The Stark Effect

Grading: Each part is worth 10 points, but part (d) is optional.

a. Evaluate a matrix element.

(200|H'|210) = eE(2002|210)
eE(200|r cos §]210)

2m
= eE/ r dr/ 51n9d9/ dp Rio(r)Y " (0, ¢) rcosf Ry (r)Y(0, )

Angular part — use Griffiths page 139 for Y™ (6, ¢)

™ ) 2w . T ) 27 1 3
/0 sm0d9/0 do Y*(0,¢) cos0YY(0,¢9) = /0 sm0d0/0 do l”@r] cosf [\/Mcosﬁl

V3
47

(27r)/ sin @ df cos®
0
Use the famous substitution

u = cosf
—sin @ do

dp

to find that the angular part is
T 2 “+1
/ snfdo [ do Y (0.0) cosoYO(0.6) = V3 / 2 du
0 0

= f/udu—\g[ ]o*%

Radial part — use Griffiths page 154 for Rao(r) and Ry (r):

0o . oo _3/2 1r —(r/a 1 —3/2 —(r/a
/0 rdr R5o(r)r Ro1(r) = /0 r2 dr [f ag / (12%>6 (/")/2] [\ﬁ Qg / (ao)e (/“)/2}

Use the substitution 7 = r/ag:

oo oo 1 N
/ r?dr R (r)r Roy (1) = ao 7 dr ( 57 ) -
0

- U dff‘le_r—f/ di 7oe” }

According to Dwight 860.07 these two integrals evaluate to 4! = 24 and to 5! = 120 respectively. Thus

/ r2dr Ry (1) 7 Ro1(r) =
0

ag

™G [(24) 1(120)} S,

V3

All together now:

(200[H’[210) = eE <\j§ao> <\}§> = —3¢cEay.
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b. Average positions.
Find (7) via (z), (y), (2).

State |2,1,+1) has a wavefunction proportional to Y;™'(6, ¢).
State |2,1, —1) has a wavefunction proportional to Y; (6, ¢).
So both states have angular distributions as suggested by

Y
A
x
From which it’s clear that (z) = (y) = (z) = 0.
The two remaining states of interest are
1 1
*2[|27 0,0)£(2,1,0)] = E[Rzo(T)Yoo(a, ¢) £ Ra1 (r)Y7(6,9)]

= ) £ V3 R con0)

This is independent of ¢, so (z) = (y) = 0. We evaluate (z) with the help of the matrix element calculated

in part (a):

1
<Z> = 5 [(<2a 0,0| + <27 ]-a O|) z (‘2a 0,0> + |27 ]-a O>)]

1

= 5[(2, 0,0|z|2,0,0) £2(2,0,0|z|2,1,0) 4+ (2,1,0|z|2, 1, 0)]

0 —3ag 0
= F3ao
Thus, for the latter two states,
<’I:> = $3a073.

c. Escape from contradiction.
If two different probability densities both have (z) = 0, then any combination of those densities has (z) = 0.
But if two wavefunctions (or “probability amplitude densities”) both have (z) = 0, then a combination
of those wavefunctions might have (z) # 0. What is the physical principle behind this mathematical

fact? My favorite answer is “Interference”, because in interference experiments finite probability (to go
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thorough one slit) plus finite probability (to go through another slit) can sum to zero probability (to go
through both slits) — thereby showing that the physically controlling entity is not probability density, but
something deeper that we eventually found to be wavefunction. But answers of “Superposition” or “The
wavefunction has phase as well as amplitude” or “The wavefunction contains more information than the
probability density” or “Probability density alone doesn’t specify a state” or “Square of sum, not sum of

squares” are also fine.
d. Visualize. I don’t have a good answer for this problem.

e. Find the Hamiltonian matrix. Stark effect for n = 3:

this is a 9 x 9 matrix.. .81 integrals. . .looks pretty formidable!

BUT...general rules

(nfm|z|nbm) =0
(nfm|z|n'¢'m'y = 0 unless m = m’
27
For (nfm|z|n'¢'m), the part involving angle ¢ is / doe”"MPeTiM® — 97 5o the matrix elements
0

are pure real!

So we arrange the states in the order
[300), |310), |320), |311), |321), |31 —1), |32 —1), |322), |32 —2).

The general rules find our non-zero matrix elements:

(00] (10| (20] (11| (21| (11| (21| (22| (22|
[0 A B |00)
A 0 C [10)
B C 0 |20)
0 D |11)
D 0 [21)
0 F |11)
E 0 |21)
0 |22)
0 |22)

(The kets and bras at the borders of this matrix are |[¢m) or (¢m]|...the value n = 3 is not shown because it

is the same in all cases. The value —2 is shown as 2 because otherwise it messes up the spacing.)

Some of these matrix elements are easy:
B = (20]z]00)

oo T 27
/ 72 dr R3a(r) r Ro(r) / sin @ do / dp Y9 (0,6) cos® Y(6,0)
0 0 0 ———

——
~ (3cos?f —1) ~1
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~ / sin 0 df (3 cos* 0 — 1) cos [Then use u = cosé...]
0

+1
= / (3u* — Vpdp [But integrand is odd so...]
-1

=0
[Moral of the story: Evaluate the angular integral first. . .it’s more likely to vanish.]

Other relationships are also easy to find:
27

D = (2111 = / v dr R (r) 7 Ry (1) / sin0do [ doVi(0,6) cos0Y(, )
0 0 0
27

(2,-1|z|]1,-1) :/ r2drR32(r)rR31(7")/ sin 6 df d(;ﬁY{”(Q,(b) cos@Yfl(@,(b)
0 0 0

But V; ' = —(Y)* and Y; ' = —(Y])*,s0 D = E.

E

[Material below this line uses atomic units, plus the tables on Griffiths pages 139 and 154.]

But some matrix elements are hard:

o) T 27
A = (10]2|00) :/ r? dngl(r)ngo(r)/ sinedo/ dp Y (6, ¢) cos0 Yy (6, )
0 0 0

= Aradial = Aangular
T ) 27 3 1
Aangular = | sin 6 df ; do = cosf| cosf =
= —\/g(Qw) / sin @ df cos> [Use 1 = cosf...]
4 0
\/g /+1 ) 1 1 1
= = d=\/§/ Zdp =3[P, = —
5 |, wdn | du 5= 75

Aradial = / r2 dr { 1-41 T/3} { 1_ 204 2,2) /3
0 27f( 5 \ﬁ 3 557°)

- 35\[/ drot (1= br) (1= 2r 4 202) e 2% [Usew=2r.. ]
- 35\f< )/ duu (1—3u) (1—u+ Lu?)e”

= 2\[/ du [ut — 3u® + Sub — LuT]e™
1 1
NG [41 — 351+ 26! — L7

18

V2



The Stark Effect

2

C = (202[10) = / v dr Rya(r) 1 R () / sinfd [ do YO (0,6) cos0Y(0, )
0 0

Cangular

Cradial

0

= ULradial = Langular
™ 27 5 3
= / sin@d@/ d¢ (3cos 6 —1)| cosf — cos
0 0 4
/15 +1
= g(%')/ (3u?* — 1) dp [Using p = cosf. |
~1
V15 !
= T/ (Bu* — p?) dp
0
_ vV 15 |:§u5 . lug’]l _ 2
5 L5 st o™ /15

o 4 . 8
= r2dr [ rzer/‘3] r { 1—1p)pre /3
/0 81/30 27\/6( )
2! < 6 1, ,—2r/3 2
= m/o drr®(1—gr)e [Use u = 37...]
24 /3\" [ _
_ M(?) /0 duud (1 Lu)e

1
= 6! — 171
323\/5[ 4 ]
_9v5
2

- () () -

e’} ™ 2
D = (21]z|11) = / r? dngg(r)ngl(r)/ sin0d9/ do Yy * (6, ) cos0 Y (6, )
0 0 0

Dangular =

= Cradial = Dangular

™ ) 2m 15 ) i 3 . 0
sin 6 df dp | —1/ =— sinfcosfe cosf | —4/ —sinfe
0 87T 87T

38\[(27r)/ sin 6 df sin® @ cos? 0 [Use p = cosh, sin? =1 — p2...]
4 0
3v5 /+
3f /

1 1 1
Tf [gﬂ 5%‘4]0 = NG

1
(1= p*)p?du



Whence, remembering the value of C,agial,

[End use of atomic units.]
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Thus the matrix of the perturbation H' is

[0 -3v6 0
-3v6 0 -3V3
0 -3v3 0
0 —9/2
eFag -9/2 0

f. Diagonalize this matrix to find the eigenvalues and degeneracies.

Each of the submatrix blocks can be diagonalized independently.

']

Diagonalize a submatrix of the form [

-\ D
det =0 = M-D?*=0
D -
Or, in our case, A = £eEag(9/2).
0 A 0
Diagonalize a submatrix of the foorm | A 0 C
0 C 0
-2 A 0
det | A -\ C
0 C =X
- A
—Adet “o Adet ¢
c = —A

—A\? = C% — A[-AN
AM=A2 +C? + A7)

Resulting in A = 0, v/ A2 4 C2.
Or, in our case, A = 0, +eFEa(9).

0 —9/2
—9/2 0
0
0 ]
— A==£D.
= 0
= 0
= 0
= 0
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Thus the first-order energy shifts are

+9€Ea0
+%6Ea0

—%ean
—9eFay

(degeneracy 1)
(degeneracy 2)
(degeneracy 3)
(degeneracy 2)
( )

degeneracy 1



