a combination of frequency E3/~ and frequency E7/~. This

state doesn’t have an energy, in the same way that a silver atom with

µx = +µB doesn’t have a value of µz, in the same way that an atom in

state |z+〉 passing through a horizontal interferometer doesn’t have a posi-

tion, in the same way that love doesn’t have a color. Instead, this state has

amplitude 4
5 to have energy E3 and amplitude 3

5 to have energy E7.

We have uncovered the “aspect of physical truth” expressed by the

separation constant En.

Energy eigenstates. How did the remarkable stationary states come

about? Remember how they arose mathematically: we looked for solutions

to

− ~2

2m

d2Xn(x)

dx2
+ V (x)Xn(x) = EnXn(x),

and the solutions we found (for the infinite square well) were those functions

Xn(x) = sin(nπx/L)

that we later used as building blocks to build up any wavefunction. These

now seem important enough that they warrant their own name. Because

each is associated with a particularly energy En we call them “energy

states”. Because wavefunctions are usually represented by Greek letters

we give them the name ηn(x) where the Greek letter η (eta) suggests “en-

ergy” through alliteration. We write

− ~2

2m

d2ηn(x)

dx2
+ V (x)ηn(x) = Enηn(x), (4.28)

and recognize this as one of those “unfair” problems where you must find not

only the ODE solution ηn(x), but you must also find the value of En. Such
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problems are given a half-German, half-English name: eigenproblems. We

say that the “energy eigenfunction” ηn(x) represents a “stationary state”,

or an “energy state”, or an “energy eigenstate”, and that En is an “energy

eigenvalue”. (The German word eigen derives from the same root as the

English word “own”, as in “my own state”. It means “characteristic of” or

“peculiar to” or “belonging to”. The eigenstate η3(x) is the state “belonging

to” energy E3.)

The normalized energy eigenstate η3(x) is

η3(x) =

√
2

L
sin(3πx/L).

We saw at equation (4.26) that this energy eigenstate evolves in time to

ψ(x, t) = e−(i/~)E3tη3(x). (4.29)

This state “belongs to” the energy E3. In contrast, the state

ψ(x, t) = 4
5e
−(i/~)E3tη3(x) + 3

5e
−(i/~)E7tη7(x) (4.30)

does not “belong to” any particular energy, because it involves both E3 and

E7. Instead, this state has amplitude 4
5 to have energy E3 and amplitude

3
5 to have energy E7. We say that this state is a “superposition” of the

energy states η3(x) and η7(x).

A particle trapped in a one-dimensional infinite square well cannot have

any old energy: the only energies possible are the energy eigenvalues E1,

E2, E3, . . . given in equation (4.22).

From the very first page of the very first chapter of this book we have

been talking about quantization. But always before it has been a supple-

ment added to the theory to make the results come out right: Max Planck

added energy quantization to the otherwise-classical theory of blackbody

radiation (equation 1.9); Niels Bohr supplemented the theory of a point-like

classical electron orbiting a point-like classical proton with the requirement

that the circular orbit contain a quantized (integer) number of de Broglie

wavelengths (equation 1.26). Here, for the first time, quantization comes

out of the theory, rather than being shoehorned into the beginning of the

theory. Here, for the first time, the theory predicts that the only possible

energies are those listed in equation (4.22). We have reached a milestone

in our development of quantum mechanics.
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Because the only possible energies are the energy eigenvalues E1, E2, E3,

. . ., some people get the misimpression that the only possible states are the

energy eigenstates η1(x), η2(x), η3(x), . . .. That’s false. The state (4.30),

for example, is a superposition of two energy states with different energies.

Analogy. A silver atom in magnetic moment state |z+〉 enters a vertical

interferometer. It passes through the upper path. While traversing the

interferometer, this atom has a position.

A different silver atom in magnetic moment state |x−〉 enters that same

vertical interferometer. It ambivates through both paths. In more detail

(see equation 3.19), it has amplitude 〈z+|x−〉 = − 1√
2

to take the upper

path and amplitude 〈z−|x−〉 = 1√
2

to take the lower path, but it doesn’t

take a path. While traversing the interferometer, this atom has no position

in the same way that love has no color.

A particle trapped in an infinite square well has state η6(x). This par-

ticle has energy E6.

A different particle trapped in that same infinite square well has state

1√
2
η3(x)− 1√

2
η4(x).

This particle does not have an energy. In more detail, it has amplitude 1√
2

to have energy E3 and amplitude − 1√
2

to have energy E4, but it doesn’t

have an energy in the same way that love doesn’t have a color.

Summary. Our journey into quantum mechanics started with the ex-

perimental fact of quantized energies of blackbody radiation or of an atom.

This inspired a search for quantized values of µz, which in turn prompted

discovery of the new phenomena of interference and entanglement. In-

terference experiments suggested the mathematical tool of amplitude, and

generalizing amplitude from magnetic moment to position prompted the

mathematical tool of wavefunction. We asked the obvious question of how

wavefunction changed with time, and answering that question brought us

back to energy quantization with deeper insight. As T.S. Eliot wrote,

We shall not cease from exploration

And the end of all our exploring

Will be to arrive where we started

And know the place for the first time.
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Problems

4.6 Revival

In an infinite square well, any wavefunction comes back to itself after

the revival time given in equation (4.25) has passed. What happens

after one-half of this time has passed?

4.7 Normalized for all time

Show that the wavefunction (4.27) is normalized for all values of the

time t.

4.8 Zero-point energy

The lowest possible energy for a classical infinite square well is zero.

The lowest possible energy for a quantal infinite square well is E1 as

given in equation (4.22). This difference is called the “zero-point en-

ergy” or the “vacuum energy”.

Your grandparents are intelligent and thoughtful but have little back-

ground in science. They hold a bank trust fund for your eventual

benefit. They have learned that on 27 May 2008, U.S. Patent 7379286

for “Quantum Vacuum Energy Extraction” was issued to the Jovion

Corporation and they know that, if zero-point energy could be har-

nessed, it would produce enormous societal and financial gains. Your

grandparents are thinking of withdrawing the trust fund money from

the bank and investing it in the Jovion Corporation, but they want

your advice before making the investment. What do you tell them?

(Remember their intelligence: they want not just advice but concise,

cogent reasoning behind that advice.)

4.9 Fourier sine series for tent (recommended problem)

Suppose the initial wavefunction is a pure real tent:

ψ0(x) =


0 x < 0

Ax 0 ≤ x ≤ L/2
A(L− x) L/2 ≤ x ≤ L
0 L < x

.

a. Sketch this initial wavefunction.

b. Show that, to insure normalization, we must use

A =
2

L

√
3

L
.

c. Verify that ψ0(x) has the proper dimensions.
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d. The Fourier expansion coefficients are

Dn =
2

L

∫ L

0

ψ0(x) sin(nπx/L) dx

=
2A

L

[∫ L/2

0

x sin(nπx/L) dx+

∫ L

L/2

(L− x) sin(nπx/L) dx

]
.

Before rushing in to evaluate this integral, pause to think! With-

out evaluating the integrals, show that when n is even the second

integral within square brackets is the negative of the first integral,

whereas when n is odd these two integrals are equal. Consequently,

for this particular ψ0(x), when n is even Dn = 0, while when n is

odd

Dn =
4

L

∫ L/2

0

ψ0(x) sin(nπx/L) dx.

e. Now go ahead and evaluate Dn for n odd. (I used the substitution

θ = nπx/L, but there are other ways to do it.)

f. Write out the Fourier sine series representation for ψ0(x). Check

that it has the proper dimensions, that it satisfies ψ0(0) = ψ0(L) =

0, and that it satisfies ψ0(L/2) = AL/2. For this last check, use

the result

1 +
1

32
+

1

52
+

1

72
+ · · · = π2

8
.

4.10 Find the flaw: Fourier sine series for ramp7

After working the above problem four students — Aldo, Beth, Celine,

and Denzel — decide to find the Fourier sine series representation of

the ramp wavefunction

ψ0(x) =


0 x < 0

Ax 0 ≤ x < L

0 L ≤ x
.

They split up to work independently, and when they get together af-

terwards they find that they have produced four different answers!
7Background concerning “find the flaw” type problems is provided in sample prob-

lem 1.2.1 on page 26.
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Aldo: − 2

π

√
3

L3

∞∑
n=1

(−1)n

n
sin(nπx/L)

Beth: − 2

π

√
3

L

∞∑
n=1

(−1)n

n
cos(nπx/L)

Celine: − 2

π

√
3

L

∑
n=1,3,5,···

(−1)n

n
sin(nπx/L)

Denzel: − 2

π

√
3

L

∞∑
n=1

(−1)n

n
sin(nπx/L)

Provide simple reasons showing that three of these candidates must be

wrong.

4.7 Other potentials

Is quantization peculiar to the infinite square well? No. At this stage in

your mathematical education you don’t have the tools to prove it, but in

fact the infinite square well is entirely generic.

For any one-dimensional potential energy function that has V (x)→∞
when x → ±∞, there are energy eigenstates ηn(x) with discrete energy

eigenvalues En such that

− ~2

2m

d2ηn(x)

dx2
+ V (x)ηn(x) = Enηn(x), n = 1, 2, 3, . . . (4.31)

and with the property that∫ +∞

−∞
η∗m(x)ηn(x) dx =

{
1 for n = m

0 for n 6= m
. (4.32)

A side note on vocabulary is that this property is called “orthonormal-

ity”. A side note on notation is that the symbol on the right-hand side of

equation (4.32) defines the “Kronecker8 delta”:

δn,m ≡
{

1 for n = m

0 for n 6= m
. (4.33)

8Leopold Kronecker (1823–1891), German mathematician. After earning his Ph.D. he

spent a decade managing a farm, which made him financially comfortable enough that
he could pursue mathematics research for the rest of his life as a private scholar without

university position.
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Any wavefunction can be expressed as a “superposition” or “linear com-

bination” of energy states:

ψ0(x) =

∞∑
n=1

cnηn(x) (4.34)

where

cn =

∫ +∞

−∞
η∗n(x)ψ0(x) dx. (4.35)

We say that the energy states “span the set of wavefunctions” or that

they constitute a “basis”, but don’t let these fancy terms bamboozle you:

they just mean that starting from the energy states, you can use linear

combinations to build up any wavefunction. The basis states in quantum

mechanics play the same role as building blocks in a child’s construction

set. Just as a child can build castles, roadways, or trees — anything she

wants — out of building blocks, so you can build any wavefunction you

want out of energy states.

Superposition is the mathematical reflection of the physical phenomenon

of interference. An example of quantal interference is “the atom passing

through an interferometer doesn’t take either path; instead it has amplitude

ca to take path a and amplitude cb to take path b”. An example of super-

position is “the particle with wavefunction ψ0(x) given in equation (4.34)

doesn’t have an energy; instead it has amplitude cn to have energy En,

with n = 1, 2, 3, . . .”. It requires no great sophistication to see that these

are parallel statements.

In the infinite square well, each energy eigenstate has a different en-

ergy. This is not always true: it might happen that two energy eigenvalues,

perhaps E8 and E9, are equal. In this situation any linear combination

αη8(x) + β η9(x) (4.36)

is again an energy eigenstate with energy E8 = E9. (Although, to insure

normalization, we must select |α|2+|β|2 = 1.) The two eigenvalues are then

said to be “degenerate”. I don’t know how such a disparaging term9 came

to be attached to such a charming result, but it has been. If two eigenstates
9According to George F. Simmons, “This terminology follows a time-honored tradition

in mathematics, according to which situations that elude simple analysis are dismissed

by such pejorative terms as ‘improper’, ‘inadmissible’, ‘degenerate’, ‘irregular’, and so

on.” [Differential Equations with Applications and Historical Notes, third edition (CRC
Press, Boca Raton, Florida, 2017) page 220.]
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have the same energy, that energy is called “two-fold degenerate”. If three

have the same energy, it is “three-fold degenerate”. And so forth.

Finally, solving the energy eigenproblem opens the door to solving the

time evolution problem, because the wavefunction ψ0(x) evolves in time to

ψ(x, t) =

∞∑
n=1

cne
−(i/~)Entηn(x). (4.37)

Because the energy eigenproblem (4.31) tells you the resulting quantized

energy values, and because energy quantization is one of the easiest aspects

of quantum mechanics to access experimentally, some people develop the

mistaken impression that finding energy values is all there is to quantum

mechanics. No. It’s actually just like a classical mechanics problem: “You

stand atop a cliff 97 meters tall and hurl a ball horizontally at 12 m/s.

(a) How far from the base of the cliff does it land? (b) At what speed does

it strike the ground?” Using energy techniques alone you can answer ques-

tion (b). But to answer both questions you need to solve the time evolution

problem. The same holds in quantum mechanics. Some questions can be

answered knowing only the energy eigenvalues, but to answer any question

you must solve the time evolution problem. Often the easiest way to do

this is by first solving the energy eigenproblem (finding both eigenvalues

and eigenfunctions) and then employing the time evolution equation (4.37).

The energy eigenvalues are important — no doubt about that — but they’re

not the full story.

Problem

4.11 Basis with degeneracy (essential problem)

You know that if the two orthonormal vectors
{
î, ĵ
}

constitute a basis

for position vectors in two dimensions, then rotating the pair by angle

θ produces two different orthonormal vectors

î′ = cos θ î+ sin θ ĵ

ĵ′ = − sin θ î+ cos θ ĵ (4.38)

that constitute a basis just as good as the original basis.

Show that if

ηn(x) n = 1, 2, 3, . . .
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constitutes an orthonormal basis of energy eigenstates (an “energy

eigenbasis”), with a degeneracy so that E8 = E9, then if η8(x) and

η9(x) are replaced by

η′8(x) = cos θ η8(x) + sin θ η9(x)

η′9(x) = − sin θ η8(x) + cos θ η9(x) (4.39)

this new basis is just as good an orthonormal energy eigenbasis as the

original.

4.8 Energy loss

I said earlier [at equations (4.26) and (4.29)] that any energy eigenstate

η6(x) is a “stationary state”: that if the system started off in state η6(x),

it would remain in that state forever (with a time-dependent phase factor

in front). This seems to contradict the experimental fact that most of the

atoms we find lying about are in their ground states.10 Why don’t they

just stay in state η6(x) for ever and ever?

Furthermore: If the system starts off in the state c3η3(x)+c7η7(x), then

for all time the probability of measuring energy E3 is |c3|2, the probability

of measuring energy E7 is |c7|2, and the probability of measuring the ground

state energy is zero. Again, how can this conclusion be consistent with the

experimental observation that most atoms are in the ground state?

The answer is that if time evolution were given exactly by equa-

tion (4.12),

∂ψ(x, t)

∂t
= − i

~

[
− ~2

2m

∂2ψ(x, t)

∂x2
+ V (x)ψ(x, t)

]
, (4.40)

then the atom would stay in that stationary state forever. But real atoms

are subject to collisions and radiation meaning that the time-evolution

equation above is not exactly correct. These phenomena, unaccounted for

in the equation above, cause the atom to fall into its ground state.

Because collisions and radiation are small effects, an atom starting off

in state η6(x) stays in that stationary state for a “long” time — but that

means long relative to typical atomic times, such as the characteristic time

10−17 seconds generated at problem 1.15 on page 41. If you study more
10The energy eigenstate with lowest energy eigenvalue has a special name: the ground

state.
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quantum mechanics,11 you will find that a typical atomic excited state

lifetime is 10−9 seconds. So the excited state lifetime is very short by

human standards, but very long by atomic standards. (To say “very long”

is an understatement: it is 100 million times longer; by contrast the Earth

has completed only 66 million orbits since the demise of the dinosaurs.)

4.9 Mean values

Recall the interference experiment. A single atom ambivates through

the two paths of an interferometer.

a

b 

xa = +w/2

xb = −w/2

Say the interferometer has width w, so that path a has position xa = +w/2

while path b has position xb = −w/2.

You know the drill: the atom has amplitude ca of taking path a, am-

plitude cb of taking path b. If a lamp is turned on while an interference

experiment is proceeding, the probability of the atom appearing in path a

is |ca|2, the probability of the atom appearing in path b is |cb|2. In other

words, if the atom’s position is measured while the interference experiment

is proceeding, the result would be +w/2 with probability |ca|2, and it would

be −w/2 with probability |cb|2. Hence the mean position measured would

be

+ (w/2)|ca|2 − (w/2)|cb|2. (4.41)

It seems weird to say “The atom doesn’t have a position but its mean

position is given by equation (4.41)” — sort of like saying “Unicorns don’t

exist but their mean height is 1.3 meters.” Indeed, it would be more accu-

rate to say “The atom doesn’t have a position but if a light were turned on
11See for example David J. Griffiths and Darrell F. Schroeter, Introduction to Quan-
tum Mechanics, third edition (Cambridge University Press, Cambridge, UK, 2018) sec-

tion 11.3.2, “The Lifetime of an Excited State”.
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— or if position could be determined in some other way — then it would

have a position, and the mean position found in that way would be given

by equation (4.41).” This more accurate sentence is such a mouthful that

it’s rarely said: people say the first, inaccurate sentence as shorthand for

the second, correct sentence.

A particle in a potential. A particle is in state

ψ(x, t) =

∞∑
n=1

cne
−(i/~)Entηn(x). (4.42)

Here cn is the amplitude that the particle has energy En, so |cn|2 is the

probability that, if the energy were measured, the result En would be found.

The mean energy is thus clearly

〈E〉 =

∞∑
n=1

|cn|2En. (4.43)

Once again, it seems weird to have a formula for the mean energy of

a particle that doesn’t have an energy. The meaning is that if the energy

were measured, 〈E〉 is the mean of the energy that would be found.

New expression for mean energy. The above expression for mean

energy is correct but difficult to use. Suppose a particle with wavefunction

ψ(x) is subject to a potential energy function V (x). To find the mean

energy you must: (1) Solve the energy eigenproblem to find the energy

eigenvalues En and eigenfunctions ηn(x). (2) Write the wavefunction ψ(x)

in the form ψ(x) =
∑
n cnηn(x). (3) Now that you know the energies En and

the amplitudes (expansion coefficients) cn, execute the sum
∑
n |cn|2En.

Whew! Isn’t there an easier way?

There is. The wavefunction (4.42) has time derivative

∂ψ(x, t)

∂t
=

∞∑
n=1

cn

(
− i
~
En

)
e−(i/~)Entηn(x) (4.44)

and complex conjugate

ψ∗(x, t) =

∞∑
m=1

c∗me
+(i/~)Emtη∗m(x). (4.45)

Thus

ψ∗(x, t)
∂ψ(x, t)

∂t
(4.46)

=

∞∑
m=1

∞∑
n=1

c∗mcn

(
− i
~
En

)
e−(i/~)(En−Em)tη∗m(x)ηn(x)
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and ∫ +∞

−∞
ψ∗(x, t)

∂ψ(x, t)

∂t
dx (4.47)

=

∞∑
m=1

∞∑
n=1

c∗mcn

(
− i
~
En

)
e−(i/~)(En−Em)t

∫ +∞

−∞
η∗m(x)ηn(x) dx.

But (see equation 4.32) the integral on the right is zero unless m = n, in

which case it is 1. Thus∫ +∞

−∞
ψ∗(x, t)

∂ψ(x, t)

∂t
dx =

∞∑
n=1

c∗ncn

(
− i
~
En

)
= − i

~
〈E〉 (4.48)

or

− i

~
〈E〉 =

∫ +∞

−∞
ψ∗(x, t)

(
∂ψ(x, t)

∂t

)
dx. (4.49)

Now, according to the Schrödinger equation

∂ψ(x, t)

∂t
= − i

~

[
− ~2

2m

∂2ψ(x, t)

∂x2
+ V (x)ψ(x, t)

]
, (4.50)

so

〈E〉 =

∫ +∞

−∞
ψ∗(x, t)

[
− ~2

2m

∂2ψ(x, t)

∂x2
+ V (x)ψ(x, t)

]
dx. (4.51)

This expression for mean energy does not require solving the energy eigen-

problem or expanding ψ(x) in energy eigenstates.

This expression parallels the expressions already determined in prob-

lem 4.2 on page 125: For example the mean position is

〈x〉 =

∫ +∞

−∞
ψ∗(x, t) [x]ψ(x, t) dx, (4.52)

the mean of position squared is

〈x2〉 =

∫ +∞

−∞
ψ∗(x, t)

[
x2
]
ψ(x, t) dx, (4.53)

and indeed for any function of position f(x), the mean is

〈f(x)〉 =

∫ +∞

−∞
ψ∗(x, t) [f(x)]ψ(x, t) dx. (4.54)
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Problems

4.12 Mean position vs. “expected position”

For the infinite square well energy eigenstate η2(x), what is the mean

position? What is the probability density at that point? Is this mean

position really the “expected position”?

4.13 Wavefunction vs. probability density (recommended problem)

The wavefunction ψ(x) is not directly measurable, but can be inferred

(up to an overall phase) through a number of position and interference

experiments. The probability density |ψ(x)|2 is measurable through

a number of position experiments alone. These facts lead some to

the misconception that the probability density tells the “whole story”

of a quantal state. This problem demonstrates the falsehood of that

misconception by presenting a series of wavefunctions, all with the same

probability density, but each with a different mean energy. (And hence

each with different behavior in the future.) The so-called Gaussian

wavefunctions are

ψ(x) = Ae−x
2/2σ2

eikx,

where A is a normalization constant.

a. (Mathematical preliminary.) Use integration by parts to show that∫ +∞

−∞
e−t

2

dt = 2

∫ +∞

−∞
t2e−t

2

dt,

where t is any dimensionless variable.

b. When the particle is free, V (x) = 0, find the mean energy. (In this

case the mean kinetic energy, since there is no potential energy.) If

you use the above result, you will not need to evaluate any integral

nor find the normalization constant.

4.14 Mean of function vs. function of mean (recommended problem)

Show that 〈f(x)〉 might not equal f(〈x〉) by using the function f(x) =

x2 and the so-called Gaussian wavefunction

ψ(x) = Ae−x
2/2σ2

eikx.

a. What is the normalization constant A? Does your answer have

the proper dimensions?

b. What is the mean position 〈x〉 for this wavefunction?

c. What is the mean of the function 〈f(x)〉?
d. What is the function of the mean f(〈x〉)?



4.10. The classical limit of quantum mechanics 157

4.10 The classical limit of quantum mechanics

I told you way back on page 4 that when quantum mechanics is applied

to big things, it gives the results of classical mechanics. It’s hard to see

how my claim could possibly be correct: the whole structure of quantum

mechanics differs so dramatically from the structure of classical mechanics

— the character of a “state”, the focus on potential energy function rather

than on force, the emphasis on energy eigenproblems instead of initial value

problems, the fact that the quantal time evolution equation involves a first

derivative with respect to time while the classical time evolution equation

involves a second derivative with respect to time.

4.10.1 How does mean position change with time?

This nut is cracked by focusing, not on the full quantal state ψ(x, t), but

on the mean position

〈x〉 =

∫ +∞

−∞
ψ∗(x, t)xψ(x, t) dx, (4.55)

How does this mean position change with time?

The answer depends on the classical force function F (x) — i.e., the

classical force that would be exerted on a classical particle if it were at

position x. (I’m not saying that the particle is at x, I’m not even saying

that the particle has a position; I’m saying that’s what the force would be

if the particle were classical and at position x.)

The answer is that

〈F (x)〉 = m
d2〈x〉
dt2

, (4.56)

a formula that certainly plucks our classical heartstrings! This result is

called Ehrenfest’s theorem.12 We will prove this theorem later (in sec-

tion 4.10.4 on page 162), but first discuss its significance.

Although the theorem is true in all cases, it is most useful when the

spread in position ∆x is in some sense small, so the wavefunction is rel-

ativity compact. Such wavefunctions are called “wavepackets”. In this
12Paul Ehrenfest (1880–1933) contributed to relativity theory, quantum mechanics, and

statistical mechanics, often by pointing out concrete difficulties in these theories. As a
result, several telling arguments have names like “Ehrenfest’s paradox” or “Ehrenfest’s

urn” or “the Ehrenfest dog-flea model”.
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situation we might hope for a useful approximation — the classical limit

— by ignoring the quantal indeterminacy of position and focusing solely on

mean position.

If the force function F (x) varies slowly on the scale of ∆x, then our

hopes are confirmed: the spread in position is small, the spread in force is

small, and to a good approximation the mean force 〈F (x)〉 is equal to the

force at the mean position F (〈x〉).

x

〈x〉

∆x

F (x)

|ψ(x)|2

F (〈x〉)

〈F (x)〉

But if the force function varies rapidly on the scale of ∆x, then our

hopes are dashed: the spread in position is small, but the spread in force

is not, and the classical approximation is not appropriate.

x

〈x〉

∆x

F (x)

|ψ(x)|2

F (〈x〉)
〈F (x)〉
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To head off a misconception, I emphasize that Ehrenfest’s theorem is

not that

F (〈x〉) = m
d2〈x〉
dt2

.

If this were true, then the mean position of a quantal particle would in

all cases move exactly as a classical particle does. But (see problem 4.14,

“Mean of function vs. function of mean”, on page 156) it’s not true.

4.10.2 Is the classical approximation good enough?

If the quantal position indeterminacy ∆x is small compared to the exper-

imental uncertainty of your position-locating experimental apparatus, for

the entire duration of your experiment, then the classical approximation is

usually appropriate. So the central question is: How big is the quantal ∆x

in my situation? This will of course vary from case to case and from time to

time within a given case. But there’s an important theorem that connects

the indeterminacy of position ∆x with the indeterminacy of momentum

∆p: in all situations

∆x∆p ≥ 1
2~. (4.57)

This theorem is called the Heisenberg indeterminacy principle. Because

this book has focused on position and not momentum, we cannot prove the

theorem at this time: you’ll have to read a more advanced book. But you

should know about the result for two reasons: First, because it’s important

for determining whether the classical limit is appropriate in a given case.

Second, because it was important in the historical development of quantum

mechanics.

Quantum mechanics has a long and intricate (and continuing!) history,

but one of the keystone events occurred in the spring of 1925. Werner

Heisenberg,13 a freshly minted Ph.D., had obtained a position as assistant
13German theoretical physicist (1901–1976) who nearly failed his Ph.D. oral exam due

to his fumbling in experimental physics. He went on to discover quantum mechanics as
we know it today. Although attacked by Nazis as a “white Jew”, he became a princi-

pal scientist in the German nuclear program during World War II, where he focused on

building nuclear reactors rather than nuclear bombs. After the war he worked to re-
build German science, and to extend quantum theory into relativistic and field theoretic

domains. He enjoyed hiking, particularly in the Bavarian Alps, and playing the piano.

After a three-month whirlwind romance, Heisenberg married Elisabeth Schumacher, sis-
ter of the Small Is Beautiful economist E.F. Schumacher, and they went on to parent

seven children.
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to Max Born at the University of Göttingen. There he realized that the

key to formulating quantum mechanics was to develop a theory that fit the

experiments described in chapter 1, and that also had the correct classical

limit. He was searching for such a theory when he came down with a bad

case of allergies to spring pollen from the “mass of blooming shrubs, rose

gardens and flower beds”14 of Göttingen. He decided to travel to Helgoland,

a rocky island and fishing center in the North Sea, far from pollen sources,

arriving there by ferry on 8 June 1925.

Once his health returned, Heisenberg reproduced his earlier work, clean-

ing up the mathematics and simplifying the formulation. He worried that

the mathematical scheme he invented might prove to be inconsistent, and

in particular that it might violate the principle of energy conservation. In

Heisenberg’s own words:15

One evening I reached the point where I was ready to determine

the individual terms in the energy table, or, as we put it today, in

the energy matrix, by what would now be considered an extremely

clumsy series of calculations. When the first terms seemed to ac-

cord with the energy principle, I became rather excited, and I began

to make countless arithmetical errors. As a result, it was almost

three o’clock in the morning before the final result of my compu-

tations lay before me. The energy principle had held for all the

terms, and I could no longer doubt the mathematical consistency

and coherence of the kind of quantum mechanics to which my cal-

culations pointed. At first, I was deeply alarmed. I had the feeling

that, through the surface of atomic phenomena, I was looking at a

strangely beautiful interior, and felt almost giddy at the thought

that I now had to probe this wealth of mathematical structures na-

ture had so generously spread out before me. I was far too excited

to sleep, and so, as a new day dawned, I made for the southern tip

of the island, where I had been longing to climb a rock jutting out

into the sea. I now did so without too much trouble, and waited

for the sun to rise.

Because the correct classical limit was essential in producing this theory,

it was easy to fall into the misconception that an electron really did behave

classically, with a single position, but that this single position is disturbed
14Werner Heisenberg, Physics and Beyond (Harper and Row, New York, 1971) page 37.
15Physics and Beyond, page 61.
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by the measuring apparatus used to determine position. Indeed, Heisenberg

wrote as much:16

observation of the position will alter the momentum by an unknown

and undeterminable amount.

But Neils Bohr repeatedly objected to this “disturbance” interpretation.

For example, at a 1938 conference in Warsaw,17 he

warned specifically against phrases, often found in the physical lit-

erature, such as “disturbing of phenomena by observation.”

Today, interference and entanglement experiments make clear that Bohr

was right and that “measurement disturbs the system” is not a tenable

position.18 In an interferometer, there is no local way that a photon at

path a can physically disturb an atom taking path b. For an entangled pair

of atoms, there is no local way that an analyzer measuring the magnetic

moment of the left atom can physically disturb the right atom. It is no

defect in our measuring apparatus that it cannot determine what does not

exist.

And this brings us to one last terminology note. What we have called

the “Heisenberg indeterminacy principle” is called by some the “Heisenberg

uncertainty principle”.19 The second name is less accurate because it gives

the mistaken impression that an electron really does have a position and

we are just uncertain as to what that position is. It also gives the mistaken

impression that an electron really does have a momentum and we are just

uncertain as to what that momentum is.
16Werner Heisenberg, The Physical Principles of the Quantum Theory, translated by

Carl Eckart and F.C. Hoyt (University of Chicago Press, Chicago, 1930) page 20.
17Niels Bohr, “Discussion with Einstein on epistemological problems in atomic physics,”
in Albert Einstein, Philosopher–Scientist, edited by Paul A. Schilpp (Library of Living

Philosophers, Evanston, Illinois, 1949) page 237.
18To be completely precise, “measurement disturbs the system locally” is not a tenable
position. The “de Broglie–Bohm pilot wave” formulation of quantum mechanics can be

interpreted as saying that “measurement disturbs the system”, but the measurement at
one point in space is felt instantly at points arbitrarily far away. When this formulation is
applied to a two-particle system, a “pilot wave” situated in six-dimensional configuration

space somehow physically guides the two particles situated in ordinary three-dimensional

space.
19Heisenberg himself, writing in German, called it the “Genauigkeit Beziehung” — ac-

curacy relationship. See “Über den anschaulichen Inhalt der quantentheoretischen Kine-

matik und Mechanik” Zeitschrift für Physik 43 (March 1927) 172–198.
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4.10.3 Sample Problem

For the “Underground Guide to Quantum Mechanics” (described on

page 20), you decide to write a passionate persuasive paragraph or two con-

cerning the misconception that “measurement disturbs the system”. What

do you write?

Solution: For those of us who know and love classical mechanics, there’s

a band-aid, the idea that “measurement disturbs the system”. This idea is

that fundamentally classical mechanics actually holds, but that quantum

mechanics is a mask layered over top of, and obscuring the view of, the

classical mechanics because our measuring devices disturb the underlying

classical system. That’s not possible. It is no defect of our measuring

instruments that they cannot determine what does not exist, just as it is

no defect of a colorimeter that it cannot determine the color of love.

This idea that “measurement disturbs the system” is a psychological

trick to comfort us, and at the same time to keep us from exploring, fully

and openly, the strange world of quantum mechanics. I urge you, I implore

you, to discard this security blanket, to go forth and discover the new world

as it really is rather than cling to the familiar classical world. Like Miranda

in Shakespeare’s Tempest, take delight in this “brave new world, that has

such people in’t”.

Unlike most band-aids, this band-aid does not protect or cover up. In-

stead it exposes a lack of imagination.

4.10.4 Proof of Ehrenfest’s theorem

I’m not going to kid you: this derivation is long, difficult, and, frankly,

unenlightening. It is necessary to show the coherence of the entire quantal

scheme we’ve been building, and if you follow it critically you will learn

some tricks of the trade, but if you decide to skip this section I won’t be

offended.
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Because quantum mechanics emphasizes potential energy V (x), and

classical mechanics emphasizes force F (x), let’s recall how they’re related.

The definition of potential energy (in one dimension) is

V (x)− V (x0) = −
∫ x

x0

F (x′) dx′, (4.58)

where F (x) is the classical force function. Taking the derivative of both

sides with respect to x (and using the fundamental theorem of calculus on

the right-hand side) gives
∂V (x)

∂x
= −F (x). (4.59)

Remember that the classical time evolution equation is

F (x(t)) = m
d2x(t)

dt2
which is second-order with respect to time and which, of course, contains

no reference to ~.

We ask how the mean position moves in quantum mechanics:

〈x〉 =

∫ +∞

−∞
xψ∗(x, t)ψ(x, t) dx, (4.60)

so
d〈x〉
dt

=

∫ +∞

−∞
x
∂ψ∗(x, t)

∂t
ψ(x, t) dx+

∫ +∞

−∞
xψ∗(x, t)

∂ψ(x, t)

∂t
dx. (4.61)

But the Schrödinger time evolution equation tells us how wavefunction

ψ(x, t) changes with time:

∂ψ(x, t)

∂t
= − i

~

[
− ~2

2m

∂2ψ(x, t)

∂x2
+ V (x)ψ(x, t)

]
(4.62)

and
∂ψ∗(x, t)

∂t
= +

i

~

[
− ~2

2m

∂2ψ∗(x, t)

∂x2
+ V (x)ψ∗(x, t)

]
. (4.63)

(From here on I’m going to write ψ(x, t) as ψ and V (x) as V .) Thus

d〈x〉
dt

=
i

~

{∫ +∞

−∞
x

[
− ~2

2m

∂2ψ∗

∂x2
+ V ψ∗

]
ψ dx

−
∫ +∞

−∞
xψ∗

[
− ~2

2m

∂2ψ

∂x2
+ V ψ

]
dx

}
=
i

~

{
− ~2

2m

[∫ +∞

−∞
x
∂2ψ∗

∂x2
ψ dx−

∫ +∞

−∞
xψ∗

∂2ψ

∂x2
dx

]
+

∫ +∞

−∞
xV ψ∗ψ dx−

∫ +∞

−∞
xψ∗V ψ dx

}
= −i ~

2m

[∫ +∞

−∞
x
∂2ψ∗

∂x2
ψ dx−

∫ +∞

−∞
xψ∗

∂2ψ

∂x2
dx

]
. (4.64)
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It seems odd that the two terms involving potential energy cancel, so no

explicit dependence on V (x) appears in this result, but we’ll just push on.

Can we say anything about integrals such as the second integral in

square brackets above? Surprisingly, the answer is yes. If we define

f(x) = xψ∗ and g(x) =
∂ψ

∂x
(4.65)

then ∫ +∞

−∞
xψ∗

∂2ψ

∂x2
dx =

∫ +∞

−∞
f(x)g′(x) dx (4.66)

which suggests integration by parts:∫ +∞

−∞
f(x)g′(x) dx =

[
f(x)g(x)

]+∞

−∞
−
∫ +∞

−∞
f ′(x)g(x) dx. (4.67)

Now remember that the wavefunction is normalized, so it has to fall to

zero at both infinity and negative infinity. Typically the slope ∂ψ/∂x also

falls to zero at both infinity and negative infinity, and does so very rapidly

— much more rapidly than linearly. (There are exceptions to these typical

behaviors, such as scattering wavefunctions, and in these atypical cases this

argument has to be rethought.) The upshot is that in typical situations[
f(x)g(x)

]+∞

−∞
= 0 (4.68)

so ∫ +∞

−∞
xψ∗

∂2ψ

∂x2
dx = −

∫ +∞

−∞

∂(xψ∗)

∂x

∂ψ

∂x
dx. (4.69)

We’ll use this trick several times. . . I’ll just call it the “integration-by-parts

trick”.

Applying this trick to both integrals of equation (4.64) gives

d〈x〉
dt

= −i ~
2m

[
−
∫ +∞

−∞

∂(xψ)

∂x

∂ψ∗

∂x
dx+

∫ +∞

−∞

∂(xψ∗)

∂x

∂ψ

∂x
dx

]
= −i ~

2m

[
−
∫ +∞

−∞
x
∂ψ

∂x

∂ψ∗

∂x
dx−

∫ +∞

−∞
ψ
∂ψ∗

∂x
dx

+

∫ +∞

−∞
x
∂ψ∗

∂x

∂ψ

∂x
dx+

∫ +∞

−∞
ψ∗
∂ψ

∂x
dx

]
= −i ~

2m

[
−
∫ +∞

−∞
ψ
∂ψ∗

∂x
dx+

∫ +∞

−∞
ψ∗
∂ψ

∂x
dx

]
=

~
m
=m

{∫ +∞

−∞
ψ∗
∂ψ

∂x
dx

}
. (4.70)
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Notice that d〈x〉/dt is pure real, as it must be. And notice that the di-

mensions are the same on both sides. (This isn’t proof that we’ve made no

algebra errors, but if our expression for d〈x〉/dt had been complex, or if it

had been dimensionally incorrect, then that would have been proof that we

had made algebra errors.)

All this is fine and good, but it takes us only part way to our goal.

This is clearly not a classical equation. . . it contains ~ right there! Since the

classical F = ma involves the second derivative of position with respect to

time, we take one more time derivative of 〈x〉, finding

d2〈x〉
dt2

=
~
m
=m

{∫ +∞

−∞

∂ψ∗

∂t

∂ψ

∂x
dx+

∫ +∞

−∞
ψ∗

∂

∂x

∂ψ

∂t
dx

}
. (4.71)

The second-order derivative on the right looks particularly grotesque, so we

use the integration-by-parts trick to get rid of it:

d2〈x〉
dt2

=
~
m
=m

{∫ +∞

−∞

∂ψ∗

∂t

∂ψ

∂x
dx−

∫ +∞

−∞

∂ψ∗

∂x

∂ψ

∂t
dx

}
= −2~

m
=m

{∫ +∞

−∞

∂ψ∗

∂x

∂ψ

∂t
dx

}
. (4.72)

Now use the Schrödinger equation:

d2〈x〉
dt2

= −2~
m
=m

{∫ +∞

−∞

∂ψ∗

∂x

{
− i
~

[
− ~2

2m

∂2ψ

∂x2
+ V ψ

]}
dx

}
=

2

m
<e
{∫ +∞

−∞

∂ψ∗

∂x

[
− ~2

2m

∂2ψ

∂x2
+ V ψ

]
dx

}
. (4.73)

Look at that. . . two of the ~s have canceled out! We’re not home yet because

there’s still an ~ within the square brackets, but we’re certainly making

progress. We have that

d2〈x〉
dt2

=
2

m
<e
{
− ~2

2m

∫ +∞

−∞

∂ψ∗

∂x

∂2ψ

∂x2
dx+

∫ +∞

−∞

∂ψ∗

∂x
V ψ dx

}
, (4.74)

but let’s apply the integration-by-parts trick to the first integral:∫ +∞

−∞

∂ψ∗

∂x

∂2ψ

∂x2
dx = −

∫ +∞

−∞

∂2ψ∗

∂x2

∂ψ

∂x
dx. (4.75)

Think about this for a minute: if the integral on the left is z, this equation

says that z = −z∗, whence z is pure imaginary or <e{z} = 0. Thus

d2〈x〉
dt2

=
2

m
<e
{∫ +∞

−∞

∂ψ∗

∂x
V ψ dx

}
, (4.76)
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an expression devoid of ~s! Apply the integration-by-parts trick to this

integral: ∫ +∞

−∞

∂ψ∗

∂x
V ψ dx = −

∫ +∞

−∞
ψ∗
∂(V ψ)

∂x
dx∫ +∞

−∞

∂ψ∗

∂x
V ψ dx = −

∫ +∞

−∞
ψ∗V

∂ψ

∂x
dx−

∫ +∞

−∞
ψ∗
∂V

∂x
ψ dx∫ +∞

−∞

∂ψ∗

∂x
V ψ dx+

∫ +∞

−∞
ψ∗V

∂ψ

∂x
dx = −

∫ +∞

−∞
ψ∗
∂V

∂x
ψ dx

2<e
{∫ +∞

−∞

∂ψ∗

∂x
V ψ dx

}
= −

∫ +∞

−∞
ψ∗
∂V

∂x
ψ dx. (4.77)

Plugging this result back into equation (4.76) gives

d2〈x〉
dt2

= − 1

m

∫ +∞

−∞
ψ∗
∂V

∂x
ψ dx. (4.78)

But the force function is F (x) = −∂V/∂x, so

d2〈x〉
dt2

=
1

m

∫ +∞

−∞
ψ∗(x, t)F (x)ψ(x, t) dx =

1

m
〈F (x)〉. (4.79)

There it is —

〈F (x)〉 = m
d2〈x〉
dt2

. (4.80)

We have proven Ehrenfest’s theorem.

4.11 Transitions induced by light

This section is more intricate than other sections of this book, and it takes

many steps to reach its conclusion. Furthermore, it is not needed as back-

ground for any following section, so you might want to skip over it. But the

steps are valuable and the conclusion itself is one of the most fascinating

and useful relations in all of physics.

The problem. An electron in the ground state of a symmetric potential

well is exposed to light. What is the probability that it transitions through

light absorption to a particular excited state?
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Expectation. I expect that the light would induce transitions from

the ground state to the excited state. If a collection of atoms is exposed to

light for two seconds, there will be twice as many transitions as there were

when those atoms were exposed to light for one second.

- t

0

6

transition probability

0 ���
���

���
���

���
���

���
���

Setup. Call the ground state wavefunction ηg(x) with energy Eg and

the excited state wavefunction ηe(x) with energy Ee. In light of the Einstein

relation (1.21) we define the frequency characteristic of this transition

ω0 = (Ee − Eg)/~. (4.81)

For most symmetric potential wells the mean position for any energy eigen-

state vanishes,

〈x〉g = 0 and 〈x〉e = 0, (4.82)

and we will assume this. (If this assumption is wrong, the derivation needs

to be rethought.)

When no light shines, the Schrödinger time evolution equation is

∂ψ(x, t)

∂t
= − i

~

[
− ~2

2m

∂2ψ(x, t)

∂x2
+ Vwell(x)ψ(x, t)

]
≡ − i

~
[Hwellψ(x, t)] . (4.83)

In this section we abbreviate the term in square brackets as “Hwellψ(x, t)”.

For example, when ψ(x, t) = ηg(x) we have

Hwellηg(x) = Egηg(x), (4.84)
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and when ψ(x, t) = ηe(x) we have

Hwellηe(x) = Eeηe(x). (4.85)

You know how this time evolution behaves: the initial wavefunction

cgηg(x) + ceηe(x) (4.86)

evolves in time to

cge
−(i/~)Egtηg(x) + cee

−(i/~)Eetηe(x). (4.87)

When light does shine, the electron is subject not only to the well’s

potential energy function, but also to the potential energy function due to

the light. If the electric field at the center of the well is E0 cos(ωt), then

that additional potential energy function is

eE0 cos(ωt)x, (4.88)

where the charge on an electron is −e. In this circumstance the wavefunc-

tion no longer evolves like (4.87), but instead like

ψ(t) = cg(t)e
−(i/~)Egtηg(x) + ce(t)e

−(i/~)Eetηe(x). (4.89)

Our job is to find the probability of starting in the ground state and

ending in the excited state. That is, assuming cg(0) = 1 and ce(0) = 0, we

need to find ce(t). The transition probability is then |ce(t)|2.

Time evolution when the light shines. When light shines, the

potential energy function changes from that of the well alone, Vwell(x),

to Vwell(x) + eE0 cos(ωt)x. Thus the Schrödinger time evolution equation

changes from equation (4.83) to

d

dt
ψ(t) = − i

~
[Hwellψ(t) + eE0 cos(ωt)xψ(t)] . (4.90)

First, look at the left-hand side:

d

dt
ψ(t) =

d

dt

[
cg(t)e

−(i/~)Egtηg(x) + ce(t)e
−(i/~)Eetηe(x)

]
(4.91)

=
[
ċg(t)e

−(i/~)Egtηg(x) + ċe(t)e
−(i/~)Eetηe(x)

]
− i

~

[
Egcg(t)e

−(i/~)Egtηg(x) + Eece(t)e
−(i/~)Eetηe(x)

]
.

Meanwhile, on the right-hand side

Hwellψ(t) = cg(t)e
−(i/~)EgtHwellηg(x) + ce(t)e

−(i/~)EetHwellηe(x)

= cg(t)e
−(i/~)EgtEgηg(x) + ce(t)e

−(i/~)EetEeηe(x). (4.92)
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Putting these three equations together gives

ċg(t)e
−(i/~)Egtηg(x) + ċe(t)e

−(i/~)Eetηe(x) (4.93)

= − i

~
eE0 cos(ωt)x

[
cg(t)e

−(i/~)Egtηg(x) + ce(t)e
−(i/~)Eetηe(x)

]
.

Multiply the above equation by η∗e(x) and integrate over all values of x.

Because of orthonormality∫ +∞

−∞
η∗e(x)ηg(x) dx = 0 and

∫ +∞

−∞
η∗e(x)ηe(x) dx = 1, (4.94)

while because 〈x〉e = 0 ∫ +∞

−∞
η∗e(x)x ηe(x) dx = 0. (4.95)

Hence we find

ċe(t)e
−(i/~)Eet = − i

~
eE0 cos(ωt)cg(t)e

−(i/~)Egt

∫ +∞

−∞
η∗e(x)x ηg(x) dx.

(4.96)

The integral on the right is just a (complex) number — not a function

of x, not a function of t — and we’ll call that number 〈e|x|g〉. Recalling

definition (4.81), we write

ċe(t) = − i
~
eE0〈e|x|g〉 cos(ωt)e+iω0tcg(t). (4.97)

If we had multiplied (4.93) instead by η∗g(x) and integrated we would

have found

ċg(t) = − i
~
eE0〈g|x|e〉 cos(ωt)e−iω0tce(t). (4.98)

So far, we have made assumptions but no approximations.

Approximate solution of the time evolution equations. Our

job is to find the transition probability |ce(t)|2 with the initial conditions

cg(0) = 1 and ce(0) = 0. This coupled problem is difficult. However, we

can make progress under conditions where cg(t) and ce(t) change slowly. In

this case replace cg(t) on the right-hand side of (4.97) with its initial value,

namely 1. (This approximation is called “first order perturbation theory

for the time evolution problem”.) This gives

ċe(t) = − i
~
eE0〈e|x|g〉eiω0t cos(ωt) (4.99)
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which integrates with respect to time to

ce(t) = − i
~
eE0〈e|x|g〉

∫ t

0

eiω0t
′
cos(ωt′) dt′. (4.100)

Performing the integral gives∫ t

0

eiω0t
′
cos(ωt′) dt′ = 1

2

∫ t

0

eiω0t
′
(e+iωt′ + e−iωt

′
) dt′

=
1

2

∫ t

0

[
ei(ω0+ω)t′ + ei(ω0−ω)t′

]
dt′

=
1

2

[
ei(ω0+ω)t′

i(ω0 + ω)
+
ei(ω0−ω)t′

i(ω0 − ω)

]t
0

=
1

2i

[
ei(ω0+ω)t − 1

ω0 + ω
+
ei(ω0−ω)t − 1

ω0 − ω

]
.

This full expression is formidable, to put it mildly. But Enrico Fermi20

noticed something about the magnitudes concerned. Look at

ei(ω0+ω)t − 1

ω0 + ω
.

The numerator is a complex number with magnitude between 0 and 2. The

denominator is a real number involving ω which, for light, is about 1015 s−1.

So this fraction will be numerically tiny. Similarly for the piece

ei(ω0−ω)t − 1

ω0 − ω
except that when ω ≈ ω0, the denominator is near zero so the fraction can

be large indeed. In this way Fermi realized that the transition probability

is almost always tiny. It is more than tiny only when ω ≈ ω0, and in that

regime the approximation∫ t

0

eiω0t
′
cos(ωt′) dt′ ≈ 1

2i

ei(ω0−ω)t − 1

ω0 − ω
(4.101)

20Enrico Fermi (1901–1954) of Italy and the United States excelled in both experimental

and theoretical physics. He directed the building of the first nuclear reactor and produced
the first theory of the weak nuclear interaction. The Fermi surface in the physics of metals

was named in his honor. He elucidated the statistics of what are now called fermions in

1926. He produced so many thoughtful conceptual and estimation problems that such
problems are today called “Fermi problems”. I never met him (he died before I was
born) but I have met several of his students, and each of them speaks of him in that

rare tone reserved for someone who is not just a great scientist and a great teacher and
a great leader, but also a great human being.
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is highly accurate.

Furthermore,

1

2i

ei(ω0−ω)t − 1

ω0 − ω
=

1

2i

[ei(ω0−ω)t/2 − e−i(ω0−ω)t/2]ei(ω0−ω)t/2

ω0 − ω
(4.102)

which seems like a step backwards, until you remember that eiθ − e−iθ =

2i sin θ, so

1

2i

ei(ω0−ω)t − 1

ω0 − ω
=

sin[(ω0 − ω)t/2]

ω0 − ω
ei(ω0−ω)t/2. (4.103)

So, at this excellent level of approximation,

ce(t) = − i
~
eE0〈e|x|g〉

sin[(ω0 − ω)t/2]

ω0 − ω
ei(ω0−ω)t/2 (4.104)

and the transition probability is

|ce(t)|2 =
e2E2

0 |〈e|x|g〉|2

~2

sin2[(ω0 − ω)t/2]

(ω0 − ω)2
. (4.105)

Given all the assumptions and approximations we introduced to derive this

result, you might think it’s an obscure equation of limited applicability.

You’d be wrong. It is used so often that Fermi called it the “golden rule”.

Reflection. The transition probability result, graphed below as a func-

tion of time, shows oscillatory behavior called “Rabi21 flopping”. This is

the beat at the heart of an atomic clock.

- t

0 2π
|ω0 − ω|

4π
|ω0 − ω|

6π
|ω0 − ω|

6

transition probability

0

e2E2
0 |〈e|x|g〉|2

~2(ω0 − ω)2

21Isidor Isaac Rabi (1898–1988), Polish-Jewish-American physicist. His fascinating life
cannot be summarized in a few sentences: I recommend John Rigden’s biography Rabi:

Scientist and Citizen (Basic Books, New York, 1987).
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I have made bad guesses in my life, but none worse than the difference

between my expectation graphed on page 167 and the real behavior graphed

above. It’s as if, while hammering a nail into a board, the first few strikes

drive the nail deeper and deeper into the board, but additional strikes make

the nail come out of the board. And one strike (at time 2π/|ω0−ω|) makes

the nail pop out of the board altogether! Is there any way to account for

this bizarre result other than shrugging that “It comes out of the math”?

There is. This is a form of interference22 where the particle moves not

from point to point through two possible slits, but from energy state to

energy state with two possible intermediate states. The initial state is the

ground state and the final state is the ground state. The two possible inter-

mediates are the excited state and the ground state. There is an amplitude

to go from ground state to ground state via the excited state, and an am-

plitude to go from ground state to ground state via the ground state. At

time π/|ω0 − ω| those two amplitudes interfere destructively so there is a

small probability of ending up in the ground state and hence a large prob-

ability of ending up in the excited state. At time 2π/|ω0 − ω| those two

amplitudes interfere constructively so there is a large probability of ending

up in the ground state and hence a small probability of ending up in the

excited state.

Problem

4.15 Explore some more

There’s a lot more to say to flesh out the story told by equation (4.105),

but I’ll restrict myself to one question: The denominator vanishes when

ω = ω0, so you might think that the probability goes to infinity there.

Bad idea. Show that the probability is instead

e2E2
0 |〈e|x|g〉|2

~2

t2

4
.

4.12 Position plus spin

In chapters 2 and 3 we investigated particles with magnetic moment, like

the silver atom, doing our best to treat the quantum mechanics of mag-
22This point of view is expounded by R.P. Feynman and A.R. Hibbs in section 6-5 of
Quantum Mechanics and Path Integrals, emended edition (Dover Publications, Mineola,

NY, 2010).
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netic moment while ignoring the quantum mechanics of position. Then in

chapter 4 we investigated the quantum mechanics of position, ignoring the

quantum mechanics of magnetic moment. For historical reasons, the mag-

netic moment is said to reflect the intrinsic “spin” of a particle. It’s time

to weld the two pieces of spin and position together.

This is achieved in a straightforward way. Think back to our discussion

of bin amplitudes for a single particle in one dimension. We asked the

question “What is the amplitude for the particle to be found in bin i?” But

if the particle has a two-basis-state spin, like a silver atom, we have to ask

the question “What is the amplitude for the particle to be found in bin i

with spin up?” Or “What is the amplitude for the particle to be found in

bin i with spin down?” (Alternatively we might ask for x-spin positive or

x-spin negative, or 17◦-spin positive or negative, or for the projection on

any other axis, but it’s conventional to focus on the vertical axis.) We’ll

call the answer to the first question ψi,+, the answer to the second question

ψi,−, and we’ll write the two answers together as

ψi(+
1
2 ) = ψi,+ and ψi(− 1

2 ) = ψi,−

so that the answer to both questions at once is ψi(ms), where ms = ± 1
2 .

(The choice ms = ± 1
2 instead of ms = ±1 or even ms = ±3π is again for

historical reasons.)

Now do the standard thing: divide by the square root of bin size and take

the limit as bin size shrinks to zero. This quantity becomes an amplitude

density (wavefunction)

ψ(x,ms) where −∞ < x < +∞ and ms = ± 1
2 .

Sometimes people write this as two separate wavefunctions:

ψ+(x) = ψ(x,+ 1
2 ) and ψ−(x) = ψ(x,− 1

2 ).

And sometimes they write it as a “spatial part” times a “spin part”:

ψ+(x) = φ(x)χ+ and ψ−(x) = ξ(x)χ−.

But don’t let the notation fool you: all of these expressions represent the

same thing.

It might happen that the two spatial parts are equal, φ(x) = ξ(x), in

which case we can say

ψ(x,ms) = φ(x)χ(ms) where χ(+ 1
2 ) = χ+ and χ(− 1

2 ) = χ−.
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But not all wavefunctions factorize in this way.

If the atom were nitrogen, with four possible spin projections (see

page 45), then we would have to ask “What is the amplitude for the ni-

trogen atom to be found in bin i with vertical spin projection + 3
2?” or + 1

2

or − 1
2 or − 3

2 . (Alternatively we might ask “What is the amplitude for the

nitrogen atom to be found in bin i with a projection on the 67◦ axis of

− 3
2?”) After asking these questions and taking the appropriate limits, the

relevant wavefunction will be

ψ(x,ms) where −∞ < x < +∞ and ms = + 3
2 ,+

1
2 ,−

1
2 ,−

3
2 .

In the same way for an atom of sulfur, with five possible spin projections,

the relevant wavefunction will be

ψ(x,ms) where −∞ < x < +∞ and ms = +2,+1, 0,−1,−2.

If the atom moves in three dimensions, the wavefunction will take the

form

ψ(x, y, z,ms) ≡ ψ(x), (4.106)

where the single sans serif symbol x stands for the four variables x, y, z,ms.

[Because the variables x, y, and z are continuous, while the variable ms is

discrete, one sometimes sees the dependence on ms written as a subscript

rather than as an argument: ψms
(x, y, z). This is a bad habit: ms is a

variable not a label, and it should not be notated as a second-class variable

just because it’s discrete.]

The electron is a spin- 1
2 particle. So are the positron and the muon,

and all the quarks. Protons and neutrons are composite particles, made up

of quarks, but the quarks combine in such a way that the proton and the

neutron are spin- 1
2 particles. The He3 atom is also a composite particle,

made up of protons, neutrons, and electrons, but in its ground state it has

spin 1
2 . The same applies, as we’ve seen extensively in chapters 3 and 4,

for the silver atom.

The Higgs boson is a spin-0 particle. So is the composite He4 atom (in

its ground state). The photon is a spin-1 particle, but it does not behave

like a typical massive spin-1 particle because it is intrinsically relativistic.

Epilogue

The quantum mechanics of position is very strange, yes.

And it’s very difficult, yes.

But it’s also very wonderful.
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Problems

4.16 Spin- 1
2 electron in a potential well, I (essential problem)

All electrons are spin- 1
2 particles. Using the χ+, χ− notation, write

down the wavefunction for an electron ambivating in a potential well

with energy eigenfunctions ηn(x):

a. with amplitude 4
5 of being in the spatial ground state (n = 1) with

spin up and amplitude 3
5 of being in the spatial n = 3 state with

spin down;

b. with amplitude 4
5 of being in the spatial ground state (n = 1) with

spin up and amplitude 3
5 of being in the spatial n = 3 state with

negative spin projection on the x axis (see equation 3.19).

4.17 Spin- 1
2 electron in a potential well, II

An electron ambivates in a potential well with with energy eigenvalues

En and energy eigenfunctions ηn(x). The electron’s wavefunction is

3
5η3(x)χ+ + 4

5η4(x)χ−.

a. What is the mean energy?

b. If the vertical spin projection is measured, what is the probability

of finding +? (That is, of finding ms = + 1
2 .)

c. The vertical spin projection is measured and found to be +. Now

what is the mean energy?

4.18 Questions (recommended problem)

Update your list of quantum mechanics questions that you started at

problem 1.17 on page 46. Write down new questions and, if you have un-

covered answers to any of your old questions, write them down briefly.

[[For example, one of my questions would be: “What are the detailed

mechanisms for the energy loss outlined in section 4.8?”]]





Chapter 5

Solving the Energy Eigenproblem

Energy eigenproblems are important: they determine the “allowed” energy

eigenvalues, and, as chapter 1 made clear, such energy quantization is the

most experimentally accessible facet of quantum mechanics. Also, the eas-

iest way to solve the time evolution problem is to first solve the energy

eigenproblem. This chapter focuses only on the spatial part of the wave-

function and ignores any spin part. For particles with spin, the two parts

can be welded together using the techniques of section 4.12 on page 172.

In fact, Erwin Schrödinger discovered the energy eigenproblem first (in

December 1925) and five months later discovered the time evolution equa-

tion, which he called “the true wave equation”. Today, both equations

carry the name “Schrödinger equation”, which can result in confusion.

There are large numbers of analytic and numerical techniques for solving

eigenproblems. Most of these are effective but merely technical: they find

the answer, but don’t give any insight into the character of the resulting

energy eigenfunctions. For example, if you study more quantum mechanics

you will find that for the simple harmonic oscillator, V (x) = 1
2kx

2, the

energy eigenfunctions are

ηn(x) =

( √
km/~

22n(n!)2π

)1/4

e−(
√
km/2~)x2

Hn((
√
km/~)1/2x) (5.1)

for n = 0, 1, 2, 3, . . .

where the Hermite polynomials are defined through

Hn(z) = (−1)nez
2 dne−z

2

dzn
.

Yikes! This is true, but provides little insight.

177
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This chapter presents two of the many solution techniques available.

First we investigate an informal, rough-and-ready technique for sketching

energy eigenfunctions that doesn’t give rigorous solutions, but that does

provide a lot of insight. Second comes a numerical technique of wide appli-

cability.

Put both of these techniques into your problem-solving toolkit. You’ll

find them valuable not only in quantum mechanics, but whenever you need

to solve a second-order ordinary differential equation.

5.1 Sketching energy eigenfunctions

Since this chapter is more mathematical than physical in character, I start

off by writing the energy eigenequation (4.31) in the mathematically sug-

gestive form

d2η(x)

dx2
= −2m

~2
[E − V (x)]η(x) = −2m

~2
Kc(x)η(x) (5.2)

which defines the “classical kinetic energy function” Kc(x). This parallels

the potential energy function: V (x) is the potential energy that the classical

system would have if the particle were located at x. I’m not saying that

the particle is classical nor that it does have a location; indeed a quantal

particle might not have a location. But V (x) is the potential energy that the

system would have if it were classical with the particle located at point x.

In the same way Kc(x) is the kinetic energy that a classical particle would

have if the particle were located at x and total energy were E. Whereas

no classical particle can ever have a negative kinetic energy, it is perfectly

permissible for the classical kinetic energy function to be negative: in the

graph that follows, Kc(x) is negative on the left, positive in the center, and

strongly negative on the right.
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E

V (x)

Kc(x)

classically
prohibited
region:
Kc negative

classically
allowed
region:
Kc positive

classically
prohibited
region:
Kc negative

A region were Kc(x) is positive or zero is called a “classically allowed re-

gion”; otherwise it is a “classically prohibited region”.

Remember that

dη

dx
represents slope;

d2η

dx2
represents curvature.

When curvature is positive, the slope increases as x increases (e.g. from neg-

ative to positive, or from positive small to positive large). When curvature

is negative, the slope decreases as x increases.

Start off by thinking of a classically allowed region where Kc(x) is

constant and positive. Equation (5.2) says that if η(x) is positive, then

the curvature is negative, whereas if η(x) is negative, then the curvature

is positive. Furthermore, the size of the curvature depends on the size of

η(x):

when η(x) is. . . curvature is. . .

strongly positive strongly negative

weakly positive weakly negative

zero zero

weakly negative weakly positive

strongly negative strongly positive

These observations allow us to find the character of η(x) without finding a

formal solution. If at one point η(x) is positive with positive slope, then

moving to the right η(x) will grow because of the positive slope, but that

growth rate will decline because of the negative curvature. Eventually
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the slope becomes zero and then negative, but the curvature continues

negative. Because of the negative slope, η(x) eventually plunges through

η(x) = 0 (where its curvature is zero) and into regions where η(x) is negative

and hence the curvature is positive. The process repeats to produce the

following graph:

η(x)

x

weak
negative
curvature

strong
negative
curvature

zero
curvature

weak
positive
curvature

strong
positive
curvature

etc.

[[You can solve differential equation (5.2) formally to obtain

η(x) = A sin((
√

2mKc/~)x+ φ) (5.3)

where A and φ are adjusted to fit the initial or boundary conditions. In

fact, this is exactly the equation that we already solved at (4.17). The

formal approach has the advantage of finding an exact expression for the

wavelength. The informal approach has the advantage of building your

intuition.]]
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The direct way of keeping track of curvature in this classically allowed

region is

negative curvature when η(x) is positive;

positive curvature when η(x) is negative.

But this is sort of clunky: to keep track of curvature, you have to keep

track of height. A compact way of keeping track of the signs is that

in a classically allowed region, (5.4)

the eigenfunction curves toward the axis.

It doesn’t slope toward the axis, as you can see from the graph, it curves

toward the axis. Draw a tangent to the energy eigenfunction: in a classically

allowed region, the eigenfunction will fall between that tangent line and the

axis.

In fact, the informal approach uncovers more than just the oscillatory

character of η(x). Equation (5.2) shows that when Kc is large and positive,

the “curving toward” impetus is strong; when Kc is small and positive,

that impetus is weak. Thus when Kc is large, the wavefunction takes tight

turns and snaps back toward the axis; when Kc is small, it lethargically

bends back toward the axis. And sure enough the formal approach at

equation (5.3) shows that the wavelength λ depends on Kc through

λ =
2π~√
2mKc

, (5.5)

so a large Kc results in a short wavelength — a “tight turn” toward the

axis.

Now turn your attention to a classically prohibited region where

Kc(x) is constant and negative. Equation (5.2) says that if η(x) is positive,

then the curvature is positive. Once again we can uncover the character

of η(x) without finding a formal solution. If at one point η(x) is positive

with positive slope, then moving to the right η(x) will grow because of

the positive slope, and that growth rate increases because of the positive

curvature. The slope becomes larger and larger and η(x) rockets to infinity.

Or, if η(x) starts out negative with negative slope, then it rockets down to

negative infinity. Or, if η(x) starts out positive with negative slope, it

might cross the axis before rocketing down to negative infinity, or it might

dip down toward the axis without crossing it, before rocketing up to positive

infinity.
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η(x)

x

weak
positive
curvature

strong
positive
curvature

zero
curvature

[[You can solve differential equation (5.2) formally to obtain

η(x) = Ae+(
√

2m|Kc|/~)x +Be−(
√

2m|Kc|/~)x

where A and B are adjusted to fit the initial or boundary conditions.]]

The direct way of keeping track of curvature in this classically prohibited

region is

positive curvature when η(x) is positive;

negative curvature when η(x) is negative.

But a compact way is remembering that

in a classically prohibited region, (5.6)

the eigenfunction curves away from the axis.

Draw a tangent to the energy eigenfunction: in a classically prohibited

region, that tangent line will fall between the eigenfunction and the axis.

Let’s apply all these ideas to finding the character of energy eigenfunc-

tions in a finite square well. Solve differential equation (5.2) for an energy

E just above the bottom of the well. (I will draw the potential energy func-

tion in olive green, the energy E in blue, and the solution η(x) in red.)
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Suppose the wavefunction starts out on the left small and just above the

axis. The region is strongly prohibited, that is Kc(x) is strongly negative,

so η(x) curves strongly away from the axis. Then (at the dashed vertical

line) the solution moves into a classically allowed region. But Kc(x) is only

weakly positive, so η(x) curves only weakly toward the axis. By the time

the solution gets to the right-hand classically prohibited region at the next

dashed vertical line, η(x) has only a weakly negative slope. In the prohib-

ited region the slope increases as η(x) curves strongly away from the axis

and rockets off to infinity.

x

curve strongly

away from
axis

curve weakly

toward
axis

curve strongly

away from
axis

You should check that the curvatures and tangents of this energy eigen-

function strictly obey the rules set down at (5.4) and (5.6). What happens

when η(x) crosses a dashed vertical line, the boundary between a classically

prohibited and a classically allowed region?

If you have studied differential equations you know that for any value

of E, equation (5.2) has two linearly independent solutions. We’ve just

sketched one of them. The other is the mirror image of it: small to the

right and rocketing to infinity toward the left. Because of the “rocketing off

to infinity” neither solution is normalizable. So these two solutions don’t

correspond to any physical energy eigenstate. To find such a solution we

have to try a different energy.
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So we try an energy slightly higher. Now the region on the left is not so

strongly prohibited as it was before, so η(x) curves away from the axis less

dramatically. Then when it reaches the classically allowed region it curves

more sharply toward the axis, so that it’s strongly sloping downward when

it reaches the right-hand prohibited region. But not strongly enough: it

curves away from the axis and again rockets off to infinity — although this

time not so dramatically.

x

Once again we find a solution (and its mirror image is also a solution), but

it’s a non-physical, unnormalizable solution.

As we try energies higher and higher, the “rocketing to infinity” happens

further and further to the right, until at one special energy it doesn’t happen

at all. Now the wavefunction is normalizable, and now we have found an

energy eigenfunction.
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x

What happens when we try an energy slightly higher still? At the

right-hand side the wavefunction now rockets off to negative infinity! With

increased energies, the wavefunction rockets down to negative infinity with

increased drama. But then at some point, the drama decreases: as the

energy rises the wavefunction continues to go to negative infinity, but it does

so more and more slowly. Finally at one special energy the wavefunction

settles down exactly to zero as x → ∞, and we’ve found a second energy

eigenfunction.
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x

(The misconception concerning “pointlike particles moving across a node”,

discussed on page 140, applies to this state as well.)

The process continues: with still higher values of E, the wavefunction

η(x) diverges to positive infinity as x → ∞ until we reach a third special

energy eigenvalue, then to negative infinity until we reach a fourth. Higher

and higher energies result in higher and higher values of Kc and hence

stronger and stronger snaps back toward the axis. The first (lowest) eigen-

function has no nodes, the second has one node, the third will have two

nodes, and in general the nth energy eigenfunction will have n − 1 nodes.

(See also the discussion on page 190.)

Notice that for a potential energy function symmetric about a point, the

energy eigenfunction is either symmetric or antisymmetric about that point.

The energy eigenfunction does not need to possess the same symmetry as

the potential energy function. (See also problem 5.7, “Parity”.)
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What about a “lopsided” square well that lacks symmetry? In the

case sketched below the energy is strongly prohibited to the left, weakly

prohibited to the right. Hence the wavefunction curves away sharply to the

left, mildly to the right. The consequence is that the tail is short on the

left, long on the right.

x

strongly prohibited

curve strongly away from axis

weakly prohibited

curve weakly away from axis

In some way it makes sense that the wavefunction tail should be longer

where the classical prohibition is milder.
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Now try a square well with two different floor levels:

Within the deep left side of the well, Kc is relatively high, so the tendency

for η to curve toward the axis is strong; within the shallow right side Kc is

relatively low, so the tendency to curve toward the axis is weak. Thus within

the deep side of the well, η(x) snaps back toward the axis, taking the curves

like an expertly driven sports car; within the shallow side η(x) leisurely

curves back toward the axis, curving like a student driver in a station

wagon. Within the deep side, wavelength will be short and amplitude will

be small; within the shallow side, wavelength will be longer and amplitude

will be large (or at least the same size). One finds smaller amplitude at

the deeper side of the well, and hence, all other things being equal, smaller

probability for the particle to be in the deep side of the well.
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x

This might seem counterintuitive: Shouldn’t it be more probable for the

particle to be in the deep side? After all, if you throw a classical marble

into a bowl it comes to rest at the deepest point and spends most of its

time there. The problem with this analogy is that it compares a classical

marble rolling with friction to a quantal situation without friction. Imagine

a classical marble rolling instead in a frictionless bowl: it never does come to

rest at the deepest point of the bowl. In fact, at the deepest point it moves

fastest: the marble spends little time at the deepest point and a lot of time

near the edges, where it moves slowly. The classical and quantal pictures

don’t correspond exactly (there’s no such thing as an energy eigenstate

in classical mechanics, the classical marble always has a position, and its

description never has a node), but the two pictures agree that the particle

has high probability of appearing where the potential energy function is

shallow, not deep.
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Similar results hold for three-level square wells, for four-level square

wells, and so forth. And because any potential energy function can be

approximated by a series of steps, similar results hold for any potential

energy function.

Number of nodes. For the infinite square well, the energy eigen-

function ηn(x) has n − 1 interior nodes. The following argument1 shows

that same holds for any one-dimensional potential energy function V (x).

Imagine a modified potential

Va(x) =


∞ x ≤ −a
V (x) −a < x < +a

∞ +a ≤ x
.

When a is very small this is virtually an infinite square well, whose en-

ergy eigenfunctions we know. As a grows larger and larger, this potential

becomes more and more like the potential of interest V (x). During this

expansion, can an extra node pop into an energy eigenfunction? If it does,

then at the point xp where it pops in the wavefunction vanishes, η(xp) = 0,

and its slope vanishes, η′(xp) = 0. But the energy eigenproblem is a second-

order ordinary differential equation: the only solution with η(xp) = 0 and

η′(xp) = 0 is η(x) = 0 everywhere. This is not an eigenfunction. This can

never happen.

1M. Moriconi, “Nodes of wavefunctions” American Journal of Physics 75 (March 2007)

284–285.
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Summary

In classically prohibited regions, the eigenfunction magnitude de-

clines while stepping away from the well: the stronger the pro-

hibition, the more rapid the decline.

In classically allowed regions, the eigenfunction oscillates: in re-

gions that are classically fast, the oscillation has small ampli-

tude and short wavelength; in regions that are classically slow,

the oscillation has large amplitude and long wavelength.

If the potential energy function is symmetric under reflection about

a point, the eigenfunction will be either symmetric or antisym-

metric under the same reflection.

The nth energy eigenfunction has n− 1 nodes.

Quantum mechanics involves situations (very small) and phenomena

(interference, entanglement) remote from daily experience. And the energy

eigenproblem, so central to quantum mechanics, does not arise in classical

mechanics at all. Some people conclude from these facts that one cannot

develop intuition about quantum mechanics, but that is false: the tech-

niques of this section do allow you to develop a feel for the character of

energy eigenstates. Just as chess playing or figure skating must be stud-

ied and practiced to develop proficiency, so quantum mechanics must be

studied and practiced to develop intuition. If people don’t develop intu-

ition regarding quantum mechanics, it’s not because quantum mechanics is

intrinsically fantastic; it’s because these people never try.
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Problems

5.1 Would you buy a used eigenfunction from this man?

(recommended problem)

The four drawings below and on the next pages show four one-

dimensional potential energy functions V (x) (in olive green) along with

candidate energy eigenfunctions η(x) (in red) that purport to associate

with those potential energy functions. There is something wrong with

every candidate. Using the letter codes below, identify all eigenfunc-

tion errors, and sketch a qualitatively correct eigenfunction for each

potential.

The energy eigenfunction is drawn incorrectly because:

A. Wrong curvature. (It curves toward the axis in a classi-

cally prohibited region or away from the axis in a classi-

cally allowed region.)

B. Its wavy part has the wrong number of nodes.

C. The amplitude of the wavy part varies incorrectly.

D. The wavelength of the wavy part varies incorrectly.

E. One or more of the declining tails has the wrong length.

a.

x

E3

η3(x)
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b.

x

E4

η4(x)

c.

x

E5

η5(x)



194 Sketching energy eigenfunctions

d.

x

E6

η6(x)

5.2 Simple harmonic oscillator energy eigenfunctions

Here are sketches of the three lowest-energy eigenfunctions for the po-

tential energy function V (x) = 1
2kx

2 (called the “simple harmonic os-

cillator”). In eight sentences or fewer, describe how these energy eigen-

functions do (or don’t!) display the characteristics discussed in the

summary on page 191.
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5.3 de Broglie wavelength

Compare equation (5.5) to the formula for de Broglie wavelength. Does

this shed any light on the question (see page 46) of “what is waving”

in a de Broglie wave?

5.4 Wavelength as a function of Kc

Before equation (5.5) we provided an informal argument that the wave-

length λ would decrease with increasing Kc. This argument didn’t say

whether λ would vary as 1/Kc, or as 1/
√
Kc, or even as e−Kc/(constant).

Produce a dimensional argument showing that if λ depends only on ~,

m, and Kc, then it must vary as ~/
√
mKc.

5.5 “At least the same size amplitude”

Page 188 claims that in the two-level square well, the amplitude of η(x)

on the right would be larger “or at least the same size” as the amplitude

on the left. Under what conditions will the amplitude be the same size?
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5.6 Placement of nodes

Let ηn(x) and ηm(x) be solutions to

− ~2

2M
η′′m(x) + V (x)ηm(x) = Emηm(x) (5.7)

− ~2

2M
η′′n(x) + V (x)ηn(x) = Enηn(x) (5.8)

with Em > En. The Sturm comparison theorem states that between

any two nodes of ηn(x) there exists at least one node of ηm(x). Prove

the theorem through contradiction by following these steps:

a. Multiply (5.7) by ηn, multiply (5.8) by ηm, and subtract to show

that

− ~2

2M
[η′m(x)ηn(x)−ηm(x)η′n(x)]′ = (Em−En)ηm(x)ηn(x). (5.9)

b. Call two adjacent nodes of ηn(x) by the names x1 and x2. Argue

that we can select ηn(x) to be always positive for x1 < x < x2,

and show that with this selection η′n(x1) > 0 while η′n(x2) < 0.

c. Integrate equation (5.9) from x1 to x2, producing

− ~2

2M
[−ηm(x2)η′n(x2) + ηm(x1)η′n(x1)]

= (Em − En)

∫ x2

x1

ηm(x)ηn(x) dx. (5.10)

d. If ηm(x) does not have a zero within x1 < x < x2, then argue that

we can select ηm(x) always positive on the same interval, including

the endpoints.

The assumption that “ηm(x) does not have a zero” hence implies that

the left-hand side of (5.10) is strictly negative, while the right-hand

side is strictly positive. This assumption, therefore, must be false.

5.7 Parity

a. Think of an arbitrary potential energy function V (x). Now think

of its mirror image potential energy function U(x) = V (−x) Show

that if η(x) is an eigenfunction of V (x) with energy E, then σ(x) =

η(−x) is an eigenfunction of U(x) with the same energy.

b. If V (x) is symmetric under reflection about the origin, that is

U(x) = V (x), you might think that σ(x) = η(x). But no! This

identification ignores global phase freedom (pages 107 and 124).

Show that in fact σ(x) = rη(x) where the “overall phase factor”

r is a complex number with magnitude 1.
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c. The overall phase factor r is a number, not a function of x: the

same phase factor r applies at x = 2 (η(−2) = rη(2)), at x = 7

(η(−7) = rη(7)), and at x = −2 (η(2) = rη(−2)). Conclude that

r can’t be any old complex number with magnitude 1, it must be

either +1 or −1.

Energy eigenfunctions symmetric under reflection, η(x) = η(−x), are

said to have “even parity” while those antisymmetric under reflection,

η(x) = −η(−x), are said to have “odd parity”.

5.8 Scaling

Think of an arbitrary potential energy function V (x), for example per-

haps the one sketched on the left below. Now think of another po-

tential energy function U(y) that is half the width and four times the

depth/height of V (x), namely U(y) = 4V (x) where y = x/2. Without

solving the energy eigenproblem for either V (x) or U(y), I want to find

how the energy eigenvalues of U(y) relate to those of V (x).

 

 

 

 

V (x) U(y)

x y

Show that if η(x) is an eigenfunction of V (x) with energy E, then

σ(y) = η(x) is an eigenfunction of U(y). What is the corresponding

energy? After working this problem for the scale factor 2, repeat for a

general scale factor s so that U(y) = s2V (x) where y = x/s.

[[This problem has a different cast from most: instead of giving you a

problem and asking you to solve it, I’m asking you to find the relation-

ship between the solutions of two different problems, neither of which

you’ve solved. My thesis adviser, Michael Fisher, called this “Juicing

an orange without breaking its peel.”]]
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5.2 Scaled quantities

Look again at the quantal energy eigenproblem (5.2)

d2η(x)

dx2
= −2m

~2
[E − V (x)]η(x). (5.11)

Suppose you want to write a computer program to solve this problem for

the lopsided square well with potential energy function

V (x) =


V1 x < 0

0 0 < x < L

V2 L < x

. (5.12)

The program would have to take as input the particle mass m, the energy

E, the potential well length L, and the potential energy values V1 and

V2. Five parameters! Once the program is written, you’d have to spend a

lot of time typing in these parameters and exploring the five-dimensional

parameter space to find interesting values. Furthermore, these parameters

have inconvenient magnitudes like the electron’s mass 9.11 × 10−31 kg or

the length of a typical carbon nanotube 1.41 × 10−10 m. Isn’t there an

easier way to set up this problem?

There is. The characteristic length for this problem is L. If you try to

combine the parameters L, m, and ~ to form a quantity with the dimensions

of energy (see sample problem 5.2.1 on page 200) you will find that there

is only one way: this problem’s characteristic energy is Ec = ~2/mL2.

Define the dimensionless length variable x̃ = x/L, the dimensionless energy

parameter Ẽ = E/Ec, and the dimensionless potential energy function

Ṽ (x̃) = V (x̃L)/Ec = V (x)/Ec.

In terms of these new so-called “scaled quantities” the quantal energy

eigenproblem is

d2η(x̃)

dx̃2

1

L2
= −2m

~2

[
~2

mL2

]
[Ẽ − Ṽ (x̃)]η(x̃)

or

d2η(x̃)

dx̃2
= −2[Ẽ − Ṽ (x̃)]η(x̃) (5.13)

where

Ṽ (x̃) =


Ṽ1 x̃ < 0

0 0 < x̃ < 1

Ṽ2 1 < x̃

. (5.14)
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The scaled problem has many advantages. Instead of five there are only

three parameters: Ẽ, Ṽ1, and Ṽ2. And those parameters have nicely sized

values like 1 or 0.5 or 6. But it has the disadvantage that you have to write

down all those tildes. Because no one likes to write down tildes, we just

drop them, writing the problem as

d2η(x)

dx2
= −2[E − V (x)]η(x) (5.15)

where

V (x) =


V1 x < 0

0 0 < x < 1

V2 1 < x

(5.16)

and saying that these equations are written down “using scaled quantities”.

When you compare these equations with equations (5.11) and (5.12),

you see that we would get the same result if we had simply said “let ~ =

m = L = 1”. This phrase as stated is of course absurd: ~ is not equal to

1; ~, m, and L do have dimensions. But some people don’t like to explain

what they’re doing so they do say this as shorthand. Whenever you hear

this phrase, remember that it covers up a more elaborate — and more

interesting — truth.
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5.2.1 Sample Problem: Characteristic energy

Show that there is only one way to combine the quantities L, m, and ~ to

form a quantity with the dimensions of energy, and find an expression for

this so-called characteristic energy Ec.

Solution:

quantity dimensions

L [length]

m [mass]

~ [mass]× [length]
2
/[time]

Ec [mass]× [length]
2
/[time]

2

If we are to build Ec out of L, m, and ~, we must start with ~, because

that’s the only source of the dimension [time]. And in fact we must start

with ~2, because that’s the only way to make a [time]
2
.

quantity dimensions

L [length]

m [mass]

~2 [mass]
2 × [length]

4
/[time]

2

Ec [mass]× [length]
2
/[time]

2

But ~2 has too many factors of [mass] and [length] to make an energy.

There is only one way to get rid of them: to divide by m once and by L

twice.

quantity dimensions

~2/mL2 [mass]× [length]
2
/[time]

2

Ec [mass]× [length]
2
/[time]

2

There is only one possible characteristic energy, and it is Ec = ~2/mL2.
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Problems

5.9 Characteristic time

Find the characteristic time for the square well problem by combining

the parameters L, m, and ~ to form a quantity with the dimensions

of time. Compare this characteristic time to the infinite square well

revival time found at equation (4.25).

5.10 Scaling for the simple harmonic oscillator

(recommended problem)

Execute the scaling strategy for the simple harmonic oscillator poten-

tial energy function V (x) = 1
2kx

2. What is the characteristic length in

terms of k, ~, and m? What is the resulting scaled energy eigenprob-

lem? If you didn’t like to explain what you were doing, how would you

use shorthand to describe the result of this scaling strategy?

5.3 Numerical solution of the energy eigenproblem

Now that the quantities are scaled, we return to our task of writing a

computer program to solve, numerically, the energy eigenproblem. In order

to fit the potential energy function V (x) and the energy eigenfunction η(x)

into a finite computer, we must of course approximate those continuum

functions through their values on a finite grid. The grid points are separated

by a small quantity ∆. It is straightforward to replace the function V (x)

with grid values Vi and the function η(x) with grid values ηi. But what

should we do with the second derivative d2η/dx2?
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Start with a representation of the grid function ηi:

- x

i− 1 i i+ 1

6

6

6
ηi−1

ηi

ηi+1

The slope at a point halfway between points i−1 and i (represented by the

left dot in the figure below) is approximately

ηi − ηi−1

∆
,

while the slope half way between the points i and i+ 1 (represented by the

right dot) is approximately

ηi+1 − ηi
∆

.

- x

i− 1
u

i
u

i+ 1

6

6

6"
"
"
"
""
aaaaaa

ηi − ηi−1

∆

ηi+1 − ηi
∆

An approximation for the second derivative at point i is the change in slope

divided by the change in distance

ηi+1 − ηi
∆

− ηi − ηi−1

∆
∆
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so at point i we approximate

d2η

dx2
≈ ηi+1 − 2ηi + ηi−1

∆2
. (5.17)

The discretized version of the energy eigenproblem (5.15) is thus

ηi+1 − 2ηi + ηi−1

∆2
= −2[E − Vi]ηi (5.18)

which rearranges to

ηi+1 = 2[1 + ∆2(Vi − E)]ηi − ηi−1. (5.19)

The algorithm then proceeds from left to right. Start in a classically pro-

hibited region and select η1 = 0, η2 = 0.001. Then find

η3 = 2[1 + ∆2(V2 − E)]η2 − η1.

Now that you know η3, find

η4 = 2[1 + ∆2(V3 − E)]η3 − η2.

Continue until you know ηi at every grid point.

For most values of E, this algorithm will result in a solution that rockets

to ±∞ at the far right. When you pick a value of E where the solution

approaches zero at the far right, you’ve found an energy eigenvalue. The

algorithm is called “shooting”, because it resembles shooting an arrow at a

fixed target: your first shot might be too high, your second too low, so you

try something between until you home in on your target.

Problems

5.11 Program

a. Implement the shooting algorithm using a computer spreadsheet,

your favorite programming language, or in any other way. You

will have to select reasonable values for ∆ and η2.

b. Check your implementation by solving the energy eigenproblem

for a free particle and for an infinite square well.

c. Find the three lowest-energy eigenvalues for a square well with

V1 = V2 = 30. Do the corresponding eigenfunctions have the

qualitative character you expect?

d. Repeat for a square well with V1 = 50 and V2 = 30.
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5.12 Algorithm parameter

Below equation (5.19) I suggested that you start the stepping algorithm

with η1 = 0, η2 = 0.001. What would have happened had you selected

η1 = 0, η2 = 0.003 instead?

5.13 Simple harmonic oscillator

(Work problem 5.10 on page 201 before working this one.)

Implement the algorithm for a simple harmonic oscillator using scaled

quantities. Find the five lowest-energy eigenvalues, and compare them

to the analytic results 0.5, 1.5, 2.5, 3.5, and 4.5.

5.14 Questions (recommended problem)

Update your list of quantum mechanics questions that you started at

problem 1.17 on page 46. Write down new questions and, if you have un-

covered answers to any of your old questions, write them down briefly.

[[For example, one of my questions would be: “For any value of E —

energy eigenvalue or no — equation (5.2) has two linearly independent

solutions. We saw on page 183 that often the two linearly independent

solutions are mirror images, one rocketing off to infinity as x → +∞
and the other rocketing off to infinity as x→ −∞. But what about the

energy eigenfunctions, which go to zero as x → ±∞? What does the

other linearly independent solution look like then?”]]



Chapter 6

Identical Particles

6.1 Two or three identical particles

Please review section 4.4, “Wavefunction: Two particles in one or three

dimensions”, on page 127. In that section we talked about two different

particles, say an electron and a neutron. We set up a grid, discussed bin

amplitudes ψi,j , and talked about the limit as the width of each bin shrank

to zero.

There is a parallel development for two identical particles, but with one

twist. Here is the situation when one particle is found in bin 5, the other

in bin 8:

5 8
x

And here is the situation when one particle is found in bin 8, the other in

bin 5:

5 8
x

No difference, of course. . . that’s the meaning of “identical”. And of course

this holds not only for bins 5 and 8, but for any pair of bins i and j, even if

i = j. (If the two particles don’t interact, it is perfectly plausible for both

of them to occupy the same bin at the same time.)

What does this mean for the state of a system with two identical par-

ticles? Suppose that, by hook or by crook, we come up with a set of bin

205
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amplitudes ψi,j that describes the state of the system. Then the set of

amplitudes φi,j = ψj,i describes that state just as well as the original set

ψi,j . Does this mean that φi,j = ψi,j? Not at all. Remember global phase

freedom (pages 107 and 124): If every bin amplitude is multiplied by the

same “overall phase factor” — a complex number with magnitude unity

— then the resulting set of amplitudes describes the state just as well as

the original set did. Calling that overall phase factor s, we conclude that

φi,j = sψi,j .

But, because φi,j = ψj,i, the original set of amplitudes must satisfy

ψj,i = sψi,j . The variable name s comes from “swap”: when we swap

subscripts, we introduce a factor of s. The quantity s is a number. . . not

a function of i or j. For example, the same value of s must work for

ψ8,5 = sψ5,8, for ψ7,3 = sψ3,7, for ψ5,8 = sψ8,5, . . . . Wait. What was that

last one? Put together the first and last examples:

ψ8,5 = sψ5,8 = s(sψ8,5) = s2ψ8,5.

Clearly, s2 = 1, so s can’t be any old complex number with magnitude

unity: it can be only s = +1 or s = −1.

Execute the now-familiar program of turning bin amplitudes into am-

plitude density, that is wavefunction, to find that

ψ(xA, xB) = +ψ(xB , xA) or ψ(xA, xB) = −ψ(xB , xA). (6.1)

The first kind of wavefunction is called “symmetric under coordinate swap-

ping”, the second is called “antisymmetric under coordinate swapping”.

This requirement for symmetry or antisymmetry under coordinate swap-

ping is called the Pauli1 principle.

It might distress you to see variables like xA: doesn’t xA mean the

position of particle “A” while xB means the position of particle “B”? So

doesn’t this terminology label the particles as “A” and “B”, which would
1Wolfgang Pauli (1900–1958), Vienna-born Swiss physicist, was one of the founders of

quantum mechanics. In 1924 he proposed the “exclusion principle”, ancestor of today’s
symmetry/antisymmetry requirement; in 1926 he produced the first solution for the

energy eigenproblem for atomic hydrogen; in 1930 he proposed the existence of the

neutrino, a prediction confirmed experimentally in 1956; in 1934 he and “Viki” Weisskopf
discovered how to make sense of relativistic quantum mechanics by realizing that the

solutions to relativistic quantal equations do not give an amplitude for a single particle to
have a position (technically, a wavefunction), but rather an amplitude for an additional
particle to be created at a position or for an existing particle to be annihilated at a

position (technically, a creation or annihilation operator). He originated the insult,
applied to ideas that cannot be tested, that they are “not even wrong”.
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violate our initial requirement that the particles be identical? The answer

is that this terminology does not label one particle “A” and the other

particle “B”. Instead, it labels one point “A” and the other point “B”.

Look back to the figures on page 205: the numbers 5 and 8 label bins,

not particles, so when these bins shrink to zero the variables xA and xB
apply to points, not particles. That’s why I like to call these wavefunctions

“(anti)symmetric under swap of coordinates”. But you’ll hear people using

terms like “(anti)symmetric under particle swapping” or “. . . under particle

interchange” or “. . . under particle exchange”.

What if the two particles are in three-dimensional space, and what if

they have spin? In that case, the swap applies to all the coordinates: using

the sans serif notation of equation (4.106),

ψ(xA, xB) = +ψ(xB , xA) or ψ(xA, xB) = −ψ(xB , xA). (6.2)

From our argument so far, two identical electrons might be in a sym-

metric or an antisymmetric state. Similarly for two identical neutrons,

two identical silver atoms, etc. But it’s an empirical fact that the swap

symmetry depends only on the kind of particle involved: Two electrons

are always antisymmetric under swapping. Two 4He atoms (both in their

ground state) are always symmetric. Particles that are always symmet-

ric under swapping are called bosons;2 those always antisymmetric under

swapping are called fermions.3

2Named for Satyendra Bose (1894–1974) of India. He contributed to fields ranging

from chemistry to school administration, but his signal contribution was elucidating the

statistics of photons. Remarkably, he made this discovery in 1922, three years before
Schrödinger developed the concept of wavefunction.
3Named for Enrico Fermi. See footnote on page 170.
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What about three particles? The wavefunction of three identical bosons

must be completely symmetric, that is, symmetric under swaps of any co-

ordinate pair:

+ψ(xA, xB , xC)

= +ψ(xA, xC , xB)

= +ψ(xC , xA, xB)

= +ψ(xC , xB , xA)

= +ψ(xB , xC , xA)

= +ψ(xB , xA, xC). (6.3)

(These 6 = 3! permutations are listed in the sequence called “plain changes”

or “the Johnson-Trotter sequence”. This sequence has the admirable prop-

erty that each permutation differs from its predecessor by a single swap of

adjacent letters.4) Whereas the wavefunction of three identical fermions

must be completely antisymmetric, that is, antisymmetric under swaps of

any coordinate pair:

+ψ(xA, xB , xC)

= −ψ(xA, xC , xB)

= +ψ(xC , xA, xB)

= −ψ(xC , xB , xA)

= +ψ(xB , xC , xA)

= −ψ(xB , xA, xC). (6.4)

As you would expect, Pauli’s requirement of complete symmetry or

antisymmetry under swaps of any coordinate pair holds for any number of

identical particles.

6.2 Symmetrization and antisymmetrization

Given the importance of wavefunctions symmetric or antisymmetric un-

der coordinate swaps, it makes sense to investigate the mathematics of

such “permutation symmetry”. This section treats systems of two or three
4Donald Knuth, The Art of Computer Programming, volume 4A, “Combinatorial Al-

gorithms, Part 1” (Addison-Wesley, Boston, 1997) section 7.2.1.2, “Generating all per-

mutations”.
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particles; the generalization to systems of four or more particles is straight-

forward.

Start with any two-variable garden-variety function f(xA, xB), not nec-

essarily symmetric or antisymmetric. Can that function be used as a “seed”

to build a symmetric or antisymmetric function? It can. The function

s(xA, xB) = f(xA, xB) + f(xB , xA) (6.5)

is symmetric under swapping while the function

a(xA, xB) = f(xA, xB)− f(xB , xA) (6.6)

is antisymmetric. If you don’t believe me, try it out:

s(5, 2) = f(5, 2) + f(2, 5)

s(2, 5) = f(2, 5) + f(5, 2)

so clearly s(5, 2) = s(2, 5). Meanwhile

a(5, 2) = f(5, 2)− f(2, 5)

a(2, 5) = f(2, 5)− f(5, 2)

so just as clearly a(5, 2) = −a(2, 5).

Can this be generalized to three variables? Start with a three-variable

garden-variety function f(xA, xB , xC). The function

s(xA, xB , xC) = f(xA, xB , xC)

+f(xA, xC , xB)

+f(xC , xA, xB)

+f(xC , xB , xA)

+f(xB , xC , xA)

+f(xB , xA, xC) (6.7)

is completely symmetric while the function

a(xA, xB , xC) = f(xA, xB , xC)

−f(xA, xC , xB)

+f(xC , xA, xB)

−f(xC , xB , xA)

+f(xB , xC , xA)

−f(xB , xA, xC) (6.8)
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is completely antisymmetric. Once again, if you don’t believe me I invite

you to try it out with xA = 5, xB = 2, and xC = 7.

This trick is often used when the seed function is a product,

f(xA, xB , xC) = f1(xA)f2(xB)f3(xC), (6.9)

in which case you may think of the symmetrization/antisymmetrization

machinery as being the sum over all permutations of the coordinates xA,

xB , and xC , as above, or as the sum over all permutations of the functions

f1(x), f2(x), and f3(x): the function

s(xA, xB , xC) = f1(xA)f2(xB)f3(xC)

+f1(xA)f3(xB)f2(xC)

+f3(xA)f1(xB)f2(xC)

+f3(xA)f2(xB)f1(xC)

+f2(xA)f3(xB)f1(xC)

+f2(xA)f1(xB)f3(xC) (6.10)

is completely symmetric while the function

a(xA, xB , xC) = f1(xA)f2(xB)f3(xC)

−f1(xA)f3(xB)f2(xC)

+f3(xA)f1(xB)f2(xC)

−f3(xA)f2(xB)f1(xC)

+f2(xA)f3(xB)f1(xC)

−f2(xA)f1(xB)f3(xC) (6.11)

is completely antisymmetric. Some people write this last expression as the

determinant of a matrix

a(xA, xB , xC) =

∣∣∣∣∣∣
f1(xA) f2(xA) f3(xA)

f1(xB) f2(xB) f3(xB)

f1(xC) f2(xC) f3(xC)

∣∣∣∣∣∣ , (6.12)

and call it the “Slater5 determinant”. I personally think this terminol-

ogy confuses the issue (the expression works only if the seed function is a

product of one-variable functions, it suppresses the delightful and useful

“plain changes” sequence of permutations, plus I never liked determinants6

to begin with), but it’s widely used.
5John C. Slater (1900–1976), American theoretical physicist who made major contribu-

tions to our understanding of atoms, molecules, and solids. Also important as a teacher,
textbook author, and administrator.
6I am not alone. See Sheldon Axler, “Down with determinants!” American Mathemat-

ical Monthly 102 (February 1995) 139–154.
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6.2.1 Sample Problem: Try it out

Find the symmetric and antisymmetric functions generated by the seed

functions

f(xA, xB) = xAx
2
B g(xA, xB , xC) = xAx

2
C + 2xBxC .

What happens if the resulting functions are multiplied by 5, or by −1, or

by i?

Solution: For the two-variable function f(xA, xB),

s(xA, xB) = f(xA, xB) + f(xB , xA) = xAx
2
B + xBx

2
A = xAx

2
B + x2

AxB ,

a(xA, xB) = f(xA, xB)− f(xB , xA) = xAx
2
B − xBx2

A = xAx
2
B − x2

AxB .

And sure enough, just to try some particular cases, s(5, 2) = s(2, 5) = 70,

a(5, 2) = −30, a(2, 5) = +30, s(3, 3) = 54, a(3, 3) = 0. If you multiplied

s(xA, xB) by 5, or by −1, or by i, or by any number, you would still have a

function symmetric under coordinate swaps. Similarly for a(xA, xB). Note

particularly the multiplication by −1: in definition (6.6) we could have

swapped the + and − signs.

For the three-variable function g(xA, xB , xC), equation (6.7) becomes

s(xA, xB , xC) = g(xA, xB , xC)

+g(xA, xC , xB)

+g(xC , xA, xB)

+g(xC , xB , xA)

+g(xB , xC , xA)

+g(xB , xA, xC)

= xAx
2
C + 2xBxC

+xAx
2
B + 2xCxB

+xCx
2
B + 2xAxB

+xCx
2
A + 2xBxA

+xBx
2
A + 2xCxA

+xBx
2
C + 2xAxC

= x2
A(xB + xC) + x2

B(xA + xC) + x2
C(xA + xB)

+ 4xAxB + 4xAxC + 4xBxC ,
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while equation (6.8) becomes

a(xA, xB , xC) = g(xA, xB , xC)

−g(xA, xC , xB)

+g(xC , xA, xB)

−g(xC , xB , xA)

+g(xB , xC , xA)

−g(xB , xA, xC)

= xAx
2
C + 2xBxC

−xAx2
B − 2xCxB

+xCx
2
B + 2xAxB

−xCx2
A − 2xBxA

+xBx
2
A + 2xCxA

−xBx2
C − 2xAxC

= x2
A(xB − xC) + x2

B(−xA + xC) + x2
C(xA − xB).

Trying out some particular cases: s(1, 2, 3) = s(2, 1, 3) = s(2, 3, 1) = 92,

a(1, 2, 3) = −a(2, 1, 3) = a(2, 3, 1) = −2, s(1, 1, 3) = s(1, 3, 1) = 54,

a(1, 1, 3) = a(1, 3, 1) = 0. As in the two-variable case, if we multiply

either of these functions by a constant the symmetry or antisymmetry will

be unaffected. In the definition (6.8) for the antisymmetrization process we

could have swapped the + and − signs.
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Problems

6.1 Product functions

Can a product function F (xA)G(xB) ever be symmetric under swap-

ping? Antisymmetric?

6.2 Special case

Implement the symmetrization and antisymmetrization proce-

dures (6.7) and (6.8) for the garden-variety function f(xA, xB , xC) =

xAx
2
Bx

3
C . Evaluate the resulting functions s(xA, xB , xC) and

a(xA, xB , xC) first at xA = 1, xB = 2, and xC = 3, then at xA = 3,

xB = 2, and xC = 1. [[Results: s(1, 2, 3) = s(3, 2, 1) = 288,

a(1, 2, 3) = 12, a(3, 2, 1) = −12.]]

6.3 Antisymmetrizing the symmetric

a. There is one function that is both completely symmetric and com-

pletely antisymmetric. What is it?

b. Suppose the seed function is symmetric under a swap of the first

two coordinates

f(xA, xB , xC) = f(xB , xA, xC)

and the antisymmetrization process (6.8) is executed. What is the

result?

c. Repeat part (b) for a seed function symmetric under a swap of the

last two coordinates.

d. Repeat part (b) for a seed function symmetric under a swap of the

first and third coordinates.

e. Suppose the seed function is a product as in equation (6.9), and

two of the functions happen to be equal. What is the result of the

antisymmetrization process?
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6.3 Consequences of the Pauli principle

Does the requirement of symmetry or antisymmetry under coordinate swap-

ping have any consequences? Here’s an immediate one for fermions: Take

both xA = X and xB = X. Now when these coordinates are swapped, you

get back to where you started:

ψ(X,X) = −ψ(X,X) so ψ(X,X) = 0. (6.13)

Thus, the probability density for two identical fermions to have all the same

coordinates is zero.

And here’s a consequence for both bosons and fermions. Think about

space only, no spin. The (unnormalized) seed function

f(xA, xB) = e−[(xA−0.5σ)2+(xB+0.3σ)2]/2σ2

has a maximum when xA = 0.5σ and when xB = −0.3σ. This shows up

as one hump in the two-variable plots below (drawn taking σ = 1), which

show the normalized probability density proportional to |f(xA, xB)|2.

xB

xA

xA

xB

Depending on your background and preferences, you might find it easier

to read either the surface plot on the left or the contour plot on the right:

both depict the same two-variable function. (And both were drawn using

Paul Seeburger’s applet CalcPlot3D.)
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But what of the symmetric and antisymmetric combinations generated

from this seed? Here are surface plots of the normalized probability densi-

ties associated with the symmetric (left) and antisymmetric (right) combi-

nations:

xB

xA

xB

xA

And here are the corresponding contour plots:

xA

xB

xA

xB

The seed function has no special properties on the xA = xB diagonal axis.

But, as required by equation (6.13), the antisymmetric combination van-

ishes there. And the symmetric combination is high there!
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The “vanishing on diagonal requirement” and this particular example

are but two facets of the more general rule of thumb that:

In a symmetric spatial wavefunction, the particles tend to huddle

together.

In an antisymmetric spatial wavefunction, the particles tend to

spread apart.

This rule is not a theorem and you can find counterexamples,7 but such

exceptions are rare.

In everyday experience, when two people tend to huddle together or

spread apart, it’s for emotional reasons. In everyday experience, when

two particles tend to huddle together or spread apart, it’s because they’re

attracted to or repelled from each other through a force. This quantal

case is vastly different. The huddling or spreading is of course not caused

by emotions and it’s also not caused by a force — it occurs for identical

particles even when they don’t interact. The cause is instead the symme-

try/antisymmetry requirement: not a force like a hammer blow, but a piece

of mathematics!

Therefore it’s difficult to come up with terms for the behavior of identical

particles that don’t suggest either emotions or forces ascribed to particles:

congregate, avoid; gregarious, loner; attract, repel; flock, scatter. “Huddle

together” and “spread apart” are the best terms I’ve been able to devise,

but you might be able to find better ones.

Problem

6.4 Symmetric and antisymmetric combinations

Two identical particles ambivate in a one-dimensional infinite square

well. Take as a seed function the product of energy eigenstates

η2(xA)η3(xB). Use your favorite graphics package to plot the proba-

bility densities associated with the symmetric and antisymmetric com-

binations generated from this seed. Does the “huddle together/spread

apart” rule hold?
7See D.F. Styer, “On the separation of identical particles in quantum mechanics” Eu-

ropean Journal of Physics 41 (14 October 2020) 065402.
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6.4 Consequences of the Pauli principle for product states

A commonly encountered special case comes when the many-particle seed

function is a product of one-particle functions — we glanced at this special

case in equation (6.9). What happens if two of these one-particle functions

are the same? Nothing special happens for the symmetrization case. But

the answer for antisymmetrization is cute. It pops out of equation (6.11):

If f1(x) = f2(x), then the last line cancels the first line, the second cancels

the fifth, and the fourth cancels the third. The antisymmetric combination

vanishes everywhere!

Unlike the “huddle together/spread apart” rule of thumb, this result is

a theorem: the antisymmetric combination vanishes if any two of the one-

particle functions are the same. It is a partner to the xA = xB theorem of

equation (6.13): just as the two particles can’t have the same coordinates,

so their wavefunction can’t be built from the same one-particle functions.

6.5 Energy states for two identical, noninteracting particles

A single particle ambivates subject to some potential energy function.

There are M energy eigenstates (where usually M =∞)

η1(x), η2(x), η3(x), . . . , ηM (x). (6.14)

Now two non-identical particles ambivate subject to the same po-

tential energy. They have the same mass, and do not interact with each

other. You can see what the energy eigenstates are: state η3(xA)η8(xB), for

example, has energy E3 +E8. There’s necessarily a degeneracy, as defined

on page 150, because the different state η8(xA)η3(xB) has the same energy.

The basis of energy eigenstates has M2 elements, and they are normalized.

Any state can be represented as a linear combination of these elements. I

could go on, but the picture is clear: the fact that there are two particles

rather than one is unimportant; this basis of energy eigenstates has all the

properties you expect of an energy eigenbasis.

This basis consists of product states, but of course that’s just a coinci-

dence. You could replace the two basis states

η3(xA)η8(xB) and η8(xA)η3(xB)

with, for example [using equation (4.39) with cos θ = 4
5 ],

+ 4
5η3(xA)η8(xB) + 3

5η8(xA)η3(xB) and − 3
5η3(xA)η8(xB) + 4

5η8(xA)η3(xB).
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Now two identical, noninteracting particles ambivate subject to

the same potential energy. In this case we don’t want a basis from which

we can build any wavefunction: we want a basis from which we can build

any symmetric wavefunction, or a basis from which we can build any anti-

symmetric wavefunction.

The basis for antisymmetric wavefunctions has elements like

1√
2

[−η3(xA)η8(xB) + η8(xA)η3(xB)] . (6.15)

The basis for symmetric wavefunctions has elements like

1√
2

[+η3(xA)η8(xB) + η8(xA)η3(xB)] (6.16)

plus elements like

η8(xA)η8(xB). (6.17)

You should convince yourself that there are 1
2M(M−1) elements in the an-

tisymmetric basis and 1
2M(M +1) elements in the symmetric basis. Notice

that non-product8 states are a strict necessity in these bases.

The basis for antisymmetric wavefunctions united with the basis for

symmetric wavefunctions produces a basis for any wavefunction. This is

a peculiarity of the two-particle case, and reflects the fact that any two-

variable function is the sum of a completely symmetric function and a com-

pletely antisymmetric function. It is not true that any three-variable func-

tion is the sum of a completely symmetric and a completely antisymmetric

function. For three noninteracting particles, the general basis has M3 ele-

ments, the basis for antisymmetric wavefunctions has 1
6M(M − 1)(M − 2)

elements, and the basis for symmetric wavefunctions has 1
6M(M+1)(M+2)

elements. If you enjoy mathematical puzzles, you will enjoy proving these

statements for yourself. But we won’t need them for this book.

Before proceeding, I introduce some terminology. The phrase “one-

particle states multiplied together then permuted through the symmetriza-

tion/antisymmetrization machinery of equations (6.10) and (6.11) to build

a many-particle state” is a real mouthful. A “many-particle state” like

(6.15) or (6.16) or (6.17) is called just a “state”, while a building block
8Because the states (6.15 and (6.16) are clearly not in the form of a product

ψA(xA)ψB(xB), the definition of entangled state on page 129 suggests that these states
should be called entangled. However the correct definition of entanglement for identical

particles remains unsettled, so I use the term “non-product state” instead.
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one-particle state like η3(x) or η8(x) is called a “level”.9 This terminology

relieves us of the need say “one-particle” or “many-particle” or “antisym-

metrization machinery” over and over again.

The basis for bosons is bigger than the basis for fermions because you

can combine levels 1 and 7 to build either a boson state or a fermion state,

but you can combine levels 7 and 7 to build a boson state but not a fermion

state. As detailed in the previous section, “Consequences of the Pauli

principle for product states”, the levels combined to make a fermion state

must all be different.

Problem

6.5 Building three-particle basis states

Suppose you had three particles and three “building block” levels (say

the orthonormal levels η1(x), η3(x), and η7(x)). Construct normalized

three-particle basis states for the case of

a. three non-identical particles

b. three identical bosons

c. three identical fermions

How many states are there in each basis? Repeat for three particles

with four one-particle levels, but in this case simply count and don’t

write down all the three-particle states.

6.6 Spin plus space, two electrons

Electrons are spin-half fermions. Two of them ambivate subject to the

same potential. Energy doesn’t depend on spin. Pretend the two electrons

don’t interact. (Perhaps a better name for this section would be “Spin

plus space, two noninteracting spin-1
2 fermions”, but yikes, how long do

you want this section’s title to be? Should I add “non-relativistic” and

“ignoring collisions” and “ignoring radiation”?)

The spatial energy levels for one electron are ηn(~x) for n = 1, 2, . . . ,M/2.

Thus the full (spin plus space) energy levels for one electron are the M levels
9Some people, particularly chemists referring to atomic systems, use the term “orbital”

rather than “level”. This term unfortunately suggests a circular Bohr orbit. An electron

with an energy does not execute a circular Bohr orbit at constant speed. Instead it

ambivates without position or velocity.
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ηn(~x)χ+ and ηn(~x)χ−. Now the question: What are the energy eigenstates

for the two noninteracting electrons?

Well, what two-particle states can we build from the one-particle spatial

levels with, say, n = 1 and n = 3? (Once you see how to do it for n = 1 and

n = 3, you can readily generalize to any two values of n.) These correspond

to four levels:

η1(~x)χ+, (6.18)

η1(~x)χ−, (6.19)

η3(~x)χ+, (6.20)

η3(~x)χ−. (6.21)

What states mixing n = 1 with n = 3 can be built from these four levels?

The antisymmetric combination of (6.18) with itself vanishes. The an-

tisymmetric combination of (6.18) with (6.19) is a combination of n = 1

with n = 1, not of n = 1 with n = 3. The (unnormalzed) antisymmetric

combination of (6.18) with (6.20) is

η1(~xA)χ+(A)η3(~xB)χ+(B)− η3(~xA)χ+(A)η1(~xB)χ+(B). (6.22)

The antisymmetric combination of (6.18) with (6.21) is

η1(~xA)χ+(A)η3(~xB)χ−(B)− η3(~xA)χ−(A)η1(~xB)χ+(B). (6.23)

The antisymmetric combination of (6.19) with (6.20) is

η1(~xA)χ−(A)η3(~xB)χ+(B)− η3(~xA)χ+(A)η1(~xB)χ−(B). (6.24)

The antisymmetric combination of (6.19) with (6.21) is

η1(~xA)χ−(A)η3(~xB)χ−(B)− η3(~xA)χ−(A)η1(~xB)χ−(B). (6.25)

Finally, the antisymmetric combination of (6.20) with (6.21) is a combina-

tion of n = 3 with n = 3, not of n = 1 with n = 3.

All four of these states are energy eigenstates with energy E1 + E3.

State (6.22) factorizes into a convenient space-times-spin form:

η1(~xA)χ+(A)η3(~xB)χ+(B)− η3(~xA)χ+(A)η1(~xB)χ+(B)

=

[
η1(~xA)η3(~xB)− η3(~xA)η1(~xB)

]
χ+(A)χ+(B). (6.26)

The space part of the wavefunction is antisymmetric under coordinate swap.

The spin part is symmetric. Thus the total wavefunction is antisymmetric.
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Before proceeding I confess that I’m sick and tired of writing all these

ηs and χs and As and Bs that convey no information. I always write the

η in front of the χ. I always write the As in front of the Bs. You’ll never

confuse an η with a χ, because the ηs are labeled 1, 3 while the χs are

labeled +, −. Dirac introduced a notation (see page 90) that takes all this

for granted, so that neither you nor I have to write the same thing out over

and over again. This notation usually replaces + with ↑ and − with ↓ (see

page 112). In this notation, equation (6.26) is written

|1 ↑, 3 ↑〉 − |3 ↑, 1 ↑〉 =

[
|1, 3〉 − |3, 1〉

]
|↑↑ 〉. (6.27)

In this new notation the states (6.22) through (6.25) are written[
|1, 3〉 − |3, 1〉

]
|↑↑ 〉 (6.28)

|1 ↑, 3 ↓〉 − |3 ↓, 1 ↑〉 (6.29)

|1 ↓, 3 ↑〉 − |3 ↑, 1 ↓〉 (6.30)[
|1, 3〉 − |3, 1〉

]
|↓↓ 〉. (6.31)

Well, this is cute. Two of the four states have this convenient space-times-

spin form. . . and furthermore these two have the same spatial wavefunction!

Two other states, however, don’t have this convenient form.

One thing to do about this is nothing. There’s no requirement that

states have a space-times-spin form. But in this two-electron case there’s a

slick trick that enables us to put the states into space-times-spin form.

Because all four states (6.28) through (6.31) have the same energy,

namely E1 +E3, I can make linear combinations of the states to form other

equally good energy states. Can I make a combination of states (6.29) and

(6.30) that does factorize into space times spin? Nothing ventured, nothing

gained. Let’s try it:

α

[
|1 ↑, 3 ↓〉 − |3 ↓, 1 ↑〉

]
+ β

[
|1 ↓, 3 ↑〉 − |3 ↑, 1 ↓〉

]
= |1, 3〉

[
α|↑↓ 〉+ β|↓↑ 〉

]
− |3, 1〉

[
α|↓↑ 〉+ β|↑↓ 〉

]
.

This will factorize only if the left term in square brackets is proportional

to the right term in square brackets:[
α|↑↓ 〉+ β|↓↑ 〉

]
= c

[
β|↑↓ 〉+ α|↓↑ 〉

]
,
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that is only if

α = cβ and β = cα.

Combining these two equations results in c = ±1. If c = +1 then the

combination results in the state[
|1, 3〉 − |3, 1〉

]
α

[
|↑↓ 〉+ |↓↑ 〉

]
, (6.32)

whereas when c = −1 the result is[
|1, 3〉+ |3, 1〉

]
α

[
|↑↓ 〉 − |↓↑ 〉

]
. (6.33)

Putting all this together and, for the sake of good form, insuring normal-

ized states, we find that the two-electron energy states in equations (6.28)

through (6.31) can be recast as[
1√
2
(|1, 3〉 − |3, 1〉)

]
|↑↑ 〉 (6.34)[

1√
2
(|1, 3〉 − |3, 1〉)

] [
1√
2
(|↑↓ 〉+ |↓↑ 〉)

]
(6.35)[

1√
2
(|1, 3〉 − |3, 1〉)

]
|↓↓ 〉 (6.36)[

1√
2
(|1, 3〉+ |3, 1〉)

] [
1√
2
(|↑↓ 〉 − |↓↑ 〉)

]
. (6.37)

The first three of these states have spatial wavefunctions antisymmetric

under coordinate swaps and spin wavefunctions symmetric under coordinate

swaps — these are called “ortho states” or “a triplet”. The last one has a

symmetric spatial wavefunction and an antisymmetric spin wavefunction —

these are called “para states” or “a singlet”. Our discussion in section 6.3,

“Consequences of the Pauli principle”, demonstrates that in ortho states,

the two electrons tend to spread apart in space; in para states, they tend

to huddle together.

I write out the singlet spin state

1√
2

[|↑↓ 〉 − |↓↑ 〉] (6.38)

using the verbose terminology

1√
2

[χ+(A)χ−(B)− χ−(A)χ+(B)] (6.39)

to make it absolutely clear that coordinate A is associated with both spin +

and spin −, as is coordinate B. It is impossible to say that “one electron

has spin up and the other has spin down”.
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This abstract machinery might seem purely formal, but in fact it has

tangible experimental consequences. In the sample problem below, the

machinery suggests that the ground state of the hydrogen atom is two-fold

degenerate, while the ground state of the helium atom is non-degenerate.

And this prediction is borne out by experiment!

6.6.1 Sample Problem:

Ground state degeneracy for one and two electrons

A certain potential energy function has two spatial energy eigenstates:

η1(~x) with energy E1 and η2(~x) with a higher energy E2. These energies

are independent of spin.

a. A single electron (spin- 1
2 ) ambivates in this potential. Write out the

four energy eigenstates and the energy eigenvalue associated with each.

What is the ground state degeneracy?

b. Two non-interacting electrons ambivate in this same potential. Write

out the six energy eigenstates and the energy eigenvalue associated with

each. What is the ground state degeneracy?

Solution: (a) For the single electron:

energy eigenstate energy eigenvalue

η1(~x)χ+ E1

η1(~x)χ− E1

η2(~x)χ+ E2

η2(~x)χ− E2

The first two states listed are both ground states, so the ground state is

two-fold degenerate.

(b) For the two electrons, we build states from levels just as we did

in this section. The first line below is the antisymmetrized combination of

η1(~x)χ+ with η1(~x)χ−. This state has energy 2E1. The next four lines are

built up exactly as equations (6.34) through (6.37) were. Each of these four
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states has energy E1+E2. The last line is the antisymmetrized combination

of η2(~x)χ+ with η2(~x)χ−. This state has energy 2E2.

η1(~xA)η1(~xB) 1√
2

[χ+(A)χ−(B)− χ−(A)χ+(B)]

1√
2

[η1(~xA)η2(~xB)− η2(~xA)η1(~xB)] [χ+(A)χ+(B)]

1√
2

[η1(~xA)η2(~xB)− η2(~xA)η1(~xB)] 1√
2

[χ+(A)χ−(B) + χ−(A)χ+(B)]

1√
2

[η1(~xA)η2(~xB)− η2(~xA)η1(~xB)] [χ−(A)χ−(B)]

1√
2

[η1(~xA)η2(~xB) + η2(~xA)η1(~xB)] 1√
2

[χ+(A)χ−(B)− χ−(A)χ+(B)]

η2(~xA)η2(~xB) 1√
2

[χ+(A)χ−(B)− χ−(A)χ+(B)] .

The ground state of the two-electron system is the first state listed: it is

non-degenerate.

Problems

6.6 Combining a spatial one-particle level with itself

What two-particle states can we build from the one-particle spatial level

with n = 3? How many of the resulting states are ortho, how many

para?

6.7 Change of basis through abstract rotation

Show that, in retrospect, the process of building states (6.35) and (6.37)

from states (6.29) and (6.30) is nothing but a “45◦ rotation” in the style

of equation (4.39).

6.8 Normalization of singlet spin state

Justify the normalization constant 1√
2

that enters in moving from equa-

tion (6.33) to equation (6.37). Compare this singlet spin state to the

entangled state (3.37). (Indeed, one way to produce an entangled pair

of electrons is to start in a singlet state and then draw the two electrons

apart.)

6.9 Ortho and para accounting

Show that in our case with M/2 spatial energy levels, the two-electron

energy basis has 1
2M(M − 1) elements, of which

3
2 (M/2)[(M/2)− 1] are ortho

(antisymmetric in space and symmetric in spin) and
1
2 (M/2)[(M/2) + 1] are para

(symmetric in space and antisymmetric in spin).
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6.10 Intersystem crossing

A one-electron system has a ground level ηg(~x) and an excited level

ηe(~x), for a total of four basis levels:

ηg(~x)χ+, ηg(~x)χ−, ηe(~x)χ+, ηe(~x)χ−.

A basis for two-electron states is then the six states:

ηg(~xA)ηg(~xB) 1√
2

[χ+(A)χ−(B)− χ−(A)χ+(B)]

1√
2

[ηg(~xA)ηe(~xB)− ηe(~xA)ηg(~xB)] [χ+(A)χ+(B)]

1√
2

[ηg(~xA)ηe(~xB)− ηe(~xA)ηg(~xB)] 1√
2

[χ+(A)χ−(B) + χ−(A)χ+(B)]

1√
2

[ηg(~xA)ηe(~xB)− ηe(~xA)ηg(~xB)] [χ−(A)χ−(B)]

1√
2

[ηg(~xA)ηe(~xB) + ηe(~xA)ηg(~xB)] 1√
2

[χ+(A)χ−(B)− χ−(A)χ+(B)]

ηe(~xA)ηe(~xB) 1√
2

[χ+(A)χ−(B)− χ−(A)χ+(B)] .

A transition from the second state listed above to the first is called an

“intersystem crossing”. One sometimes reads, in association with the

diagram below, that in an intersystem crossing “the spin of the excited

electron is reversed”. In five paragraphs or fewer, explain why this

phrase is inaccurate, perhaps even grotesque, and suggest a replace-

ment.

6.7 Spin plus space, three electrons, ground state

Three electrons are in the situation described in the first paragraph of sec-

tion 6.6 (energy independent of spin, electrons don’t interact). The full

listing of energy eigenstates has been done, but it’s an accounting night-

mare, so I ask a simpler question: What is the ground state?

Call the one-particle spatial energy levels η1(~x), η2(~x), η3(~x), . . . . The

ground state will be the antisymmetrized combination of the three levels

η1(~xA)χ+(A) η1(~xB)χ−(B) η2(~xC)χ+(C)
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or the antisymmetrized combination of the three levels

η1(~xA)χ+(A) η1(~xB)χ−(B) η2(~xC)χ−(C).

The two states so generated are degenerate:10 both have energy 2E1 +E2.

Write out the first state in detail. It is

1√
6
[ η1(~xA)χ+(A) η1(~xB)χ−(B) η2(~xC)χ+(C)

−η1(~xA)χ+(A) η2(~xB)χ+(B) η1(~xC)χ−(C)

+η2(~xA)χ+(A) η1(~xB)χ+(B) η1(~xC)χ−(C)

−η2(~xA)χ+(A) η1(~xB)χ−(B) η1(~xC)χ+(C)

+η1(~xA)χ−(A) η2(~xB)χ+(B) η1(~xC)χ+(C)

−η1(~xA)χ−(A) η1(~xB)χ+(B) η2(~xC)χ+(C) ]. (6.40)

This morass is another good argument for the abbreviated Dirac notation

introduced on page 221. I’m not concerned with normalization for the

moment, so I’ll write this first state as

|1 ↑, 1 ↓, 2 ↑〉
−|1 ↑, 2 ↑, 1 ↓〉
+|2 ↑, 1 ↑, 1 ↓〉
−|2 ↑, 1 ↓, 1 ↑〉
+|1 ↓, 2 ↑, 1 ↑〉
−|1 ↓, 1 ↑, 2 ↑〉 (6.41)

and the second one (with 2 ↓ replacing 2 ↑) as

|1 ↑, 1 ↓, 2 ↓〉
−|1 ↑, 2 ↓, 1 ↓〉
+|2 ↓, 1 ↑, 1 ↓〉
−|2 ↓, 1 ↓, 1 ↑〉
+|1 ↓, 2 ↓, 1 ↑〉
−|1 ↓, 1 ↑, 2 ↓〉. (6.42)

Both of these states are antisymmetric, but neither factorizes into a

neat “space part times spin part”. If, following the approach used with two

electrons, you attempt to find a linear combination of these two that does

so factorize, you will fail: see problem 6.11. The ground state wavefunction

cannot be made to factor into a space part times a spin part.
10See the definition on page 150 and problem 4.11 on page 151.
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Problems

6.11 A doomed attempt (essential problem)

Any linear combination of state (6.41) with state (6.42) has the form

|1, 1, 2〉
[
α|↑↓↑〉+ β|↑↓↓〉

]
−|1, 2, 1〉

[
α|↑↑↓〉+ β|↑↓↓〉

]
+|2, 1, 1〉

[
α|↑↑↓〉+ β|↓↑↓〉

]
−|2, 1, 1〉

[
α|↑↓↑〉+ β|↓↓↑〉

]
+|1, 2, 1〉

[
α|↓↑↑〉+ β|↓↓↑〉

]
−|1, 1, 2〉

[
α|↓↑↑〉+ β|↓↑↓〉

]
. (6.43)

Show that this form can never be factorized into a space part times a

spin part.

6.12 Questions (recommended problem)

Update your list of quantum mechanics questions that you started at

problem 1.17 on page 46. Write down new questions and, if you have un-

covered answers to any of your old questions, write them down briefly.





Chapter 7

Atoms

During the months following these discussions [in the autumn of 1926] an
intensive study of all questions concerning the interpretation of quantum
theory in Copenhagen finally led to a complete and, as many physicists
believe, satisfactory clarification of the situation. But it was not a so-
lution which one could easily accept. I remember discussions with Bohr
which went through many hours till very late at night and ended almost
in despair; and when at the end of the discussion I went alone for a
walk in the neighboring park I repeated to myself again and again the
question: Can nature possibly be as absurd as it seemed to us in these
atomic experiments?

— Werner Heisenberg, Physics and Philosophy
(Harper, New York, 1958) page 42

All this is fine and good — lovely, in fact. But we have to apply quan-

tum mechanics to experimentally accessible systems, and while things like

carbon nanotubes exist, the most readily accessible systems are atoms.

7.1 Central potentials in two dimensions

Before jumping directly to three-dimensional atoms, we test out the math-

ematics in two dimensions.

In one dimension, the energy eigenproblem is

− ~2

2M

d2η(x)

dx2
+ V (x)η(x) = Eη(x). (7.1)

The generalization to two dimensions is straightforward:

− ~2

2M

[
∂2η(x, y)

∂x2
+
∂2η(x, y)

∂y2

]
+ V (x, y)η(x, y) = Eη(x, y). (7.2)

229
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The part in square brackets is called “the Laplacian of η(x, y)” and is

represented by the symbol “∇2” as follows[
∂2f(x, y)

∂x2
+
∂2f(x, y)

∂y2

]
≡ ∇2f(x, y). (7.3)

Thus the “mathematical form” of the energy eigenproblem is

∇2η(~r) +
2M

~2
[E − V (~r)]η(~r) = 0. (7.4)

Suppose V (x, y) is a “central potential” — that is, a function of distance

from the origin r only. Then it makes sense to use polar coordinates r and

θ rather than Cartesian coordinates x and y. What is the expression for the

Laplacian in polar coordinates? This can be uncovered through the chain

rule, and it’s pretty hard to do. Fortunately, you can look up the answer:

∇2f(~r) =

[
1

r

∂

∂r

(
r
∂f(r, θ)

∂r

)
+

1

r2

∂2f(r, θ)

∂θ2

]
. (7.5)

Thus, the partial differential equation to be solved is[
1

r

∂

∂r

(
r
∂η(r, θ)

∂r

)
+

1

r2

∂2η(r, θ)

∂θ2

]
+

2M

~2
[E − V (r)]η(r, θ) = 0 (7.6)

or

∂2η(r, θ)

∂θ2
+ r

∂

∂r

(
r
∂η(r, θ)

∂r

)
+

2M

~2
r2[E − V (r)]η(r, θ) = 0. (7.7)

Use the “separation of variables” strategy introduced on page 133 : look

for solutions of the product form

η(r, θ) = R(r)Θ(θ), (7.8)

and hope against hope that all the solutions (or at least some of them) will

be of this form. Plugging this product form into the PDE gives

R(r)Θ′′(θ) + Θ(θ)

{
r
d

dr

(
r
dR(r)

dr

)
+

2M

~2
r2[E − V (r)]R(r)

}
= 0

Θ′′(θ)

Θ(θ)
+

{
r

R(r)

d

dr

(
r
dR(r)

dr

)
+

2M

~2
r2[E − V (r)]

}
= 0. (7.9)

Through the usual separation-of-variables argument, we recognize that if a

function of θ alone plus a function of r alone sum to zero, where θ and r are

independent variables, then both functions must be equal to a constant:

r

R(r)

d

dr

(
r
dR(r)

dr

)
+

2M

~2
r2[E − V (r)] = −Θ′′(θ)

Θ(θ)
= const. (7.10)
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First, look at the angular part:

Θ′′(θ) = −const Θ(θ). (7.11)

This is the differential equation for a mass on a spring! We’ve already

examined it at equations (4.17) and (5.2). The two linearly independent

solutions are

Θ(θ) = sin(
√

const θ) or Θ(θ) = cos(
√

const θ). (7.12)

Now, the boundary condition for this ODE is just that the function must

come back to itself if θ increases by 2π:

Θ(θ) = Θ(2π + θ). (7.13)

If you think about this for a minute, you’ll see that this means
√

const must

be an integer. You’ll also see that negative integers don’t give us anything

new, so we’ll take
√

const = ` where ` = 0, 1, 2, . . . . (7.14)

In summary, the solution to the angular problem is

` = 0 ` = 1 ` = 2 ` = 3 · · ·
Θ(θ) 1 sin θ or cos θ sin 2θ or cos 2θ sin 3θ or cos 3θ · · ·

Now examine the radial part of the problem:

r

R(r)

d

dr

(
r
dR(r)

dr

)
+

2M

~2
r2[E − V (r)] = const = `2 (7.15)

or, after some manipulation,

1

r

d

dr

(
r
dR(r)

dr

)
+

2M

~2

[
E − V (r)− ~2

2M

`2

r2

]
R(r) = 0. (7.16)

Compare this differential equation with another one-variable differential

equation, namely the one for the energy eigenproblem in one dimension:

d2η(x)

dx2
+

2M

~2
[E − V (x)] η(x) = 0. (7.17)

The parts to the right are rather similar, but the parts to the left — the

derivatives — are rather different. In addition, the one-dimensional energy

eigenfunction satisfies the normalization∫ ∞
−∞
|η(x)|2 dx = 1, (7.18)
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whereas the two-dimensional energy eigenfunction satisfies the normaliza-

tion ∫
|η(x, y)|2 dx dy = 1∫ ∞

0

dr

∫ 2π

0

r dθ |R(r) sin(`θ)|2 = 1

π

∫ ∞
0

dr r|R(r)|2 = 1. (7.19)

This suggests that the true analog of the one-dimensional η(x) is not

R(r), but rather

u(r) =
√
rR(r). (7.20)

Furthermore,

if u(r) =
√
rR(r), then

1

r

d

dr

(
r
dR(r)

dr

)
=

1√
r

(
u′′(r) +

1

4

u(r)

r2

)
.

(7.21)

Using this change of function, the radial equation (7.16) becomes

d2u(r)

dr2
+

1

4

u(r)

r2
+

2M

~2

[
E − V (r)− ~2

2M

`2

r2

]
u(r) = 0,

d2u(r)

dr2
+

2M

~2

[
E − V (r)−

~2(`2 − 1
4 )

2M

1

r2

]
u(r) = 0. (7.22)

In this form, the radial equation is exactly like a one-dimensional energy

eigenproblem, except that where the one-dimensional problem has the func-

tion V (x), the radial problem has the function V (r) + ~2(`2 − 1
4 )/(2Mr2).

These two functions play parallel mathematical roles in the two problems.

To emphasize these similar roles, we define an “effective potential energy

function” for the radial problem, namely

Veff(r) = V (r) +
~2(`2 − 1

4 )

2M

1

r2
. (7.23)

Don’t read too much into the term “effective potential energy”. No actual

potential energy function will depend upon ~, still less upon the separation

constant `! I’m not saying that Veff(r) is a potential energy function, merely

that it plays the mathematical role of one in solving this one-dimensional

eigenproblem.

Now that the radial equation (7.22) is in exact correspondence with

the one-dimensional equation (7.17), we can solve this eigenproblem using
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either of the techniques described in chapter 5, “Solving the Energy Eigen-

problem”. (Or any other technique that works for the one-dimensional

problem.) The resulting eigenfunctions and eigenvalues will, of course, de-

pend upon the value of the separation constant `, because the effective

potential depends upon `. And as always, for each ` there will be many

eigenfunctions and eigenvalues, which we will label by index n = 1, 2, 3, . . .

calling them un,`(r) with eigenvalue En,`.

So we see how to find an infinite number of solutions to the partial

differential eigenproblem (7.7). The question is, did we get all of them?

The answer is in fact “yes,” although that’s not at all obvious. If you

want to learn more, you will need to read up on PDEs and Sturm-Liouville

theory!

Summary: To solve the two-dimensional energy eigenproblem for a

radially symmetric potential energy function V (r), namely

− ~2

2M
∇2η(~r) + V (r)η(~r) = Eη(~r), (7.24)

first solve the one-dimensional radial energy eigenproblem

− ~2

2M

d2u(r)

dr2
+

[
V (r) +

~2(`2 − 1
4 )

2M

1

r2

]
u(r) = Eu(r) (7.25)

for ` = 0, 1, 2, . . .. For a given `, call the resulting energy eigenfunctions and

eigenvalues un,`(r) and En,` for n = 1, 2, 3, . . .. Then the two-dimensional

solutions are

for ` = 0: η(r, θ) =
un,0(r)√

r
with energy En,0 (7.26)

and

for ` = 1, 2, 3, . . .:

η(r, θ) =
un,`(r)√

r
sin(`θ)

and

η(r, θ) =
un,`(r)√

r
cos(`θ)

with energy En,`.

(7.27)

Remark 1: For ` 6= 0, there are two different eigenfunctions attached

to the same eigenvalue, a situation called degeneracy.1 Degeneracy is not

merely an abstraction concocted by air-head theorists. It can be uncovered

experimentally through the intensity — although not the wavelength — of
1See the definition on page 150 and problem 4.11 on page 151.
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spectral lines, through statistical mechanical effects, and through Zeeman

splitting when the atom is placed in a magnetic field.

Remark 2: The energy eigenvalues En,` come about from solving the

one-variable energy eigenproblem with effective potential

Veff(r) = V (r) +
~2(`2 − 1

4 )

2M

1

r2
.

Now, it’s clear from inspection that for any value of r, Veff(r) increases with

increasing `. It’s reasonable then that the energy eigenvalues also increase

with increasing `: that the fifth eigenvalue, for example, will always satisfy

E5,0 < E5,1 < E5,2 and so forth. This guess is in fact correct, and it can

be proven mathematically, but it’s so reasonable that I won’t interrupt this

story to prove it.

Remark 3: The conventional choice of zero level for a potential energy

function is to set V (r) = 0 as r →∞. Hence all of the bound-state energy

eigenvalues are expected to be negative.
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In summary, the energy eigenvalues for some generic two-dimensional

radially symmetric potential will look sort of like this (showing only the

four lowest energy eigenvalues for each value of `):

 
 
 

 

 
 

 
 

 
 

energy eigenvalue

` = 0

degen = 1

` = 1

degen = 2

` = 2

degen = 2

` = 3

degen = 2

Problem

7.1 Normalization condition

What is the normalization condition for un,`(r)? Be sure to distinguish

the cases ` = 0 and ` 6= 0.
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7.2 Central potentials in three dimensions

The method used for central potentials in two dimensions works in three

dimensions as well. The details are (as expected) messier: you have to

use three spherical coordinates (r, θ, φ) rather than two polar coordinates

(r, θ), so you have to use separation of variables with a product of three one-

variable functions rather than a product of two one-variable functions. Thus

there are two separation constants rather than one. Instead of presenting

these messy details, I’ll just quote the result:

To solve the three-dimensional energy eigenproblem for a spherically

symmetric potential energy function V (r), namely

− ~2

2M
∇2η(~r) + V (r)η(~r) = Eη(~r), (7.28)

first solve the one-dimensional radial energy eigenproblem

− ~2

2M

d2u(r)

dr2
+

[
V (r) +

~2`(`+ 1)

2M

1

r2

]
u(r) = Eu(r) (7.29)

for ` = 0, 1, 2, . . .. For a given `, call the resulting energy eigenfunctions and

eigenvalues un,`(r) and En,` for n = 1, 2, 3, . . .. Then the three-dimensional

solutions are

ηn,`,m(r, θ, φ) =
un,`(r)

r
Y m` (θ, φ) with energy En,`, (7.30)

where the “spherical harmonics” Y m` (θ, φ) are particular special functions

of the angular variables that you could look up if you needed to. The integer

separation constant m takes on the 2`+ 1 values

−`, −`+ 1, . . . , 0, . . . , `− 1, `.

Notice that the 2` + 1 different solutions for a given n and `, but with

different m, are degenerate.

In addition, there’s a strange terminology that you need to know. You’d

think that the states with ` = 0 would be called “` = 0 states”, but in fact

they’re called “s states”. You’d think that the states with ` = 1 would be

called “` = 1 states”, but in fact they’re called “p states”. States with ` = 2

are called “d states” and states with ` = 3 are called “f states”. (I am told

that these names come from a now-obsolete system for categorizing atomic

spectral lines as “sharp”, “principal”, “diffuse”, and “fundamental”. States

with ` ≥ 4 are not frequently encountered, but they are called g, h, i, k, l,

m, . . . states. For some reason j is omitted. “Sober physicists don’t find

giraffes hiding in kitchens.”)
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In summary, the energy eigenvalues for some generic three-dimensional

radially symmetric potential will look sort of like this:

 
 
 

 

 
 
 

 
 
 

 
 
 

energy eigenvalue

` = 0 (s)

m = 0

degen = 1

` = 1 (p)

m = −1, 0,+1

degen = 3

` = 2 (d)

m = −2 . . .+ 2

degen = 5

` = 3 (f)

m = −3 . . .+ 3

degen = 7

This graph shows only the four lowest energy eigenvalues for each value of `.

A single horizontal line in the “` = 0 (s)” column represents a single energy

eigenfunction, whereas a single horizontal line in the “` = 2 (d)” column

represents five linearly independent energy eigenfunctions, each with the

same energy (“degenerate states”).
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Problem

7.2 Dimensions of η(~r) and of u(r)

In equation (7.27) for the two-dimensional central potential problem,

what are the dimensions of η(~r) and of u(r)? In equation (7.30) for the

three-dimensional central potential problem, what are the dimensions

of η(~r) and of u(r)? [This result helps motivate the definitions u(r) =√
rR(r) in two dimensions and u(r) = rR(r) in three dimensions.]

7.3 The hydrogen atom

7.3.1 The model

An electron (of mass M) and a proton interact through the classical elec-

trostatic potential energy function — called the “Coulomb potential” —

V (r) = − 1

4πε0

e2

r
, (7.31)

so you might think that the energy eigenproblem for the hydrogen atom is

− ~2

2M
∇2η(~r)− 1

4πε0

e2

r
η(~r) = Eη(~r). (7.32)

That’s not exactly correct. This eigenproblem treats the proton as station-

ary while the electron does all the moving: in fact, although the proton is

almost 2000 times more massive than the electron, it’s not infinitely massive

and it does do some moving. This eigenproblem assumes the proton is a

point particle: in fact, although the nucleus is small compared to an atom,

it does have some size. This eigenproblem is non-relativistic and it treats

the electromagnetic field as purely classical: both false. This eigenproblem

ignores the electron’s spin. All of these are good approximations, but this

is a model for a hydrogen atom, not the exact thing.2

But let’s work with the approximation we have, rather than holding out

for an exact solution of an exact eigenproblem that will never come.3 What

happens if we solve the three-dimensional central potential problem with

the model potential energy function (7.31)? We don’t yet have the mathe-

matical tools to actually perform this solution, but we are in a position to

appreciate the character of the solution.
2The corrections to the energy eigenvalues produced by equation (7.32) due to these

effects are called “fine structure” and “hyperfine structure”.
3Everyone knows that weather prediction is inexact. But you’d still rather know a

prediction that a hurricane has an 80% chance of arriving at about 7:00 pm than be

totally clueless about a hurricane bearing down on your home.
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7.3.2 The energy eigenvalues

First of all, because the Coulomb potential is a particular kind of central

potential, it will have all the properties listed in the last section for three-

dimensional central potentials: Each energy eigenstate will be characterized

by an ` and an m, where ` = 0, 1, 2, . . . and where m = −`, . . . ,+`. The

energy eigenvalues will be independent of m, resulting in degeneracy. And

for a given n, the energy eigenvalue will increase with increasing `.

The energy eigenvalues for the Coulomb potential turn out to be:

 
 
 

 

 
 
 

 
 
 

 
 
 

 

 

 
 

energy eigenvalue

` = 0 (s)

m = 0

degen = 1

` = 1 (p)

m = −1, 0,+1

degen = 3

` = 2 (d)

m = −2 . . .+ 2

degen = 5

` = 3 (f)

m = −3 . . .+ 3

degen = 7

n = 1

n = 2

n = 3
n = 4
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What a surprise! The energy eigenvalues for ` = 1 are pushed up so much

that they exactly line up with all but the lowest energy eigenvalues for

` = 0. The energy eigenvalues for ` = 2 are pushed up so much that they

exactly line up with all but the lowest energy eigenvalues for ` = 1. And

so forth. This surprising line-up is called “accidental degeneracy”.

Normally eigenfunctions are labeled by n = 1, 2, 3, . . .. But this sur-

prising line-up of energies suggests a different notation for the Coulomb

problem. For “` = 0 (s)” the eigenfunctions are labeled as usual by

n = 1, 2, 3, 4, . . .. But for “` = 1 (p)” the eigenfunctions are labeled by

n = 2, 3, 4, . . .. For “` = 2 (d)” they are labeled by n = 3, 4, . . .. And so

forth. With this labeling scheme the energy eigenvalue turn out to be given

by

En = − M

2~2

(
e2

4πε0

)2
1

n2
. (7.33)

The coefficient in this equation is called the “Rydberg4 energy”, and the

equation is usually written

En = −Ry

n2
, where Ry = 13.6 eV. (7.34)

(I recommend that you memorize this energy 13.6 eV, the ionization energy

for hydrogen, which sets the scale for typical energies in atomic physics.

Much to my embarrassment, I forgot it during my graduate qualifying

oral exam. Problem 7.4, “Dimensional analysis for energy eigenvalues”,

on page 245 presents a way to help understand and remember this result.)

4Johannes Rydberg (1854–1919), Swedish spectroscopist, discovered a closely related

formula empirically in 1888. Do not confuse the Rydberg energy Ry = 13.6 eV with the
Rydberg constant R∞ = 1.097 × 107 m−1.
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7.3.3 The energy eigenfunctions

It’s a triumph to know the energy eigenvalues, but we should know also

something about the energy eigenfunctions, which are labeled ηn,`,m(~r). A

terminology note is that an energy eigenfunction with n = 3, ` = 2, and

any value of m — that is η3,2,m(x) — is called a “3d state”.

To gain this knowledge we need to first understand the effective potential

energy function falling within square brackets in equation (7.29):

Veff(r) = − 1

4πε0

e2

r
+

~2`(`+ 1)

2M

1

r2
. (7.35)

This function is sketched schematically on the next page. For large values

of r, to the right in the sketch, 1/r is bigger than 1/r2, so Veff(r) is almost

the same as the 1/r Coulomb potential energy alone. For small values of

r, to the left in the sketch, 1/r is smaller than 1/r2, so Veff(r) is almost

the same as the 1/r2 part alone. For intermediate values of r, the function

Veff(r) has to swing between these two limits, as sketched.

The result of this swinging will of course depend upon the value of `,

and the results for four values of ` are sketched schematically on page 243.



242 The hydrogen atom

 

 

Veff(r)

r

− 1

4πε0

e2

r

+
~2`(`+ 1)

2M

1

r2



Atoms 243

 

 

Veff(r)

r

` = 0

` = 1

` = 2

` = 3



244 The hydrogen atom

This graph suggests that for a given value of n, the states with larger

` will have larger mean values for r, the distance from the proton to the

electron.

7.3.4 Transitions

If the energy eigenequation (7.32) for the hydrogen atom were exactly cor-

rect, then a hydrogen atom starting in the excited energy state η3,2,−1(~r)

would remain in that state forever. Furthermore, a hydrogen atom start-

ing in a linear combination with probability 0.6 of being in energy state

η3,2,−1(~r) and probability 0.4 of being in energy state η2,1,0(~r) would main-

tain those probabilities forever.

But the energy eigenequation (7.32) is not exactly correct. It ignores

collisions, it ignores external electromagnetic field (e.g., incident light), and

it ignores coupling to the electromagnetic field (e.g., radiated light). These

effects mean that the state η3,2,−1(~r) is a stationary state of the model

eigenproblem, but it is not a stationary state of the exact eigenproblem. In

other words, these effects result in transitions between stationary states of

the model eigenproblem.

To understand these transitions you need to understand the transition-

causing effects, and at this point in your education you’re not ready to

do that. But I’ll tell you one thing right now: a transition involving a

single photon (either absorbing or emitting a single photon) will result in

a transition with ∆` = ±1. So, for example, a hydrogen atom in a 2p state

(that is, one with n = 2, ` = 1, and any legal value of m) could transition

to the 1s ground state by emitting a single photon. A hydrogen atom in a

2s state (that is, one with n = 2, ` = 0, and m = 0) cannot transition to the

ground state by emitting a single photon. (It could do so by emitting two

photons, or through a collision.) An atom in the 1s ground state, exposed

to a light source with photons of energy 3
4Ry, can be excited to 2p state

by absorbing a single photon, but it cannot be excited to the 2s state by

absorbing a single photon.

I regard this fact (which, by the way, holds not only for the hydrogen

atom but for any central potential) as a picky detail appropriate for an

advanced course, but the people who write the Graduate Record Exam in

physics seem to think it’s important so you should probably remember it.

(Or at least review this page the evening before you take the physics GRE.)
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Problems

7.3 Counting hydrogen states

Show that the degeneracy for states characterized by n is n2.

7.4 Dimensional analysis for energy eigenvalues

The eigenproblem (7.32) contains only two parameters:

~2

M
and

e2

4πε0
.

Use dimensional analysis to show that these two parameters can come

together to form an energy in only one way. [[I remember the Rydberg

energy as

Ry =
1

2

(e2/4πε0)2

~2/M
(7.36)

using this dimensional analysis trick.]]

7.5 Which states are distant, which are close? (essential problem)

Argue, on the basis of the graph on page 242, that for a given value of

`, states with larger n will have larger mean values for r.

7.6 Energy eigenvalues for the He+ ion (essential problem)

A helium atom with one electron stripped away is called a He+ ion.

This situation is simply one electron ambivating in the potential energy

established by a highly-massive nucleus: it is just like the hydrogen

atom, except that the nuclear change is +2e rather than +e. At the

level of approximation used in equation (7.32), the energy eigenproblem

for the He+ ion is

− ~2

2M
∇2η(~r)− 1

4πε0

2e2

r
η(~r) = Eη(~r). (7.37)

Show that (at this level of approximation) the energy eigenvalues for

the He+ ion are

En = −4
Ry

n2
. (7.38)

The situation of a single electron ambivating in the potential energy

established by a highly-massive carbon nucleus of charge +6e is called

the C5+ ion. Show that (at this level of approximation) the energy

eigenvalues are

En = −36
Ry

n2
. (7.39)
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7.7 Characteristic quantities for the Coulomb problem

The time evolution Schrödinger equation for the Coulomb problem is

∂ψ(~r, t)

∂t
= − i

~

[
− ~2

2M
∇2ψ(~r, t)− e2

4πε0

1

r
ψ(~r, t)

]
. (7.40)

There are only three parameters in this equation: ~, M , and e2/4πε0.

Using the techniques of sample problem 5.2.1 on page 200, find the

characteristic time and length for the Coulomb problem. Define the

scaled quantities

t̃ =
t

characteristic time
and ~̃r =

~r

characteristic length
,

and write the time evolution equation (7.40) in terms of these variables.

If you didn’t like to explain what you were doing (or if you wanted to

sound cryptic to impress the uninitiated) how would you use shorthand

to describe the result of this scaling strategy?

7.8 Hybridization

For some chemical applications, it is useful to define the four “sp3

hybrid states”

φ1(~r) = 1
2 [η2,0,0(~r) + η2,1,+1(~r) + η2,1,0(~r) + η2,1,−1(~r)]

φ2(~r) = 1
2 [η2,0,0(~r) + η2,1,+1(~r)− η2,1,0(~r)− η2,1,−1(~r)]

φ3(~r) = 1
2 [η2,0,0(~r)− η2,1,+1(~r)− η2,1,0(~r) + η2,1,−1(~r)]

φ4(~r) = 1
2 [η2,0,0(~r)− η2,1,+1(~r) + η2,1,0(~r)− η2,1,−1(~r)] .

a. Which, if any, of these are energy eigenstates? What is the energy

eigenvalue associated with each such eigenstate?

b. The eigenstates ηn,`,m(~r) are “orthonormal” in the sense that the

integral over all space satisfies∫
η∗n′,`′,m′(~r)ηn,`,m(~r) d3r =

{
1 if n′ = n, `′ = `, and m′ = m

0 otherwise
.

(7.41)

Evaluate the sixteen integrals∫
φ∗i (~r)φj(~r) d

3r. (7.42)

Clue: This is not a difficult problem. If you’re working hard, then

you’re working too hard.
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7.4 The helium atom

Here’s the energy eigenproblem for the helium atom, at the same level of

approximation as the eigenproblem (7.32) for the hydrogen problem:

− ~2

2M
∇2
Aη(~rA, ~rB)− ~2

2M
∇2
Bη(~rA, ~rB)

− 1

4πε0

2e2

rA
η(~rA, ~rB)− 1

4πε0

2e2

rB
η(~rA, ~rB) +

1

4πε0

e2

|~rA − ~rB |
η(~rA, ~rB)

= Eη(~rA, ~rB). (7.43)

We have no chance whatsoever of solving this “two electron plus one nu-

cleus” problem exactly. Even the classical problem of three particles inter-

acting through 1/r potentials, first posed by Isaac Newton in 1687, has not

yet been solved exactly. (And probably never will be, because the result-

ing behavior is known to be chaotic.) Since classical mechanics is a subset

of quantum mechanics, an exact solution to this helium problem would

contain within it an exact solution to the unsolved classical “three-body

problem”.

Does this mean we should give up? Not at all. We should instead look

for approximate solutions that are not exact, but highly accurate for the

bound-state regime of interest.

Our approach will involve solving the one-electron problem for a differ-

ent potential, and then using those one-electron levels as building blocks

for the two-electron problem through the antisymmetrization machinery

of equation (6.11). The strategy may seem crude, but in practice it can

produce highly accurate results.

Instead of focusing on two electrons, interacting with the nucleus and

with each other, focus on one electron interacting with the nucleus and with

the average of the other electron. I don’t yet know exactly how the “other”

electron is averaged, but I assume it spreads out in a spherically symmetric

cloud-like fashion.

Finding the potential. Remember, from your electrostatics course,

the shell theorem for spherically symmetric charge distributions: When the

electron under focus is close to the nucleus, it feels only the electric field

due to the nucleus, so the potential energy is

for small r, V (r) ≈ − 1

4πε0

2e2

r
. (7.44)
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Whereas when the electron under focus is far from the nucleus, it feels the

electric field due to the nucleus, plus the electric field due to the cloud

collapsed into the nucleus, so the potential energy is

for large r, V (r) ≈ − 1

4πε0

e2

r
. (7.45)

The potential energy felt by the electron under focus will interpolate be-

tween these two limits, something like the solid line graphed below.

 

 

V (r)

r

− 1

4πε0

2e2

r

− 1

4πε0

e2

r

This phenomenon is called “shielding”. The shielded potential interpo-

lates between the known limits of small r and large r behavior. The exact

character of that interpolation is unclear: if you were doing high-accuracy

calculations, you would need to find it.5 For our purposes it will be enough

just to know the two limits.
5Using a technique called the Hartree-Fock approximation.
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This approach is called a “mean field approximation” and is said to

“ignore correlations” between the two electrons. This approach is not exact

and cannot be made exact, but it enables progress to be made.

Finding the one-electron eigenvalues. What will the one-electron

energy eigenvalues be for a shielded potential energy? If the potential

energy were

V (r) = − 1

4πε0

e2

r
, (7.46)

then the system would be a hydrogen atom (H atom) and the energy eigen-

values would be

En = −Ry

n2
. (7.47)

If the potential energy were

V (r) = − 1

4πε0

2e2

r
, (7.48)

then the system would be a positively charged helium ion (He+ ion; a

helium atom with one electron stripped away); equation (7.38) shows that

the energy eigenvalues would be

En = −4
Ry

n2
. (7.49)

But in fact, the potential energy interpolates between these two forms,

so the energy eigenvalues interpolate between these two possibilities. Let’s

examine this interpolation, first for the s levels:
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energy eigenvalue

energy eigenvalues for s levels

He+ ion shielded H atom

n = 1

n = 2

n = 3
n = 4

To the left, under the heading “He+ ion”, are the s state eigenvalues (7.49),

which are four times deeper than those under the heading “H atom”, the

s state eigenvalues (7.47). I’ve drawn a vertical line midway between them

and dashed lines connecting the the two sets of eigenvalues. If the eigenval-

ues for the shielded potential were exactly halfway between the eigenvalues

for the two limits, then they would fall where the dashed lines cross the ver-

tical line. But they don’t fall exactly there. For states that are mostly near

the nucleus, the energies are closer to (7.49). For states that are mostly far

from the nucleus, the energies are closer to (7.47). We have already seen

(problem 7.5 on page 245) that, for a given `, the eigenfunctions with larger
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n are farther from the nucleus. Chemists like to say that the eigenfunctions

that are mostly close to the nucleus — those with smaller n — have more

“penetration”.

This process can be repeated for p states, d states, and f states. Because,

for a given n, the eigenfunction with larger ` is farther from the nucleus

(less “penetration”, see page 244), the eigenfunction with larger ` will have

higher energy. Thus a shielded potential energy function will give rise to a

set of energy eigenvalues like this:

 

 

 

 

 

energy eigenvalue

` = 0 (s)

m = 0

degen = 1

` = 1 (p)

m = −1, 0,+1

degen = 3

` = 2 (d)

m = −2 . . .+ 2

degen = 5

` = 3 (f)

m = −3 . . .+ 3

degen = 7

n = 1

n = 2

n = 3
n = 4
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Building two-electron states from one-electron levels. Now that

we have one-electron eigenfunctions (the “levels”), we can combine them

through the antisymmetrization machinery to produce two-electron eigen-

functions (the “states”). This process was described in section 6.6 on

page 219.

Misconception. Perhaps you learned in high-school chemistry that

the ground state of the helium atom has “one electron in the ‘1s, spin

up’ level, and one electron in the ‘1s, spin down’ level”. That’s just plain

wrong — if it were right, then you’d be able to distinguish between the

two electrons (the one with spin up, the one with spin down) and then the

two electrons wouldn’t be identical. What’s correct is that the individual

electrons don’t have states: instead the pair of electrons is in one state,

namely the antisymmetric non-product state

η1,0,0(~xA)η1,0,0(~xB) 1√
2
[χ+(A)χ−(B)− χ−(A)χ+(B)].

(Compare problem 6.10, “Intersystem crossing”, on page 225.)

Problem

7.9 The hydrogen molecule ion

If a hydrogen molecule H2 is stripped of one electron, the result is

the “hydrogen molecule ion” consisting of two nuclei and one electron.

Show that if we had solved the helium problem exactly we would have

also solved the hydrogen molecule ion problem. (But we have not solved

the problem exactly: instead we found approximations appropriate for

the case of atomic helium. A completely different set of approximations

are appropriate for the hydrogen molecule ion.)

7.5 The lithium atom

This situation (within the shielded potential approximation) was discussed

in section 6.7 on page 225. In summary:

The ground state of hydrogen is two-fold degenerate. The ground state

of helium is non-degenerate. The ground state of lithium is (within the

shielded potential approximation) two-fold degenerate.

The ground states of hydrogen and helium can (within the shielded

potential approximation) be written as a spatial part times a spin part.

The ground state of lithium cannot be so written.
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7.6 All other atoms

Atoms larger than lithium are difficult. Specialists have examined them in

exquisite detail, but in this book we’re not going to try to find the energy

spectrum, we’re not going to try to find the ground state degeneracy, we’re

not even going to try to write down a ground state. Instead, we’re only

going to list the one-electron levels that are thrown together through the

antisymmetrization machinery (6.11) to make the many-electron ground

state.

Try this buliding-up machinery for carbon, with a nucleus and six elec-

trons.6 In the figure on page 250, pertaining to helium, the left-hand ener-

gies are four times deeper than the right-hand energies. If I were to draw a

parallel figure for carbon (see equation 7.39), the left-hand energies would

be 36 times deeper than the right-hand energies! The net result is that,

while the figure on page 251 shows a modest increase in energy En,` for

a given n as you move right to higher values of `, for carbon the energy

increase will be dramatic: something like the figure on the next page. For

atoms bigger than carbon, the increase will be still more dramatic.
6Carbon is a seven-body problem, not a three-body problem like helium, so of course

it is correspondingly less tractable.
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Schematic energy levels for a generic atom, about the size of carbon.

I underscore once more that these levels come from an approximation

that ignores relativity, electron spin, nuclear size, nuclear motion, and the

quantal character of the electromagnetic field. Most damning of all, it

replaces electron-electron repulsion with a shielded potential. Since this

shielded potential is spherically symmetric, the language of ` and m and

2p levels and so forth can be used. But this is only an approximation.
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With this understanding, we ask which one-electron levels will go into

the antisymmetrization machinery to make the carbon six-electron ground

state. The ground state will be constructed from the six lowest possible

energy levels. There will be a “1s, spin up” level, plus a “1s, spin down”

level, plus a “2s, spin up” level, plus a “2s, spin down” level. In addition

there will be two 2p levels, but it’s not clear which ones they will be: Will

they be the 2p level with m = 0 and spin up, plus the 2p level with m = +1

and spin up? Or will they be the 2p level with m = 0 and spin up, plus

the 2p level with m = 0 and spin down? Or will they be some other

superposition?

At the level of approximation used here, all such combinations have

exactly the same energy: they are degenerate. If you study more atomic

physics you’ll learn Hund’s7 rules for figuring out how the degeneracy is

broken at a more accurate level of approximation. But for the purposes of

this book, it’s only necessary to list the ns and the `s of the one-electron lev-

els that go into making the six-electron ground state. This list is called the

“electronic configuration” and it’s represented through a special notation:

the configuration of carbon is written 1s22s22p2.

For still larger atoms, the shielding effect is more dramatic and the

energy levels shift still further, but still, usually, the one-electron levels

fall within the energy sequence shown on page 254. This is the so-called

“Madelung8 sequence” of level energies:

1s < 2s < 2p < 3s < 3p < 4s < 3d < 4p

< 5s < 4d < 5p < 6s < 4f < 5d < 6p < 7s < 5f < 6d . . .

It would be a miracle indeed if the theoretical calculations for all the

different atoms resulted in exactly the same qualitative sequence of energy

levels. And it would be more miraculous still if the approximations used

were close enough to reality that the prediction of the approximation was

always accurate. And indeed neither of these miracles occur.9 For ex-

ample in chromium, atomic number 24, the configuration predicted by the
7Friedrich Hund (1896–1997), German physicist who applied quantum mechanics to

atoms and molecules, and who discovered quantum tunneling.
8Erwin Madelung (1881–1972), German physicist with interests in crystal structure,

atomic physics, and quantum mechanics. He produced a set of equations equivalent to
the Schrödinger equation but which emphasized the flow of probability density rather

than of amplitude density.
9See W.H. Eugen Schwarz and Ronald L. Rich, “Theoretical basis and correct ex-

planation of the periodic system: Review and update” Journal of Chemical Education

87 (April 2020) 435–443; Gregory Anderson, Ravi Gomatam, and Laxmidhar Behera,
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Madelung sequence is 1s22s22p63s23p64s23d4 whereas experiment shows the

actual configuration ends instead with 4s13d5.

Problem

7.10 Ground state degeneracy

At the level of approximation of the diagram on page 254, find the

degeneracy of the ground state of boron, of carbon, of nitrogen, of

oxygen, of fluorine, and of neon.

7.7 The periodic table

While the Madelung sequence is not perfect (few things are), it makes sense

to see what it has to say (“better to light a single candle, no matter how

faint, than to curse the darkness”).

Compare the levels that go into building up carbon (atomic number

6) with those that go into building up silicon (atomic number 14). For

carbon they are 1s22s22p2; for silicon they are 1s22s22p63s23p2. Note the

similarities of those last, highest energy levels: carbon ends with 2s22p2,

silicon ends with 3s23p2. It’s possible that for carbon the nucleus (charge

+6) and the 1s and 2s electron levels (charge −4) act together to form an

atom core of net charge +2. Meanwhile it’s just as possible that for silicon

the nucleus (charge +14) and the 1s, 2s, 2p, and 3s electron levels (charge

−12) similarly act together to form an atom core again with net charge +2.

If this possibility is correct, then you would expect carbon and silicon to

have similar chemical behavior. Sure enough each of them bonds with four

other atoms: methane (CH4) is chemically analogous to silane (SiH4).

Through parallel reasoning you would expect neon, 1s22s22p6, to behave

similarly to argon, 1s22s22p63s23p6. Again this expectation holds: both

neon and argon are noble gases that react reluctantly with other atoms.

Chemists have an ingenious system for showing these chemical similarities

through a graphic called “the periodic table”, shown on the next page.

“Contradictions in the quantum mechanical explanation of the periodic table” Journal

of Physics: Conference Series 490 (2014) 012197.
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1
H
1

He
2

2
Li
3

Be
4

B
5

C
6

N
7

O
8

F
9

Ne
10

3
Na
11

Mg
12

Al
13

Si
14

P
15

S
16

Cl
17

Ar
18

4
K
19

Ca
20

Sc
21

Ti
22

V
23

Cr
24

Mn
25

Fe
26

Co
27

Ni
28

Cu
29

Zn
30

Ga
31

Ge
32

As
33

Se
34

Br
35

Kr
36

5
Rb
37

Sr
38

Y
39

Zr
40

Nb
41

Mo
42

Tc
43

Ru
44

Rh
45

Pd
46

Ag
47

Cd
48

In
49

Sn
50

Sb
51

Te
52

I
53

Xe
54

6
Cs
55

Ba
56
∗ Lu

71
Hf
72

Ta
73

W
74

Re
75

Os
76

Ir
77

Pt
78

Au
79

Hg
80

Tl
81

Pb
82

Bi
83

Po
84

At
85

Rn
86

7
Fr
87

Ra
88
∗
∗

Lr
103

Rf
104

Db
105

Sg
106

Bh
107

Hs
108

Mt
109

Ds
110

Rg
111

Cn
112

∗ La
57

Ce
58

Pr
59

Nd
60

Pm
61

Sm
62

Eu
63

Gd
64

Tb
65

Dy
66

Ho
67

Er
68

Tm
69

Yb
70

∗
∗

Ac
89

Th
90

Pa
91

U
92

Np
93

Pu
94

Am
95

Cm
96

Bk
97

Cf
98

Es
99

Fm
100

Md
101

No
102

Let’s carry out this building-up scheme systematically. Hydrogen and

helium we have already discussed. Lithium adds one 2s level to the mix,10

and beryllium one more. The next six elements each add one 2p level,

ending at neon. Now pass on to row 3 of the periodic table. Sodium (atomic

number 11, symbol Na from the Latin “natrium”) has one 3s level just as

lithium has one 2s level. Sure enough lithium and sodium are both highly

reactive, chemically, and they react in similar ways. (They are called “alkali

metals”.) As we add electron levels, the march right on row 3 parallels the

march right on row 2, ending in the noble gas argon, atomic number 18.

Row 4 starts out just like rows 2 and 3: potassium (atomic number 19,

symbol K from the Latin “kalium”) is chemically similar to lithium and

sodium; calcium is chemically similar to beryllium and magnesium. But

scandium, atomic number 21, is not at all like boron, atomic number 5.

That’s because the highest energy level in boron is a 2p level. The highest
10To write this out in detail, the three-electron wavefunction for the lithium ground state
comes from feeding a 1s spin up level, plus a 1s spin down level, plus now a 2s level, into

the “multiply and antisymmetrize” machinery at equation (6.11) in order to generate
a three-electron state. This is a real mouthful, so we simply write “add one 2s level”.
In some books you will see this written as “add one 2s electron”, but that language

reinforces the misconception that the electron in the 2s level can be distinguished from
the other two electrons, in which case the three electrons would not be identical. See

the warnings on page 252 and in problem 6.10, “Intersystem crossing”, on page 225.
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energy level in scandium is not a p level at all, it’s a 3d level. There are

ten such levels, accounting for the ten elements from scandium through

zinc. The element beyond zinc is gallium, which sure enough shares a lot of

properties with its vertical neighbor aluminum. Row 4 continues by adding

4p levels until ending with the noble gas krypton.

Row 5 is very much like row 4.

Row 6 adds a new twist after barium, atomic number 56. The extra

level in lanthanum, atomic number 57, is a 4f level. The fourteen 4f levels

account for the fourteen elements from lanthanum through ytterbium. (The

page in this book is not wide enough to hold row 6 of the periodic table, so

I shoehorn in these fourteen elements using an asterisk.) Then the ten 5d

levels account for the ten elements from lutetium through mercury (symbol

Hg from the Greek “hydrargyrum”, meaning “liquid silver”). Finally the

six 6p levels account for the six elements from thallium through the noble

gas radon.

Row 7 is very much like row 6. Many of the elements in row 7 have

short-lived nuclei, but that’s a different story.

Any chemist will tell you, correctly, that this lightning tour of the pe-

riodic table leaves out a lot of fascinating detail. But its very briefness

means that you have not been distracted by detail and have kept sight of

the central fact that the entire structure of the periodic table — and hence

all of chemistry — follows from the Pauli requirement for antisymmetry

under fermion coordinate swaps.

Problem

7.11 Questions (recommended problem)

Update your list of quantum mechanics questions that you started at

problem 1.17 on page 46. Write down new questions and, if you have un-

covered answers to any of your old questions, write them down briefly.

[[For example, one of my questions would be: “The text claims

on page 256 that the experimentally determined configuration for

chromium, element 24, is 1s22s22p63s23p64s13d5. How can experiment

determine such a thing?”]]



Chapter 8

The Vistas Open to Us

I reckon I got to light out for the territory ahead. . .

— Mark Twain (last sentence of Huckleberry Finn)

This is the last chapter of the book, but this book itself is an invita-

tion only, so it is not the last chapter of quantum mechanics. There are

many fascinating topics that this book hasn’t even touched on. Quantum

mechanics will — if you allow it — surprise and delight and mystify you

for the rest of your life.

This book devotes two chapters to qubits, also called spin-1
2 systems.

Plenty remains to investigate: “which path” interference experiments,

delayed-choice interference experiments, many different entanglement situ-

ations. For example, we developed entanglement through a situation where

the quantal probability was 1
2 while the local deterministic probability was

5
9 or more (page 80). Different, to be sure, but not dramatically differ-

ent. In the Greenberger–Horne–Zeilinger entanglement situation the quan-

tal probability is 1 and the local deterministic probability is 0. You can’t

find probabilities more different than that! If you find these situations as

fascinating as I do, then I recommend George Greenstein and Arthur G.

Zajonc, The Quantum Challenge: Modern Research on the Foundations of

Quantum Mechanics.

For many decades, research into qubits yielded insight and understand-

ing, but no practical applications. All that changed with the advent of

quantum computing. This is a rapidly changing field, but the essay “Quan-

tum Entanglement: A Modern Perspective” by Barbara M. Terhal, Michael

M. Wolf, and Andrew C. Doherty (Physics Today, April 2003) contains core
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insights that will outlive any transient. From the abstract: “It’s not your

grandfather’s quantum mechanics. Today, researchers treat entanglement

as a physical resource: Quantum information can now be measured, mixed,

distilled, concentrated, and diluted.”

Because quantum mechanics is both intricate and unfamiliar, a

formidable yet beautiful mathematical formalism has developed around

it: position wavefunctions, momentum wavefunctions, Fourier transforms,

operators, Wigner functions. These are powerful precision tools, so mag-

nificent that some confuse the tools with nature itself. Every quantum

mechanics textbook develops this formalism to a greater or lesser extent,

but I also recommend the cute book by Leonard Susskind and Art Fried-

man, Quantum Mechanics: The Theoretical Minimum.

Here are two formal problems to whet your appetite: Back on page 140

I quoted O. Graham Sutton that “A technique succeeds in mathematical

physics, not by a clever trick, or a happy accident, but because it expresses

some aspect of a physical truth.” Thus inspired, we asked about the mean-

ing of the separation constant (4.16), and that inquiry led us to the whole

structure of stationary states and the energy eigenproblem. (And to a poem

by T.S. Eliot, page 146.) But when we faced a similar separation constant

at equation (7.10) we were too busy to follow up and ask what it was telling

us. If you study more quantum mechanics, you will learn that this sepa-

ration constant is related to angular momentum, that angular momentum

is related to rotations, and that the conservation of angular momentum is

related to rotational symmetry!

The second problem involves the simple harmonic oscillator, that is,

the potential energy function V (x) = 1
2kx

2. As with any one-dimensional

potential well there are energy eigenstates. If any one of these states is

shifted by a distance, it is of course no longer an energy eigenstate, so it

does change with time. The remarkable thing is how it changes with time:

the probability density does not spread, nor compact, nor change shape.

Instead it rigidly slides back and forth with the same period that a classical

particle would have in that same potential well.1 When I first did the math

to show that this is so, I was so astounded that I wrote a computer program

to check out the math. This remarkable fact is true, and I have the feeling
1M.E. Marhic, “Oscillating Hermite-Gaussian wave functions of the harmonic oscilla-

tor” Lettere al Nuovo Cimento 22 (1978) 376–378, and C.C. Yan, “Soliton like solutions

of the Schrödinger equation for simple harmonic oscillator” American Journal of Physics

62 (1994) 147–151.



The Vistas Open to Us 261

that it “expresses some aspect of a physical truth”, but I have no idea of

what that physical truth might be.

We have applied quantum mechanics to cryptography, to model systems,

and to atoms. Applications continue to molecules and to solids, to nuclei

and to elementary particles, to superfluids, superconductors, and lasers,

to liquid crystals, polymers, and membranes; the list is endless. Indeed,

sunlight itself is generated through a quantal tunneling process! White

dwarf stars work because of quantum mechanics, so do transistors and

light-emitting diodes. In 1995 a new state of matter, the Bose-Einstein

condensate, came into existence in a laboratory in Boulder, Colorado. In

2003 an even more delicate state, the fermionic condensate, was produced,

again in Boulder. Both of these states of matter exist because of the Pauli

principle, applied over and over again to millions of atoms.

Way back on page 5 we mentioned the need for a relativistic quantum

mechanics and its associate, quantum field theory. The big surprise is that

these theories don’t just treat particles moving from place to place. They

predict that particles can be created and destroyed, and sure enough that

happens in nature under appropriate conditions.

There’s plenty more to investigate: quantal chaos and the classical

limit of quantum mechanics, friction and the transition to ground state,

applications to astrophysics and cosmology and elementary particles.

But I want to close with one important yet rarely mentioned item:

it’s valuable to develop your intuition concerning quantum mechanics.

We saw on page 39 that two common visualizations are flawed. Then on

page 82 we found that no picture drawn with classical ink could successfully

capture all aspects of quantum mechanics. How, then, can one develop a

visualization or intuition for quantum mechanics? This is a lifelong journey

which you have already begun. A good next step is to read the slim but

profound book by Richard Feynman titled QED: The Strange Theory of

Light and Matter.

The story of quantum mechanics began with the glowing logs of a camp-

fire. It continued through atomic spectra; quantization, interference, and

entanglement; Fourier sine series and partial differential equations. The

story is not finished, and I invite you to add to it yourself.
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Problem

8.1 Questions (recommended problem)

This is the end of the book, not the end of quantum mechanics. Write

down any questions you have concerning quantum mechanics. Perhaps

you will answer some of these through future study. Others might

suggest future research directions for you.
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Significant Figures

The impossibility of certainty

What is the pattern of thought most characteristic of science? Is it know-

ing that “net force causes acceleration rather than velocity”? Is it knowing

that“momentum is conserved in the absence of external forces”? Is it know-

ing that “quantum mechanics has a classical limit”? No, it is none of these

three facts — important though they are. The pattern of thought most

characteristic of science is knowing that “every measurement is imperfect

and thus every observed number comes with an uncertainty”.

As with any facet of science, the proper approach to uncertainty is not

“plug into a formula for error propagation” but instead “think about the

issues involved”. For example, in the course of building a tree house I

measured a plank with a meter stick and found it to be 187.6 cm long.

A more accurate measurement would of course provide a more accurate

length: perhaps 187.64722031 cm. I don’t know the plank’s exact length, I

only know an approximate value. In a math class, 187.6 cm means the same

as 187.60000000 cm. But in a physics class, 187.6 cm means the same as

187.6??????? cm, where the question marks represent not zeros, but digits

that you don’t know. The digits that you do know are called “significant

digits” or “significant figures”.

This has an important philosophical consequence: Because all scientific

conclusions are based on measurements, and all measurements contain some

uncertainty, no scientific conclusion can be absolutely certain. All science is

tentative; all those worshiping at the altar of science are fooling themselves.

This book is more concerned with the day-to-day practicalities of uncer-

tainty than with the grand philosophical consequences. How do we express
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our lack of certainty? How do we work with (add, subtract, multiply, take

logarithms of, and so forth) quantities that aren’t certain?

Expressing uncertainty

The convention for expressing uncertain quantities is simple: any digit writ-

ten down is a significant digit. A plank measured to the nearest millimeter

has a length expressed as, say, 103.7 cm or 91.5 cm or 135.0 cm. Note

particularly the trailing zero in 135.0 cm: this final digit is significant.

The quantity “135.0 cm” is different from “135 cm”. The former means

“135.0?? cm”, the latter means “135.??? cm”. In the former, the digit in

the tenths place is 0, while in the latter, the digit in the tenths place is

unknown.

This convention gives rise to a problem for representing large numbers.

Suppose the distance between two stakes is 45.6 meters. What is this

distance expressed in centimeters? The answer 4560 cm is unsatisfactory,

because the trailing zero is not significant and so, according to our rule,

should not be written down. This quandary is resolved using exponential

notation: 45.6 meters is the same as 4.56×103 cm. (This is, unfortunately,

one of the world’s most widely violated rules.)

Working with uncertainty

Addition and subtraction. I measured a plank with a meter stick and

found it to be 187.6 cm long. Then I measured a dowel with a micrometer

and found it to be 2.3405 cm in diameter. If I place the dowel next to the

plank, how long is the dowel plus plank assembly? You might be tempted

to say

187.6

+ 2.3405

--------

189.9405

But no! This is treating the unknown digits in 187.6 cm as if they were

zeros, when in fact they’re question marks. The proper way to perform the
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sum is

187.6?????

+ 2.3405??

----------

189.9?????

So the correct answer, with only significant figures written down, is

189.9 cm.

Multiplication and division. The same question mark technique

works for multiplication and division, too. For example, a board measuring

124.3 cm by 5.2 cm has an area given through

1243?

x 52?

--------

?????

2486?

6215?

--------

64????

Adjusting the decimal point gives an answer of 6.4× 102 cm2

Although the question mark technique works, it’s very tedious. (It’s

even more tedious for division.) Fortunately, the following rule of thumb

works as well as the question mark technique and is a lot easier to apply:

When multiplying or dividing two numbers, round the answer

to the number of significant digits in the least certain of the two

numbers.

For example, when multiplying a number with four significant digits by a

number with two significant digits, the result should be rounded to two

significant digits (as in the example above).
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Rounding up vs. down. Mathematical operations result in an infinite

number of digits, and they should be rounded to the appropriate number

of significant digits. For example in the mathematical quotient

749.1

152
= 4.928289 . . .

the result “4.928” should be rounded up to the physical result 4.93 with

three significant digits. In contrast for the mathematical quotient

742.2

152
= 4.882894 . . .

the result “4.882” should be rounded down to the physical result 4.88. But

what about

731.9

152
= 4.815131 . . . ?

When the leading non-significant digit is five, should it be rounded down

to 4.81 or up to 4.82? It’s permissible to round either way.

I was told in high school that when the leading non-significant digit

was five, you could keep that digit, so that the result of the division above

would be 4.815. I always loved it when the result came out this way: I was

getting four significant digits for the price of three! You should not do this,

because that fourth digit is in fact unknown. You’re not getting four for

the price of three, you’re substituting fiction at the expense of fact.

Evaluating functions. How many significant figures does sin(87.2◦)

contain? We know that the real angle is somewhere between 87.200 . . .◦

and 87.300 . . .◦, so the real sine is somewhere between

sin(87.200 . . .◦) = 0.9988061 . . .

sin(87.300 . . .◦) = 0.9988898 . . .

The usual rule is to make the last significant digit in the result to be the

first one from the left that changes when you repeat the calculation. In this

case the first digit that changed was the “0” that changed to an “8”, so we

round the result to four significant figures, namely

sin(87.2◦) = 0.9988.
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Numbers that are certain

Any measured number is uncertain, but counted and defined quantities can

be certain. If there are seven people in a room, there are 7.0000000 . . .

people. There are never 7.00395 people in a room. And the inch is defined

to be exactly 2.5400000 . . . centimeters — there’s no uncertainty in this

conversion factor, either.

Conclusions

For most problems in this book the answer is an equation or a graph or a

paragraph. But for a problem whose answer is a number, you must present

that number with appropriate use of significant figures.
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Dimensions

What does “dimensions” mean?

Suppose a table is two-hundred-thirty-six centimeters long or, in symbols,

`T = 236 cm,

where `T represents the length of the table. This means that the table is

236 times as long as the length of the standard centimeter:

`T = 236 cm means `T = 236×(the length of the standard centimeter).

In other words, the symbol “cm” used in the equations above represents

“the length of the standard centimeter”.

The symbol “`T ” stands for “236 cm”. That is, it stands for the number

“236” times the length of the standard centimeter, or in other words, for

the number “236” times the unit “cm”. If I wrote “`T = 236” instead of

“`T = 236 cm”, I’d be dead wrong. . . just as wrong as if the solution to

an algebra problem were “y = 236x” and I wrote “y = 236”, or if the

solution to an arithmetic problem were “236× 7” and I wrote “236”. In all

three cases, my answer would be wrong because it omitted a factor. (These

are, respectively, the factor of “the length of the standard centimeter”, the

factor of x, and the factor of 7.) The length of the table is not 236 —

rather, the ratio of the length of the table to the length of the standard

centimeter is 236.

Ignoring the units of a measurement results in practical as well as

conceptual error. On 23 September 1999 the “Mars Climate Orbiter”

spaceprobe crashed into the surface of Mars, dashing the hopes and dreams

of dozens of scientists and resulting in the waste of $125 million. This
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spacecraft had survived perfectly the long and perilous trip from Earth to

Mars. How could it have failed so spectacularly in the final phase of its

journey? The manufacturer, Lockheed Martin Corporation, had told the

the spacecraft controllers, at NASA’s Jet Propulsion Laboratory, the thrust

that the probe’s rockets could produce. But the Lockheed engineers gave

the thruster performance data in pounds (the English unit of force), and

they didn’t specify which units they used. The NASA controllers assumed

that the data were in newtons (the SI unit of force).

New York Times, 1 October 1999, page 1, an embarrassing place to have

your blunders published.
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Modern information technology actually encourages mistakes like this.

When you use a calculator, a spreadsheet, or a computer program, you

enter pure numbers like “1.79”, rather than quantities like “1.79 cm”. So

it’s especially important to be on your guard and document your units when

using computers. Keep the units in your mind, even if you can’t keep them

in your calculator!

A nitpicky distinction is that the length of the table has the units of

“centimeters” and the dimensions of “length”. If the length of the table

were measured in centimeters or meters or even in cubits it would still have

the dimensions of length. But in everyday language the terms “units” and

“dimensions” are often used interchangeably.

Unit conversions

It is standard usage to refer to the length of the standard centimeter by

the symbol “cm”. But in this appendix I’ll also refer to the length of the

standard centimeter by the symbol `cm. Similarly I’ll call the length of the

standard meter either “m” or `m.

You know that if a table is 236 centimeters long it is also 2.36 meters

long:

`T = 236 cm = 236 `cm = 2.36 m = 2.36 `m.

How can this be? It’s certainly not true that 236 = 2.36! It’s true instead

that 236 cm = 2.36 m because the length of a meterstick is 100 times the

length of a standard centimeter:

`m = 100 `cm.

This tells us that

2.36 m = 2.36 `m = 2.36× (100 `cm) = 236 `cm = 236 cm,

or, in the opposite direction,

236 cm = 236 `cm = 236 `cm(1) = 236 `cm

(
`m

100 `cm

)
= 236 `cm\

(
`m

100 `cm\

)
= 2.36 `m = 2.36 m.

In short, the symbol “cm” can be manipulated exactly like the symbol

“`cm”, because that’s exactly what it means!
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Incompatible dimensions

If I walk for 4.00 m, and then for 59 cm, how far did I go? The answer is

459 cm or 4.59 m, but not 4.00 + 59 = 63 of anything!

If I walk for 4.00 m, and then pause for 42 seconds, how far did I go?

Certainly not 4.00 m + 42 s. The number 46 has no significance in this

problem. For example, it can’t be converted into minutes.

In general, you can’t add quantities with different units.

This rule can be quite helpful. Suppose you’re working a problem that

involves a speed v and a time t, and you’re asked to find a distance d.

Someone approaches you and whispers: “Here’s a hint: use the equa-

tion d = vt + 1
2vt

2.” You know that this hint is wrong: The quantity

vt has the dimensions of [length], but the quantity 1
2vt

2 has the dimen-

sions of [length]×[time]. You can’t add a quantity with the dimensions

of [length]×[time] to a quantity with the dimensions of [length], any more

than you could add 42 seconds to 4.00 meters.

A famous use of dimensional analysis

Dimensional analysis sometimes makes it possible to uncover a lot about

complicated situations if you can only ferret out the essential features of

the situation. For example the fluid flow expert G.I. Taylor was able to

deduce the explosive yield of the first nuclear bomb from a sequence of

photographs of the expanding fireball published in Life magazine.2

2Details presented in Michael B.A. Deakin, “G.I. Taylor and the Trinity test” In-
ternational Journal of Mathematical Education in Science and Technology 42 (2011)

1069–1079.
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Taylor realized that this sequence of photos showed a shock wave ex-

panding into an undisturbed medium, and he knew from his previous expe-

rience that the radius of the fireball r could depend upon only three things:

the density of undisturbed air ρ, the energy released through the explosion

E, and the time since the explosion t.

quantity dimensions

ρ [mass]/[length]
3

E [mass]× [length]
2
/[time]

2

t [time]

r [length]

Taylor knew that to build r out of ρ, E, and t, he had to cancel out the

[mass] that appears in ρ and E but that cannot enter into r. Thus he had

to build r out of E/ρ and t.

quantity dimensions

E/ρ [length]
5
/[time]

2

t [time]

r [length]

Now Taylor had to cancel the [time]
2

from the denominator of E/ρ using

the variable t:

quantity dimensions

Et2/ρ [length]
5

r [length]

Taylor concluded that

r(t) = C 5
√
Et2/ρ

where C is some dimensionless constant like π or 7 but not a number with

dimensions like 9.8 m/s2.

Sure enough, a plot of r as a function of t2/5, with data taken from the

magazine photo sequence, yielded a straight line. The energy released by
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the explosion was

E =
1

C5
ρ
r5

t2
.

Taylor had experimental data suggesting that 1/C5 = 1.033, and from this

he was able to find the energy output of the nuclear bomb explosion at a

time when this precise number was a closely guarded secret.

Conclusions

For most problems in this book the answer is an equation or a graph or a

paragraph. But for a problem whose answer is a number, you must present

that number with units attached.

Problems

B.1 A new law of nature?

It has been proposed that the speed of sound vs and the speed of light c

are related through vs = 1
2

3
√
c. Check the accuracy of this formula using

speeds expressed in meters/second, then recheck its accuracy using speeds

expressed in kilometers/second. (According to the book U.S. Standard

Atmosphere, 1976, the standard speed of sound at sea level is 340.29 m/s.)

Is this proposal a new and surprising law of nature, or merely a coincidence?

Explain.

B.2 Sound speed

The speed of sound vs in air, in a given room, could reasonably depend on

three things: the air density ρ, the air pressure p, and the room volume V .

In other words

vs = CρxpyV z

where C is some dimensionless number. Find the exponents x, y, and z.
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B.3 Physics in film

Alfred Hitchcock’s 1935 film The 39 Steps is one of the great spy thrillers

of all time. In the film, several men and women crisscross England and

Scotland in pursuit of an important but unspecified secret document. Only

in the final minute of the film does the audience find that the the document

contains the specifications for a completely silent aircraft engine, and that

these specifications hinge upon “the secret formula(
r − 1

r

)γ
where r represents the ratio of compression and γ the axis of the fluid line

of the cylinder.”

Show that this formula is not worth the pursuit of a cadre of spies, and

in fact is entirely without meaning.

Clue: You know that 53 means “5 times itself three times” or 53 =

5× 5× 5. What does 5(3 feet) mean? How is it related to 5(1 yard)? [[Note

for non-Americans: The “foot” and the “yard” are archaic units of length

used in the United States of America. A foot is about 30 cm long, and a

yard is defined as exactly three feet.]]
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Complex Arithmetic

The familiar numbers like 17, 3
5 ,
√

2, −π and so forth are called “real

numbers”. The square of any real number is non-negative. But we can

imagine a new category of numbers that have negative squares. We first

imagine the number i, with i2 = −1. Then we can imagine the number 3

times i, with (3i)2 = −9. These are called “imaginary numbers”.

The names “real” and “imaginary” are unfortunate. Numbers are use-

ful abstractions that exist in our minds: you’ve seen two hands, and two

fingers, and two apples; you’ve seen the Arabic numeral “2” and the Roman

numeral “II”, which are made of ink; you’ve seen the English word “two”,

the German word “zwei”, and the Somali word “laba”, again made of ink;

but you’ve never seen the number 2, which is made of pure thought. In

the usual sense of the words “real” and “imaginary”, no number is real; all

numbers are imaginary.

The sum of a real number and an imaginary number is called a “complex

number” (another unfortunate name). Just as the real number x can be

profitably visualized as a point on the one-dimensional real line, so the

complex number z = x+iy can be profitably visualized as the point (x, y) on

the two-dimensional “complex plane”. This book assumes some background

in complex arithmetic. If your knowledge is rusty, these problem should

grease your mental gears.

Problems

C.1 Complex sum and product

Find the sum (2+3i)+(−3+5i), the product (5+7i)(2−i), and the square

(3 + i)2.
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C.2 Cartesian and polar forms of a complex number

The “Cartesian form” of a complex number z is x+ iy, where x and y are

real. (The quantity x is called the “real part of z”: x = <e{z}, while the

quantity y is called the “imaginary part of z”: y = =m{z}.) The “polar

form” of a complex number is reiθ, where r and θ are real and r is non-

negative. (The quantity r is called the “magnitude”, while the quantity θ

is called the “phase”.) Using the Euler relation eiθ = cos θ + i sin θ, show

that these forms are related through

r =
√
x2 + y2 and tan θ = y/x.

C.3 Express in polar form

Express in polar form: 2 +
√

12 i and −1 +
√

3 i.

C.4 Multiplication of complex numbers

Find the product (2 +
√

12 i)(−1 +
√

3 i) using both Cartesian and polar

forms.

C.5 Polar form of i and 1

Show that i = ei(
1
2π+2πn), where n is any integer (positive, zero, or neg-

ative). Similarly, find an infinite number of polar representations of the

number 1.

C.6 Complex conjugate

If z = x + iy, where x and y are real, then the “complex conjugate” of z

is defined as z∗ = x − iy. Show that r2 = zz∗. (The magnitude r is also

called |z|, so this result is often written |z|2 = zz∗.)



Appendix D

Problem-Solving Tips and Techniques

A physicist can wax eloquent about concepts like interference and entangle-

ment, but can also use those concepts to solve problems about the behavior

of nature and the results of experiments. This appendix gives general ad-

vice on problem solving, then lists the problem-solving tools introduced and

elaborated upon in this book.

You have heard that “practice makes perfect”, but in fact practice makes

permanent. If you practice slouchy posture, sloppy reasoning, or inefficient

problem-solving technique, these bad habits will become second nature to

you. For proof of this, just consider the career of [[insert here the name of

your least favorite public figure, current or historical, foreign or domestic]].

So I urge you to start now with straight posture, dexterous reasoning, and

facile problem-solving technique, lest you end up like [[insert same name

here]].

An approach to problem solving

Suppose you want to travel from San Diego to Boston. You start by deciding

whether to fly, take a bus, or drive a car. If you decide to fly, you then

make subsidiary decisions like choice of airline. If you decide to drive, you

make different subsidiary decisions: Should you first change your car’s oil?

Should you take a side trip to the Grand Canyon? Or to visit your friends

in Boulder, Colorado? What you don’t do is just step out of your front door

and walk northeast: you make a plan before taking that very first step.

And just as your journey begins before you take your first step, so it

extends after you take your last step. Any journey, properly considered,

includes reflection upon that journey. This might be merely technical (“I’ll
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never travel on that bus line again.”) or it might open a door to future

travel (“The Grand Canyon was so spectacular! Next time I’ll hike from

the rim down to the Colorado River.”) or it might be deeper still (“My

friends in Boulder seem so happy together. I need to rethink my plan of

remaining single all my life.”).

As with travel, so with physics problem solving. The first step is to un-

derstand the problem. What is given? What is asked for? For problems

in classical mechanics and electromagnetism, one tool for understanding

the problem is to sketch the situation. In relativity, if often helps to

make two sketches: one for each reference frame. Some quantum mechan-

ics problems are so abstract that a sketch doesn’t help you understand the

problem, but often doodling plays that same role.

The next step is to select a strategy — a key idea to employ — before

rushing in to make detailed derivations. Is this a time evolution problem?

An energy eigenproblem? An interference or entanglement problem?

Once you pass on to implementing your strategy, keep your goal in

mind to avoid deriving endless numbers of equations that are true but that

don’t help you reach your goal.

Finally, once you’re reached that goal, reflect on your final result.

What is nature trying to tell you through this problem? Is the result in

accord with your expectations? A good example of this stage of problem

solving appears on page 171. Instead of reaching equation (4.105), saying

“That’s the end”, and heading to bed for some well-earned sleep, we spent

two paragraphs on the consequences of that equation, found them remark-

able and unexpected, and used them to illuminate the role of interference

in quantum mechanics. I.I. Rabi reflected on the consequences even more

deeply, and used those reflections to invent the atomic clock. Another ex-

ample concerns the Planck radiation law (1.13): pages 16–23, plus sample

problem 1.2.1, are ten pages of reflection upon that single brief equation.

As with travel, such reflection might be merely technical (“Why did I

have to work out that integral in detail? I should have seen from symmetry

that the result would be zero.”) or it might be deeper (“When Styer said

an atom might not have a position, I thought he was spouting bullshit. But

after working problem 2.7, ‘Bomb-testing interferometer’, I realize that I

have to rethink my ideas about how atoms behave.”).
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List of problem-solving tools

average of sine squared function, 138

avoid finding the normalization constant, 156

check for divergence, 17

check limiting cases, 16–17

dimensional analysis, 195, 245

easy part first, 133

everyone makes errors, 13, 160, 240

Fourier sine series, 136–137, 141–142, 147–149

list known quantities and desired quantities, 37

look for physically significant combinations of quantities, don’t rend

them apart, 38

ODE, informal solution of, 178–197

scaled quantities, 198–201, 246

scaling, 197

test and reflect on your solution, 14, 16–17, 20–22, 26–27, 30, 66,

139–146, 148–149, 171–172, 279–280





Appendix E

Catalog of Misconceptions

Effective teaching does not merely instruct on what is correct — it also

guards against beliefs that are not correct. There are a number of preva-

lent misconceptions concerning quantum mechanics. This catalog presents

misconceptions mentioned in this book, together with the page number

where that misconception is pointed out and corrected.

a “wheels and gears” mechanism undergirds quantum mechanics,

82, 159–162

all states are energy states, 6, 146

amplitude is physically “real”, 6, 95–96, 101, 113–114, 129

atom behaves like a miniature solar system, 38–39

“collapse of the quantal state” involves (or permits) instantaneous

communication, 113–114

electron is a small, hard marble, 38–39, 62

energy and temperature are always related linearly, 21

energy eigenfunction has the same symmetry as the potential en-

ergy function, 186

energy eigenvalues alone solve the quantal problem in full, 151

generic quantal state time-evolves into an energy eigenstate, 143,

152

identical particles attract/repel through a force, 216

identical particles in ground state of helium, 252

identical particles reside in different levels, 222, 225, 252, 257

identical particles, label particles vs. coordinates, 206–207

identical particles, three particles, 218

283



284 Catalog of Misconceptions

indeterminate quantity exists but changes rapidly, 55, 140

indeterminate quantity exists but changes unpredictably, 55, 140

indeterminate quantity exists but is disturbed upon measurement,

55, 159–162

indeterminate quantity exists but knowledge is lacking, 6, 55, 80,

96, 161–162

indeterminate quantity exists in random shares, 55

magnetic moment behaves like a classical arrow, 55

mean position moves classically, 159

particle has no probability of being in classically prohibited region,

187

particle is likely to be where potential energy is low, 189

photon as ball of light, 25, 26, 28, 82

photon is a small, hard marble, 25, 26, 28, 82

pointlike particles shimmy across nodes, 140, 186

probability density is all that matters, 125, 156

quantum mechanics applies only to small things, 4

quantum mechanics is just classical mechanics supplemented with

a veneer of uncertainty, 159–162

state of a two-particle system, 129

state of system given through states of each constituent, 113, 129–

130

transition to ground state, 152, 244

wavefunction associated not with system but with particle, 129

wavefunction exists in position space, 129

wavefunction is dimensionless, 124, 143

wavefunction must factorize into space × spin, 173–174, 226
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