
Electrostatics of a circuit

Griffiths, Electrodynamics, fourth edition, problem 7.42

(a) Find the potential.

The potential everywhere is the solution to

∇2V (s, φ) =
1

s

∂

∂s

(
s
∂V

∂s

)
+

1

s2
∂2V

∂φ2
= 0

subject to boundary condition

V (a, φ) =
V0φ

2π
.

Use separation of variables:

V (s, φ) = S(s)Φ(φ)

so that

1

s

∂

∂s
(sS′(s)Φ(φ)) +

1

s2
S(s)Φ′′(φ) = 0

s(S′(s) + sS′′(s))Φ(φ) + S(s)Φ′′(φ) = 0

s(S′(s) + sS′′(s))

S(s)
= −Φ′′(φ)

Φ(φ)
.

Through the standard separation-of-variables argument, the left-hand side depends only on the variable s,

while the right-hand side depends only on the variable φ, and s is independent of φ, so both sides must be

equal to the constant C.

The angular equation is

Φ′′(φ) = −CΦ(φ)

with solution

Φ(φ) = A sin(ωφ) +B cos(ωφ) where C = ω2.

In order for this solution to obey the necessary condition

Φ(φ) = Φ(φ+ 2π)

for all values of φ, we must have

ω = 0, 1, 2, 3, . . . .

The radial equation is then

s(S′(s) + sS′′(s))

S(s)
= C = ω2

s2S′′(s) + sS′(s) = ω2S(s)

A little playing around with trial solution sα shows that the solution is

S(s) = Asω +B
1

sω
.
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Clearly, inside the cylinder we need to use sω while outside we need to use s−ω.

To summarize, the general solution inside the cylinder is

V (s, φ) =

∞∑
n=0

sn[An sin(nφ) +Bn cos(nφ)],

while the general solution outside the cylinder is

V (s, φ) =

∞∑
n=0

1

sn
[A′n sin(nφ) +B′n cos(nφ)].

Our task now is to find the coefficients An and Bn, as well as A′n and B′n, by fitting to the boundary

condition at s = a:

V (a, φ) =
V0φ

2π
for − π < φ < π.

We could do this in the usual way, using the orthogonality of the sines and cosines, in the same way that

one finds Fourier series. Alternatively you might just happen to know this result (which is the Fourier series

representation of a sawtooth signal), published in H.D. Dwight, Tables of Integrals (1961), equation 416.07:

φ = −2

∞∑
m=1

(−1)m sin(mφ)

m
for − π < φ < π.

This means that the boundary condition is

V (a, φ) = −V0
π

∞∑
m=1

(−1)m sin(mφ)

m
,

so the solution inside the cylinder is

V (s, φ) = −V0
π

∞∑
n=1

(
− s
a

)n sin(nφ)

n
,

while the solution outside the cylinder is

V (s, φ) = −V0
π

∞∑
n=1

(
−a
s

)n sin(nφ)

n
.

These last two expressions are perfectly correct solutions, but they are rendered a little more convenient

by the result published in L.B.W. Jolley, Summation of Series (1961), equation 540:

∞∑
n=1

An sin(nθ)

n
= atan

(
A sin θ

1−A cos θ

)
where A2 < 1.

Using this result, the solution inside the cylinder is

V (s, φ) =
V0
π

atan

(
s sinφ

a+ s cosφ

)
,
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while the solution outside the cylinder is

V (s, φ) =
V0
π

atan

(
a sinφ

s+ a cosφ

)
.

[[It used to be difficult to sum infinite series, so it was an important physics skill to be able to get your

own infinite series and express it in terms of already-tabulated functions like sin(θ) and atan(x). This skill

is less important today, but it still leads to a sort of elegance.]]

(b) Find the surface charge density.

The surface charge density is

σ(~r) = ε0E⊥(~r)

evaluated at a point ~r on the surface, where E⊥(~r) is the component of ~E(~r) perpendicular to the surface

at that point. Meanwhile

~E(~r) = −~∇V (~r) = −∂V
∂s

~s− 1

s

∂V

∂φ
~φ,

so

E⊥(~r) = −∂V
∂s

.

We can take this derivative either inside or outside. . . we’ll get the same answer at the surface. I chose

to take it for the outside because the variable s occurs fewer times in that expression.

V (s, φ) =
V0
π

atan

(
a sinφ

s+ a cosφ

)

∂V

∂s
=

V0
π

 1

1 +

(
a sinφ

s+ a cosφ

)2


[
− a sinφ

(s+ a cosφ)2

]

=
V0
π

[
(s+ a cosφ)2

(s+ a cosφ)2 + (a sinφ)2

] [
− a sinφ

(s+ a cosφ)2

]
= −V0

π

a sinφ

s2 + 2sa cosφ+ a2
.

So at the surface, s = a,

∂V

∂s
= −V0

π

a sinφ

a2 + 2a2 cosφ+ a2
= −V0

π

1

2a

sinφ

1 + cosφ
= − V0

2πa
tan(φ/2),

where the last step uses the tangent half-angle formula Dwight equation 406.2.

Wrapping up,

σ =
ε0V0
2πa

tan(φ/2).
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