The WKB Approximation

Griffiths problem 8.2: Alternative derivation of WKB

(a)

$$
\begin{aligned}
\psi(x) & =e^{i f(x) / \hbar} \\
\frac{d \psi}{d x} & =\frac{i}{\hbar} f^{\prime} e^{i f / \hbar} \\
\frac{d^{2} \psi}{d x^{2}} & =\frac{i}{\hbar} f^{\prime \prime} e^{i f / \hbar}-\frac{1}{\hbar^{2}} f^{\prime 2} e^{i f / \hbar}
\end{aligned}
$$

So the Schrödinger equation is

$$
\frac{i}{\hbar} f^{\prime \prime} e^{i f / \hbar}-\frac{1}{\hbar^{2}} f^{\prime 2} e^{i f / \hbar}=-\frac{p^{2}(x)}{\hbar^{2}} e^{i f / \hbar}
$$

or

$$
\begin{equation*}
i \hbar f^{\prime \prime}-f^{\prime 2}+p^{2}(x)=0 \tag{1}
\end{equation*}
$$

(b)

$$
\begin{aligned}
f(x) & =f_{0}(x)+\hbar f_{1}(x)+\hbar^{2} f_{2}(x)+\cdots \\
f^{\prime} & =f_{0}^{\prime}+\hbar f_{1}^{\prime}+\hbar^{2} f_{2}^{\prime}+\cdots \\
\left(f^{\prime}\right)^{2} & =f_{0}^{\prime 2}+\hbar\left(2 f_{0}^{\prime} f_{1}^{\prime}\right)+\hbar^{2}\left(f_{1}^{\prime 2}+2 f_{0}^{\prime} f_{2}^{\prime}\right)+\cdots
\end{aligned}
$$

Plug these into equation (1) to find

$$
i \hbar\left[f_{0}^{\prime \prime}+\hbar f_{1}^{\prime \prime}+\cdots\right]-\left[f_{0}^{\prime 2}+\hbar\left(2 f_{0}^{\prime} f_{1}^{\prime}\right)+\hbar^{2}\left(f_{1}^{\prime 2}+2 f_{0}^{\prime} f_{2}^{\prime}\right)+\cdots\right]+p^{2}(x)=0
$$

Whence, collecting like powers of \hbar (dimensional analysis!)

$$
\begin{align*}
f_{0}^{\prime 2} & =p^{2}(x) \tag{2}\\
i f_{0}^{\prime \prime} & =2 f_{0}^{\prime} f_{1}^{\prime} \tag{3}\\
i f_{1}^{\prime \prime} & =f_{1}^{\prime 2}+2 f_{0}^{\prime} f_{2}^{\prime} \tag{4}
\end{align*}
$$

(c) From eqn. (2), we obtain

$$
\begin{align*}
f_{0}^{\prime}(x) & = \pm p(x) \tag{5}\\
f_{0}(x) & = \pm \int p(x) d x \tag{6}
\end{align*}
$$

Meanwhile, take the derivative of (5) to find $f_{0}^{\prime \prime}= \pm p^{\prime}(x)$. Plug this into the left-hand side of (3) to obtain

$$
\begin{align*}
\pm i p^{\prime}(x) & =2(\pm p(x)) f_{1}^{\prime} \\
f_{1}^{\prime}(x) & =\frac{i p^{\prime}(x)}{2 p(x)} \\
f_{1}(x) & =\frac{i}{2} \int \frac{p^{\prime}(x)}{p(x)} d x=\frac{i}{2} \int \frac{d p}{p}=\frac{i}{2} \log p(x) \tag{7}
\end{align*}
$$

Meanwhile, Griffiths [8.10] is

$$
\psi(x)=e^{i f / \hbar} \approx \frac{C}{\sqrt{p(x)}} e^{ \pm(i / \hbar) \int p(x) d x}
$$

Take the \log of each side

$$
\frac{i}{\hbar} f(x)= \pm \frac{i}{\hbar} \int p(x) d x+\log C-\frac{1}{2} \log p(x)
$$

and incorporate the constant " $\log C$ " into the constant of integration to find

$$
f(x)=\underbrace{ \pm \int p(x) d x}_{\text {same as }(6)}+\underbrace{i \frac{\hbar}{2} \log p(x)}_{\text {same as }(7)}
$$

Griffiths problem 8.5: The quantum bouncer

(a)

(b) Apply the Schrödinger equation

$$
-\frac{\hbar^{2}}{2 m} \frac{d^{2} \psi}{d x^{2}}+V(x) \psi(x)=E \psi(x)
$$

to the quantum bouncer to find that

$$
-\frac{\hbar^{2}}{2 m} \frac{d^{2} \psi}{d x^{2}}=(E-m g x) \psi(x) \quad \text { for } x>0
$$

with the boundary condition $\psi(0)=0$.
Rewrite as

$$
\frac{d^{2} \psi}{d x^{2}}=\frac{2 m^{2} g}{\hbar^{2}}\left(x-\frac{E}{m g}\right) \psi(x)
$$

change variable (shift of origin) to $y=x-E / m g$,

$$
\frac{d^{2} \psi}{d y^{2}}=\frac{2 m^{2} g}{\hbar^{2}} y \psi(y)
$$

and then change to the dimensionless variable

$$
z=\left(\frac{2 m^{2} g}{\hbar^{2}}\right)^{1 / 3} y
$$

to find

$$
\frac{d^{2} \psi}{d z^{2}}=z \psi(z)
$$

This O.D.E. has the solution

$$
\psi(z)=a \operatorname{Ai}(z)
$$

[It also has the solution $\operatorname{Bi}(z)$, but that solution is obviously unnormalizable.]
(c) In addition, the solution must satisfy the boundary condition

$$
\psi=0 \text { at } x=0 \text {, i.e. at } y=-E / m g \text {, i.e. at } z=\left(\frac{2 m^{2} g}{\hbar^{2}}\right)^{1 / 3}\left(-\frac{E}{m g}\right)
$$

In other words, the eigenenergies are related to the zeros z_{0} of $\operatorname{Ai}(z)$ through

$$
\begin{aligned}
E & =-m g\left(\frac{\hbar^{2}}{2 m^{2} g}\right)^{1 / 3} z_{0} \\
& =-\left(\frac{1}{2} \hbar^{2} m g^{2}\right)^{1 / 3} z_{0} \\
& =-\left(3.766 \times 10^{-23} \text { Joule }\right) z_{0}
\end{aligned}
$$

The zeros of $\operatorname{Ai}(z)$ are tabulated in Abramowitz and Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. (And also in the Digital Library of Mathematical Functions, release date 2011-08-29, National Institute of Standards and Technology, http://dlmf.nist.gov/9.9\#T1, table 9.9.1.)

$$
\begin{array}{cc}
\text { zero } & \text { energy (Joules) } \\
-2.338 & 8.805 \times 10^{-23} \\
-4.088 & 15.395 \times 10^{-23} \\
-5.521 & 20.791 \times 10^{-23} \\
-6.787 & 25.559 \times 10^{-23} \\
-7.944 & 29.916 \times 10^{-23}
\end{array}
$$

Griffiths problem 8.6: The quantum bouncer in the WKB approximation

This all hinges on Griffiths [8.47]:

$$
\begin{aligned}
\left(n-\frac{1}{4}\right) \pi \hbar & =\int_{0}^{x_{2}} p(x) d x \\
& =\int_{0}^{x_{2}} \sqrt{2 m(E-V(x))} d x \\
& =\int_{0}^{E / m g} \sqrt{2 m(E-m g x)} d x \quad \text { uuse } u=(m g / E) x \rrbracket \\
& =\frac{E}{m g} \int_{0}^{1} \sqrt{2 m E} \sqrt{1-u} d u \\
& =\sqrt{\frac{2 E^{3}}{m g^{2}}} \int_{0}^{1} \sqrt{1-u} d u \quad \text { use } y=1-u \rrbracket \\
& =\sqrt{\frac{2 E^{3}}{m g^{2}}} \int_{0}^{1} \sqrt{y} d y \\
& =\sqrt{\frac{2 E^{3}}{m g^{2}}}\left[\frac{1}{3 / 2} y^{3 / 2}\right]_{0}^{1} \\
& =\sqrt{\frac{2 E^{3}}{m g^{2}}}\left[\frac{2}{3}\right]
\end{aligned}
$$

Solve for E :

$$
E=\left(\frac{9}{8} \pi^{2} \hbar^{2} m g^{2}\right)^{1 / 3}\left(n-\frac{1}{4}\right)^{2 / 3}
$$

Plug in to build the table of values:

$$
\begin{array}{cc}
\mathrm{n} & \text { energy (Joules) } \\
1 & 8.738 \times 10^{-23} \\
2 & 15.371 \times 10^{-23} \\
3 & 20.777 \times 10^{-23} \\
4 & 25.549 \times 10^{-23} \\
5 & 29.910 \times 10^{-23}
\end{array}
$$

The last value is accurate to 2 parts in 10,000 !

Griffiths problem 8.14: WKB for the Coulomb problem

The effective potential is

$$
V_{\mathrm{eff}}(r)=\left[-\frac{e^{2}}{4 \pi \epsilon_{0}} \frac{1}{r}+\frac{\hbar^{2}}{2 m} \frac{\ell(\ell+1)}{r^{2}}\right]
$$

or, in atomic units,

$$
V_{\mathrm{eff}}(r)=\left[-\frac{1}{r}+\frac{1}{2} \frac{\ell(\ell+1)}{r^{2}}\right]
$$

Thus

$$
\begin{aligned}
p(r) & =\sqrt{2\left[E-V_{\mathrm{eff}}(r)\right]} \\
& =\sqrt{2\left[E+\frac{1}{r}-\frac{\ell(\ell+1)}{2 r^{2}}\right]} \\
& =\frac{\sqrt{2(-E)}}{r} \sqrt{-r^{2}+\frac{r}{(-E)}-\frac{\ell(\ell+1)}{2(-E)}}
\end{aligned}
$$

I prefer to use the constant $(-E)$, which is positive, rather than E.

The turning points are when $p(r)=0$, that is,

$$
-r_{t p}^{2}+\frac{r_{t p}}{(-E)}-\frac{\ell(\ell+1)}{2(-E)}=0
$$

with solutions

$$
\begin{aligned}
r_{t p} & =\frac{1 /(-E) \pm \sqrt{1 /(-E)^{2}-4 \ell(\ell+1) / 2(-E)}}{2} \\
& =\frac{1 \pm \sqrt{1-2 \ell(\ell+1)(-E)}}{2(-E)}
\end{aligned}
$$

or

$$
\begin{aligned}
& r_{1}=a=\frac{1-\sqrt{1-2 \ell(\ell+1)(-E)}}{2(-E)} \\
& r_{2}=b=\frac{1+\sqrt{1-2 \ell(\ell+1)(-E)}}{2(-E)}
\end{aligned}
$$

This means that

$$
p(r)=\frac{\sqrt{2(-E)}}{r} \sqrt{(r-a)(b-r)}
$$

Note that for $a<r<b$, the quantity under the square root sign is positive, namely

$$
(r-a)(b-r)=-r^{2}+(a+b) r-a b=-r^{2}+\frac{r}{(-E)}-\frac{\ell(\ell+1)}{2(-E)}
$$

Now we're ready to invoke the WKB condition (in atomic units with $\hbar=1$)

$$
\begin{aligned}
\left(n-\frac{1}{2}\right) \pi & =\int_{a}^{b} p(r) d r \\
& =\sqrt{2(-E)} \int_{a}^{b} \frac{1}{r} \sqrt{(r-a)(b-r)} d r \\
& =\sqrt{2(-E)} \frac{\pi}{2}(\sqrt{b}-\sqrt{a})^{2} \\
& =\sqrt{2(-E)} \frac{\pi}{2}[(a+b)-2 \sqrt{a b}] \\
& =\sqrt{2(-E)} \frac{\pi}{2}\left[\frac{1}{(-E)}-2 \sqrt{\frac{\ell(\ell+1)}{2(-E)}}\right] \\
& =\frac{\pi}{2}\left[\sqrt{\frac{2}{(-E)}}-2 \sqrt{\ell(\ell+1)}\right]
\end{aligned}
$$

Thus

$$
\begin{aligned}
2\left(n-\frac{1}{2}\right)+2 \sqrt{\ell(\ell+1)} & =\sqrt{\frac{2}{(-E)}} \\
4\left[\left(n-\frac{1}{2}\right)+\sqrt{\ell(\ell+1)}\right]^{2} & =\frac{2}{(-E)} \\
(-E) & =\frac{1}{2\left[\left(n-\frac{1}{2}\right)+\sqrt{\ell(\ell+1)}\right]^{2}} .
\end{aligned}
$$

To convert from atomic units back to regular units, remember that the symbol E is shorthand for $\tilde{E}=$ $E /(2 \mathrm{Ry})$ so

$$
E=-\frac{\mathrm{Ry}}{\left[n-\frac{1}{2}+\sqrt{\ell(\ell+1)}\right]^{2}}
$$

