
Bead on a hoop

A circular wire hoop rotates with constant angular velocity ω about a vertical diameter. A small bead

moves, without friction, along the hoop. Find the equilibrium position of the particle and calculate the

frequency of small oscillations about this position. Find a critical angular velocity ωc which divides the

motion of the particle into two types. Graph the equilibrium position as a function of ω and, with the aid

of the graph, interpret the two types of motion physically.

[[This problem is modified from problem 7-18 of Jerry Marion, Classical Dynamics of Particles and

Systems, second edition (Academic Press, New York, 1970), from the chapter on Lagrangian mechanics.]]

Model Solution:

R sin θ

θ
R

ω

bead

First we find the Lagrangian and from it the equation of motion. From that equation, we first find the

equilibrium points, then analyze those points for stability.

Find the Lagrangian: The kinetic energy is

T = 1
2m(R2 sin2θ ω2 +R2θ̇2),

where the left term involves motion perpendicular to the hoop and the right term involves motion along the

hoop. The potential energy is

U = −mgR cos θ

so the Lagrangian is

L = 1
2m(R2 sin2θ ω2 +R2θ̇2) +mgR cos θ

L/mR2 = 1
2ω

2 sin2θ + 1
2 θ̇

2 + (g/R) cos θ.

The Lagrange equation
∂L

∂θ
− d

dt

∂L

∂θ̇
= 0

implies the equation of motion

θ̈ − ω2 sin θ cos θ + (g/R) sin θ = 0. (1)
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What are the equilibrium points? At equilibrium, θ is a constant, call it θ0, so θ̇ = 0, θ̈ = 0, etc. Thus

the condition for equilibrium is

[−ω2 cos θ0 + g/R] sin θ0 = 0. (2)

The solutions are either

sin θ0 = 0 or else cos θ0 =
g

Rω2
.

The first possibility allows for two equilibrium points: θ0 = 0, bottom of the hoop, and θ0 = π, top of

the hoop. The location of these points is independent of ω. The second possibility allows for an equilibrium

point with θ0 less than π/2 (that is 90◦), because g/Rω2 > 0. Because cos θ0 ≤ 1, this equilibrium point

exists only at rotation rates when ω ≥
√
g/R.

These observations inspire the definition of a critical rotation rate

ωc =

√
g

R
. (3)

For values of ω slower than ωc, there are two equilibrium points: θ0 = 0 and θ0 = π. For values of ω faster

than ωc, there are three equilibrium points:

θ0 = 0, θ0 = π, and cos θ0 =
ω2
c

ω2
. (4)

In terms of the critical rotation rate, the equation of motion (1) is

θ̈ − ω2 sin θ cos θ + ω2
c sin θ = 0. (5)

unstable equlibrium

θ0

ω 0

+π/2

ωc 

−π/2

stable equlibrium
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Investigate small deviations about any of the equilibrium angles. If

x(t) = θ(t)− θ0,

then, from Taylor series,

sin θ = sin(θ0 + x) = sin θ0 + (cos θ0)x+O(x2)

cos θ = cos(θ0 + x) = cos θ0 − (sin θ0)x+O(x2)

whence

sin θ cos θ = sin θ0 cos θ0 + (cos2 θ0 − sin2 θ0)x+O(x2)

= sin θ0 cos θ0 + (2 cos2 θ0 − 1)x+O(x2).

The equation of motion (5) then becomes, ignoring second-order terms,

ẍ− ω2
[
sin θ0 cos θ0 + (2 cos2 θ0 − 1)x

]
+ ω2

c [sin θ0 + x cos θ0] = 0.

But by condition (2) for an equilibrium point

−ω2 sin θ0 cos θ0 + ω2
c sin θ0 = 0

so

ẍ− ω2(2 cos2 θ0 − 1)x+ ω2
c [x cos θ0] = 0

or in other words

ẍ(t) +
[
ω2
c cos θ0 − 2ω2 cos2 θ0 + ω2

]
x(t) = 0. (6)

We apply this general equation to the three equilibrium angles in turn.

First equilibrium angle: For the case θ0 = π, that is at the very top of the hoop, the small deviation

equation (6) becomes

ẍ(t) +
[
−ω2

c − ω2
]
x(t) = 0. (7)

The equilibrium point on the very top of the hoop is unstable. For if x(t) becomes positive, then ẍ(t)

becomes positive also, so x(t) becomes more positive, so ẍ(t) becomes still more positive, etc., etc. Similarly

if x(t) becomes negative. Technically, the solution of (7) is

x(t) = Aet/τ +Be−t/τ with τ =
1√

ω2 + ω2
c

,

but this solution rapidly takes the bead far from the equilibrium point and thus far from the region where

equation (7) is valid.

This confirms one’s intuitive feeling that the equilibrium point on the very top of the hoop is unstable. It

makes sense that the equilibrium at the very top of a mountain is unstable, and rotation would if anything

make it less stable. This is exactly what our equation predicts (larger ω results in smaller τ that is faster

escapes).
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Second equilibrium angle: For the case θ0 = 0, that is at the very bottom of the hoop, the small deviation

equation (6) becomes

ẍ(t) +
[
ω2
c − ω2

]
x(t) = 0. (8)

For ω > ωc the situation is as above and the equilibrium is unstable. But when ω < ωc equation (8) is the

equation for simple harmonic motion with frequency

ω0 =
√
ω2
c − ω2.

In this regime a small deviation does not lead to a large one. Instead, a bead slightly displaced and then

released will bob around the equilibrium position according to

x(t) = A cos(ω0t+ δ).

Notice that as ω approaches ωc from below, the period of simple harmonic oscillation approaches infinity.

This very slow return time indicates the incipient instability.

Third equilibrium angle: Finally, for the case where cos θ0 = ω2
c/ω

2, the deviations satisfy

ẍ(t) +
ω4 − ω4

c

ω2
x(t) = 0. (9)

This equation suggests instability when ω < ωc and stability when ω > ωc. However, the instability suggested

never arises, because this equilibrium point doesn’t exist when ω < ωc! Whenever this equilibrium exists it

is stable, and small oscillations near it are simple harmonic with frequency

ω0 =

√
ω4 − ω4

c

ω
.

Again, the period approaches infinity just as the equilibrium point goes out of existence at ω = ωc.
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Extras regarding period. As I worked this problem, I grew intrigued by the fact that the period of

oscillation about the stable equilibrium point approached infinity as ω approached ωc:

T0 =
2π√

ω2
c − ω2

when ω < ωc

T0 =
2πω√
ω4 − ω4

c

when ωc < ω.

So I sketched a graph T0 as a function of ω. The sketch shows the behavior when ω = 0 and when ω � ωc.

T0

ω 0
ωc 0

2π/ω 
2π/ωc 

But I was more concerned with the behavior as ω → ωc. I was able to show that if ∆ is the deviation of ω

from ωc, that is ∆ = |ω − ωc|, then near ωc

T0 ≈ 2π√
2ωc∆

when ω < ωc

T0 ≈ 2π√
4ωc∆

when ωc < ω.

Can you show this?

Reference: For more on this system, including experiments, see Lisandro Raviola, Maximiliano Véliz,

Horacio Salomone, Néstor Olivieri, and Eduardo Rodriguez, “The bead on a rotating hoop revisited: an

unexpected resonance”, European Journal of Physics
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