Two-electron ions

Let Z represent the variational parameter in [7.27].
Z_{N} represent the nuclear charge (1 for $\mathrm{H}^{-}, 3$ for Li^{+}).
We follow the argument of Griffiths pages 302-303, except:

- In equations [7.28] (twice) and [7.29], change $(Z-2)$ to $\left(Z-Z_{N}\right)$.
- Equation [7.32] becomes

$$
\langle H\rangle=\left[2 Z^{2}-4 Z\left(Z-Z_{N}\right)-\frac{5}{4} Z\right] E_{1}=\left[-2 Z^{2}+\left(4 Z_{N}-\frac{5}{4}\right) Z\right] E_{1}
$$

- In equations [7.32 $\frac{1}{2}$] and [7.33], change 27 to $\left(16 Z_{N}-5\right)$.

This changes the equation answers as follows:

Equation [7.33] becomes

$$
Z=\frac{16 Z_{N}-5}{16}=Z_{N}-\frac{5}{16}
$$

Equation [7.34] becomes

$$
\langle H\rangle=\left[-2 Z^{2}+\left(4 Z_{N}-\frac{5}{4}\right) Z\right] E_{1}=\frac{\left(16 Z_{N}-5\right)^{2}}{2^{7}} E_{1}
$$

And (remembering $E_{1}=-13.6 \mathrm{eV}$) it changes the numerical ground state energy estimates to:

$$
\begin{aligned}
& \text { For } \mathrm{H}^{-}, Z_{N}=1 \quad \text { so } \quad \frac{11^{2}}{2^{7}} E_{1}=\frac{121}{128} E_{1}=-12.9 \mathrm{eV} \\
& \text { For } \mathrm{Li}^{+}, Z_{N}=3 \quad \text { so } \quad \frac{(43)^{2}}{2^{7}} E_{1}=\frac{1849}{128} E_{1}=-196 \mathrm{eV}
\end{aligned}
$$

