Mean separation

$\llbracket 1$ point】 According to Griffiths equations（5．23）and（5．25），the mean square separations $\left\langle\left(x_{A}-x_{B}\right)^{2}\right\rangle$ are

$$
\begin{array}{rc}
\text { for non-identical particles: } & \left\langle x^{2}\right\rangle_{n}+\left\langle x^{2}\right\rangle_{m}-2\langle x\rangle_{n}\langle x\rangle_{m} \\
\text { for identical bosons/fermions: } & \text { the above } \mp 2|\langle m| x| n\rangle\left.\right|^{2}
\end{array}
$$

（Surprisingly，none of the integrals on the right involve integrands x_{A} or x_{B} ，but simply x ．）
$\llbracket 1$ point \rrbracket Thus we need to perform three integrals．Well，not really．It＇s obvious that $\langle x\rangle_{n}=L / 2$ ，for all values of n ．

【3 points】 To find the mean of x^{2} write

$$
\begin{aligned}
\left\langle x^{2}\right\rangle_{n} & =\frac{2}{L} \int_{0}^{L} x^{2} \sin ^{2}\left(\frac{n \pi}{L} x\right) d x \quad \text { uuse substitution } u=(n \pi / L) x \ldots \rrbracket \\
& =\frac{2}{L}\left(\frac{L}{n \pi}\right)^{3} \int_{0}^{n \pi} u^{2} \sin ^{2} u d u \quad \text { [use Dwight equation } 430.22 \ldots \rrbracket \\
& =\frac{2 L^{2}}{n^{3} \pi^{3}}\left[\frac{u^{3}}{6}-\left(\frac{u^{2}}{4}-\frac{1}{8}\right) \sin 2 u-\frac{u}{4} \cos 2 u\right]_{0}^{n \pi} \\
& =\frac{2 L^{2}}{n^{3} \pi^{3}}\left[\frac{n^{3} \pi^{3}}{6}-\frac{n \pi}{4}\right] \\
& =L^{2}\left[\frac{1}{3}-\frac{1}{2 n^{2} \pi^{2}}\right]
\end{aligned}
$$

Thus

$$
\left\langle x^{2}\right\rangle_{n}+\left\langle x^{2}\right\rangle_{m}-2\langle x\rangle_{n}\langle x\rangle_{m}=L^{2}\left[\frac{1}{6}-\frac{1}{2 \pi^{2}}\left(\frac{1}{n^{2}}+\frac{1}{m^{2}}\right)\right] .
$$

【4 points】 Meanwhile，

$$
\begin{aligned}
\langle m| x|n\rangle & =\frac{2}{L} \int_{0}^{L} x \sin \left(\frac{m \pi}{L} x\right) \sin \left(\frac{n \pi}{L} x\right) d x \quad \text { use substitution } \theta=(\pi / L) x \ldots \rrbracket \\
& =\frac{2}{L}\left(\frac{L}{\pi}\right)^{2} \int_{0}^{\pi} \theta \sin m \theta \sin n \theta d \theta \\
& =\frac{2 L}{\pi^{2}} \int_{0}^{\pi} \theta \frac{1}{2}[\cos (n-m) \theta-\cos (n+m) \theta] d \theta \\
& =\frac{L}{\pi^{2}}\left[\int_{0}^{\pi} \theta \cos (n-m) \theta d \theta-\int_{0}^{\pi} \theta \cos (n+m) \theta d \theta\right]
\end{aligned}
$$

But for N an integer with $N \neq 0$,

$$
\begin{aligned}
\int_{0}^{\pi} \theta \cos N \theta d \theta & =\frac{1}{N^{2}} \int_{0}^{N \pi} u \cos u d u \\
& =\frac{1}{N^{2}}[\cos u+u \sin u]_{0}^{N \pi} \\
& =\frac{1}{N^{2}}\left[(-1)^{N}-1\right] \\
& =\frac{1}{N^{2}}\left\{\begin{aligned}
-2 & \text { for } N \text { odd } \\
0 & \text { for } N \text { even }
\end{aligned}\right.
\end{aligned}
$$

So for $n-m$ even, $\langle m| x|n\rangle=0$. But for $n-m$ odd

$$
\begin{aligned}
\langle m| x|n\rangle & =\frac{L}{\pi^{2}}(-2)\left[\frac{1}{(n-m)^{2}}-\frac{1}{(n+m)^{2}}\right] \\
& =-\frac{8 L}{\pi^{2}} \frac{n m}{\left(n^{2}-m^{2}\right)^{2}}
\end{aligned}
$$

so the pivotal term is

$$
2|\langle m| x| n\rangle\left.\right|^{2}=\left\{\begin{array}{cl}
\frac{128 L^{2}}{\pi^{4}} \frac{n^{2} m^{2}}{\left(n^{2}-m^{2}\right)^{4}} & \text { for } n, m \text { of opposite parity } \\
0 & \text { for } n, m \text { of same parity }
\end{array}\right.
$$

$\llbracket 1$ point \rrbracket In conclusion: For non-identical particles, or for bosons or fermions in the case that n and m are of the same parity, the root-mean-square separation is

$$
\sqrt{\left\langle\left(x_{A}-x_{B}\right)^{2}\right\rangle}=L\left[\frac{1}{6}-\frac{1}{2 \pi^{2}}\left(\frac{1}{n^{2}}+\frac{1}{m^{2}}\right)\right]^{1 / 2}
$$

while for bosons (minus sign) or fermions (plus sign) in the case that n and m are of opposite parity, the root-mean-square separation is

$$
\sqrt{\left\langle\left(x_{A}-x_{B}\right)^{2}\right\rangle}=L\left[\frac{1}{6}-\frac{1}{2 \pi^{2}}\left(\frac{1}{n^{2}}+\frac{1}{m^{2}}\right) \mp \frac{128}{\pi^{4}} \frac{n^{2} m^{2}}{\left(n^{2}-m^{2}\right)^{4}}\right]^{1 / 2}
$$

There's a lot to explore in dissecting this result. Normally bosons huddle together whereas fermions spread apart. But when n and m are of the same parity, then bosons, fermions, and non-identical particles all have the same root-mean-square separation. Can you understand this any more deeply than just saying "it comes out of the math"? I can't.

