Two-electron ions

Let Z represent the variational parameter in [7.27].

 Z_N represent the nuclear charge (1 for H⁻, 3 for Li⁺).

We follow the argument of Griffiths pages 302–303, except:

- In equations [7.28] (twice) and [7.29], change (Z 2) to $(Z Z_N)$.
- Equation [7.32] becomes

$$\langle H \rangle = [2Z^2 - 4Z(Z - Z_N) - \frac{5}{4}Z]E_1 = [-2Z^2 + (4Z_N - \frac{5}{4})Z]E_1.$$

• In equations $[7.32\frac{1}{2}]$ and [7.33], change 27 to $(16Z_N - 5)$.

This changes the equation answers as follows:

Equation [7.33] becomes

$$Z = \frac{16Z_N - 5}{16} = Z_N - \frac{5}{16}.$$

Equation [7.34] becomes

$$\langle H \rangle = [-2Z^2 + (4Z_N - \frac{5}{4})Z]E_1 = \frac{(16Z_N - 5)^2}{2^7}E_1.$$

And (remembering $E_1 = -13.6 \text{ eV}$) it changes the numerical ground state energy estimates to:

For H⁻,
$$Z_N = 1$$
 so $\frac{11^2}{2^7}E_1 = \frac{121}{128}E_1 = -12.9$ eV.
For Li⁺, $Z_N = 3$ so $\frac{(43)^2}{2^7}E_1 = \frac{1849}{128}E_1 = -196$ eV.