
A solution to the Maxwell equations

Griffiths, Electrodynamics, fourth edition, problem 7.37

Recall that θ(vt− r) = 0 when r ≥ vt and that

dθ(x)

dx
= δ(x).

The situation described is: A charge of +q sits directly on top of a charge of −q. At t = 0, the charge

+q explodes into a spherical shell expanding at speed v. This shell, of course, has radius R = vt, surface

charge density
q

4πR2
, volume charge density

q
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δ(R− r), and current density v

q
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δ(R− r)r̂.

From ∇ · ~E =
ρ

ε0
we conclude (spherical coordinates):
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From ∇× ~B = µ0
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we conclude:
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To assure that this is a solution, we need only check that

∇ · ~B = 0,

which is obviously true, and that

∇× ~E = −∂
~B

∂t
.

In spherical coordinates, for a radially symmetric vector ~E = E(r)r̂, the curl is
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so this is true too.


