A solution to the Maxwell equations

Griffiths, Electrodynamics, fourth edition, problem 7.37

Recall that $\theta(v t-r)=0$ when $r \geq v t$ and that

$$
\frac{d \theta(x)}{d x}=\delta(x)
$$

The situation described is: A charge of $+q$ sits directly on top of a charge of $-q$. At $t=0$, the charge $+q$ explodes into a spherical shell expanding at speed v. This shell, of course, has radius $R=v t$, surface charge density $\frac{q}{4 \pi R^{2}}$, volume charge density $\frac{q}{4 \pi R^{2}} \delta(R-r)$, and current density $v \frac{q}{4 \pi R^{2}} \delta(R-r) \hat{r}$.

From $\nabla \cdot \vec{E}=\frac{\rho}{\epsilon_{0}}$ we conclude (spherical coordinates):

$$
\begin{aligned}
\frac{\rho}{\epsilon_{0}} & =\frac{1}{r^{2}} \frac{\partial}{\partial r}\left[r^{2}\left(-\frac{1}{4 \pi \epsilon_{0}} \frac{q}{r^{2}} \theta(v t-r)\right)\right] \\
& =\frac{1}{r^{2}} \frac{\partial}{\partial r}\left[r^{2}\left(-\frac{1}{4 \pi \epsilon_{0}} \frac{q}{r^{2}}\right)\right] \theta(v t-r)+\frac{1}{r^{2}}\left[r^{2}\left(-\frac{1}{4 \pi \epsilon_{0}} \frac{q}{r^{2}}\right)\right] \frac{\partial}{\partial r} \theta(v t-r) \\
& =-\frac{q}{\epsilon_{0}} \delta^{(3)}(\vec{r}) \theta(v t-r)-\frac{1}{4 \pi \epsilon_{0}} \frac{q}{r^{2}} \delta(v t-r)(-1) \\
\rho & =-q \delta^{(3)}(\vec{r})+\frac{q}{4 \pi(v t)^{2}} \delta(v t-r)
\end{aligned}
$$

From $\nabla \times \vec{B}=\mu_{0} \vec{J}+\mu_{0} \epsilon_{0} \frac{\partial \vec{E}}{\partial t}$ we conclude:

$$
\begin{aligned}
\vec{J} & =-\epsilon_{0} \frac{\partial \vec{E}}{\partial t} \\
& =-\epsilon_{0}\left(-\frac{1}{4 \pi \epsilon_{0}} \frac{q}{r^{2}}\right) \hat{r} \frac{\partial \theta(v t-r)}{\partial t} \\
& =\frac{1}{4 \pi} \frac{q}{r^{2}} \hat{r} \delta(v t-r) v \\
& =v \frac{q}{4 \pi(v t)^{2}} \delta(v t-r) \hat{r}
\end{aligned}
$$

To assure that this is a solution, we need only check that

$$
\nabla \cdot \vec{B}=0
$$

which is obviously true, and that

$$
\nabla \times \vec{E}=-\frac{\partial \vec{B}}{\partial t}
$$

In spherical coordinates, for a radially symmetric vector $\vec{E}=E(r) \hat{r}$, the curl is

$$
\nabla \times \vec{E}=0 \hat{r}+\frac{1}{r} \frac{1}{\sin \theta} \frac{\partial E(r)}{\partial \phi} \hat{\theta}+\frac{1}{r}\left(-\frac{\partial E(r)}{\partial \theta}\right) \hat{\phi}=0
$$

so this is true too.

