Quantal recurrence in the infinite square well

a. Classical period:

$$
E=\frac{1}{2} m v^{2} \quad \text { so } \quad v=\sqrt{2 E / m}
$$

and

$$
\text { distance }=\text { speed } \times \text { time }
$$

So

$$
\begin{equation*}
\text { period }=\frac{\text { distance }}{\text { speed }}=\frac{2 L}{\sqrt{2 E / m}}=L \sqrt{\frac{2 m}{E}} . \tag{1}
\end{equation*}
$$

b. Quantal recurrence:

How does the initial wavefunction $\psi(x ; 0)$ change with time? Expanded the initial wavefunction into energy eigenfunctions $\eta_{n}(x)$:

$$
\begin{equation*}
\psi(x ; 0)=\sum_{n=1}^{\infty} c_{n} \eta_{n}(x) \tag{2}
\end{equation*}
$$

This wavefunction evolves in time to

$$
\begin{equation*}
\psi(x ; t)=\sum_{n=1}^{\infty} c_{n} e^{-i E_{n} t / \hbar} \eta_{n}(x) \tag{3}
\end{equation*}
$$

where the eigenvalues are

$$
\begin{equation*}
E_{n}=\frac{\pi^{2} \hbar^{2}}{2 M L^{2}} n^{2}=E_{1} n^{2} \quad \text { for } \quad n=1,2,3, \ldots \tag{4}
\end{equation*}
$$

The time-evolved wavefunction will equal the initial wavefunction whenever all of the phase factors $e^{-i E_{n} t / \hbar}$ are equal to one. That is, the revival occurs at a time $T_{\text {rev }}$ where

$$
\frac{E_{n}}{\hbar} T_{\text {rev }}=2 \pi \text { (some integer) }
$$

for all values of n. Using the eigenenergy result this becomes

$$
\frac{E_{1}}{\hbar} T_{\text {rev }} n^{2}=2 \pi \text { (some integer) }
$$

so the revival time is

$$
\begin{equation*}
T_{\mathrm{rev}}=\frac{2 \pi \hbar}{E_{1}}=\frac{h}{E_{1}}=\frac{4 m L^{2}}{\pi \hbar} \tag{5}
\end{equation*}
$$

(Note that we solved this part knowing only the energy eigenvalues.)
c. What happens after one-half of this time has passed?

Evaluated at $t=T_{\text {rev }} / 2$, equation (3) gives

$$
\begin{equation*}
\psi\left(x ; T_{\mathrm{rev}} / 2\right)=\sum_{n=1}^{\infty} c_{n} e^{-i E_{n} T_{\mathrm{rev}} / 2 \hbar} \eta_{n}(x) \tag{6}
\end{equation*}
$$

But $T_{\mathrm{rev}}=h / E_{1}$, so

$$
\frac{E_{n} T_{\mathrm{rev}}}{2 \hbar}=\frac{E_{1} T_{\mathrm{rev}}}{2 \hbar} n^{2}=\pi n^{2}
$$

and

$$
\psi\left(x ; T_{\mathrm{rev}} / 2\right)=\sum_{n=1}^{\infty} c_{n} e^{-i \pi n^{2}} \eta_{n}(x) .
$$

Now

$$
e^{-i \pi n^{2}}=(-1)^{n^{2}}=(-1)^{n}
$$

so

$$
\begin{equation*}
\psi\left(x ; T_{\mathrm{rev}} / 2\right)=\sum_{n=1}^{\infty} c_{n}(-1)^{n} \eta_{n}(x) \tag{7}
\end{equation*}
$$

But the energy eigenfunction $\eta_{n}(x)$ is even for n odd and odd for n even, so

$$
(-1)^{n} \eta_{n}(x)=-\eta_{n}(-x)
$$

whence

$$
\begin{equation*}
\psi\left(x ; T_{\mathrm{rev}} / 2\right)=-\psi(-x ; 0) . \tag{8}
\end{equation*}
$$

That is: After half a revival time, the initial wavefunction is flipped from left to right and turned up-side down (that is, multiplied by the physically-irrelevant overall phase factor of -1). (Note that we solved this part knowing only the energy eigenvalues and the parity of the energy eigenfunctions.)

```
Grading:
    2 points for part a.
    2 points for equation (3).
    2 more points for finishing off part b
    2 points for reaching equation (7).
    2 more points for finishing off part c.
```

