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It is shown that a standard derivation found in the literature for the heat capacity of an
ideal free-electron gas is vitiated by the use of divergent series. A plausible argument is
offered to indicate that these series are actually asymptotic expansions that provide good
approximations through their first few terms—a provable fact acknowledged by a few writers,
but the proof of which has nowhere been seen in print by the present author, The invalid
standard procedure is modified through replacement of an infinite series by its first two
terms plus a remainder whose bounds are easily estimated as being negligible to the accuracy
required; a rigorous derivation of the well-known temperature dependence of the electronie

heat capacity of a metal results.

I. BACKGROUND

The heat capacity of a gas of N noninteracting
free electrons confined to a volume V is deter-
mined as a function of the Kelvin temperature 7
by eliminating the Fermi energy (‘‘chemical
potential”’) 5 between the quantitiest

e ell2de
o 1+exp[B(e—n)] ’
(1)

N =(V/2n%) (2m/R2)

and
2]

B=(V/2x) (2m /1) /0 ) ITep[Ble—n]"

(2)

Here 8= (1/kT) with % =DBoltzmann’s constant,
2rfi=Planck’s constant, m=electron rest-mass,
and F=total energy of the electron gas. The
quantity Cy=(3E/8T)y is the heat capacity
sought. Since neither integral appearing in Eqgs.
(1) or (2) can be evaluated in closed form, one
must resort to an approximation procedure in
order to express E, then Cy, as functions of 7'.
It is fortunate that in the most important case—
the conduction electrons’in a metal—the parame-
ter A =78 is large compared with unity (A>>1) for
the temperature range. of interest; this  fact

1 8ee, for example, F. Seitz, The Modern Theory of
Solids (McGraw-Hill Book Co., New York, 1940), pp.
146-147; D. ter Haar, Elements of Thermostatisiics (Holt,
Rinehart, and Winston, Inc., New York, 1966), 2nd
ed., pp. 128-130; A. Sommerfeld, Z. Physik 47, 1 (1928);
E. Fermi, 86, 902 (1926); R. Tolman, The Principles of
Statistical Mechanics (Oxford University Press, London,
1938), p. 389; and many others.

makes it possible to obtain quite easily uncom-
plicated approximations that are excellent over
the full range.

The threefold purpose of this paper is (i) to call
attention to a false implication and/or outright
misstatement carried in almost every printed
source I have examined in which the large-\
approximations of Eqs. (1) and (2) are presented,?

(ii) to bring some insight to the question as to

2 These sources include all those in Ref. 1 with the
single exception of Fermi’s paper. Also included are the
excellent text by F. Reif, Fundamentals of Statistical and
Thermal Physics (McGraw-Hill Book Co., New York,
1965), pp. 395-396; E. Schrodinger, Staiistical Thermo-
dynamics (Cambridge University Press, Cambridge, 1952),
2nd ed., pp. 74-75; P. M. Morse, Thermal Physics (W.
A. Benjamin, Inc., New York, 1964), pp. 366-367; G. H.
Wannier, Statistical Physics (John Wiley & Sons, Inec.,
New York, 1966), p. 300; F. C. Brown, The Physics of
Solids (W. A. Benjamin, Inc., New York, 1967), p. 278;
M. Sachs, Solid State Theory (McGraw—Hill Book Co.,
New York, 1963), pp. 165-167; R. E. Peierls, Quantum
Theory of Solids (Oxford Univergity Press, Oxford, 1955),
p. 92; J. M. Ziman, Principles of the Theory of Solids
(Cambridge University Press, Cambridge, 1964), pp.
117-119, 124; J. P. McKelvey, Solid State and Sem:i-
conductor Physics (Harper and Row Publishers, Ine.,
New York, 1966), pp. 202-203; C. Kittel, Elementary
Statistical Physics (John Wiley & Sons, Inc., New York,
1958), pp. 92-94; R. Blankenbecler, Amer. J. Phys. 25,
279 (1957); G. H. Wannier, Elements of Solid State
Theory (Cambridge University Press, Cambridge, 1960),
pp. 155-156; J. 8. Blakemore, Solid State Physics (W. B,
Saunders Co., Philadelphia, 1969), p. 162; C. Kittel.
Ingroduction {0 Solid State Physics (John Wiley & Sons,
Ine., New York, 1956), 2nd ed., pp. 256-258; and pre-
sumably others. (The third edition of Kittel’s Introduction
is not to be included in this list; its presentation of the
electron-gas heat-capacity problem is far from being
rigorous, however.)
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why the common invalid mathematical procedure
produces the correct answer to the problem at
hand, and (iii) to present a perhaps new rigorous
derivation of the useful large-A approximations of
Eqs. (1) and (2). The common item of mis-
information emerges in Sec. II.

II. STANDARD APPROACH

If one introduces the integral

= ede
L=l ey @
then Egs. (1) and (2) become equivalent to
N =(V/2x%) (2m/R)**(28/3) 112,
E = (313/515)N; (4)

it is our task, then, to evaluate Eq. (3) for
c=% and o=2%. It is customary to integrate by
parts in Eq. (3) in order to take advantage?
of the fact that when en =A>>1 the derivative of
{1-+exp[B(e—n) ]} is close to zero except in a

narrow neighborhood of e=1:

_ [ et exp[B(e—n) Jde
L’_/o {1+exp[B(e—n)]}?

® (A tz)Hexp(z)dr
o [dexp@P

on substitution of =g (e—7y) =Be¢—A.

In the most cavalier treatment observed, one
finds substituted into Eq. (5) the Taylor ex-
pansion—here a binomial series—

o0 1 .
Ovtayaen ST @y

7=0

— (5)

(6)
followed by term-by-term integration—in spite of

3 Although the advantage is actually illusory, with
no essential gain from the step, the standard procedure
is followed here in order to show where and why it goes
wrong. I conjecture that to some writers, teachers, and
students the integration by parts has been a disadvantage:
The s-function-like factor in Eq. (5) imparts undeserved
plausibility to the fallacious argument exposed farther on
in this section. A different procedure—basically the one
evidently introduced by Sommerfeld (see Ref. 1)—also
leads to the difficulty inherent in the procedure aired
here. Sommerfeld’s method seems to appear in print less
frequently than the latter,
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the fact that Eq. (8) diverges for all | z | >\. In the
usual notation we use
(cr-l-l) _ (et Da(e—1) -+ (6+2—)
J 7! '

(")

It is then further stated that the lower integration
limit —X in Eq. (5) can “with negligible error” ¢
be replaced by — «, so that one arrives at

L=oewjg) (7w, @
=0 v 7
where
Y 29 exp (x) dx
5= | Tt G5 ®

It is next stated or at least implied that® “this
series converges rapidly when A>>1" as justifica-
tion for dropping everything beyond the A2
term of the sum in Eq. (8). This constitutes
nonsense, however, for the ‘“rapidly converging”
series (8) actually diverges for all values of A.

To exhibit the divergence of Eq. (8), we use
Eq. (7) and the fact that Eq. (9) can be evaluated
as

b; =0 (odd 7)
=1 (7=0)
=2jla;  (even j>0), (10)
where
aj=1—2"14-37i—4~if ... (7>0). (11)

The dependence Eq. (10) of b; on the parity of 5
springs directly from the fact that

exp(z)/[1+exp () P
= {[1+exp(z) J[14exp(—2) 1}

so that the integrand of Eq. (9) is an even/odd
function of z as j is an even/odd integer; the
symmetry of the integration interval about zero
then plays its part. Perhaps the easiest way to

(12)

4 T, Reif, Ref, 2, p. 395. The reasonableness of this step is
supported by the fact that when A>>1 the integrand of
Eq. (5) is close to zerofor |z |>N\. Actually, as indicated
in Sec. IT1, the resulting error is infinite!

5 Quotation directly from R. Tolman (see Ref. 1), except
that he uses “—a’ four our A, and he capitalizes ‘“‘this.”
See also F. Seitz, Ref. 1, p. 149.
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achieve the result embodied in Eqs. (10) and (11)
is to integrate by parts in Eq. (9) to obtain, for
even positive 7 only,

© i © il
b= x? exp(x)dx Y _ﬁ_dxﬂ, (13)
o [l+exp(z)f o 1+exp(z)

after multiplying by exp(—z) both numerator
and denominator of the final member of Eq. (13),
one expands [1-+exp(—z) ]! as a power series in
[exp(—x)]. Although this series diverges at
2=0, the boundedness there of its partial sums
makes it easy to justify term-by-term integration.
The result 8,= 1 is even more straightforward and
elementary.

Using Eqgs. (7) and (10), we readily observe
that successive nonvanishing terms of the series
in Eq. (8) have the ratio—that of the (2k+2)th
term to the 2kth term—

(2k—¢) (2k—o—1)N"2(Aztrs/0n),

which, as we learn with the aid of Eq. (11),
increases without bound as k— . The divergence
of Eq. (8) for all A is thus manifest—no surprise
in view of the divergence of Eq. (6) when | z |>A.

The question immediately arises: How do the
several authors get away with using Eq. (8)—
neglecting all but the first two nonvanishing
terms, in fact—to produce a result that has been
unchallenged since its initial application in the
third decade of this century? (In one sense they
“get away with it” because no one takes the
trouble to check the convergence of Eq. (8);
the 'question before us is intended to probe,
rather, how it is that they achieve a correct result
by means of an egregiously invalid procedure.)
A small fraction of the relevant works examined®
clearly state what is actually the case: that the
expressions (4) for N and E which ultimately
emerge from use of the first two nonvanishing
terms of Eq. (8), are truncations of asymptotic
series—i.e., of “‘semiconvergent’’ expansions which,
although divergent, provide good approximations
through their first few terms to the functions they
respectively “represent,” for A>>1. Yet I have

¢ Fermi (see Ref. 1); E. C. Stoner, Phil. Mag. 21, 145
(1936) ; and R. H. Fowler, Statistical Mechanics (Cam-
bridge University Press, Cambridge, England, 1936), 2nd
ed., p. 73.
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never seen a proof of this assertion in printl
All that is required for ordinary purposes, how-
ever, is a rigorous proof that the left-hand member
of Eq. (8) is approximated, to within terms of the
order A4, by the first two nonvanishing terms of
the right-hand member. The proof of this fact
follows in See. IV. That Eq. (8) is indeed an
asymptotic expansion of the character described
should become plausible through the analysis in
Sec. I1I; for a rigorous proof an easy extension of
Sec. IV would suffice.

III. A MORE CAUTIOUS APPROACH

There is a modification of the standard ap-
proach that carefully avoids use of the series (6)
outside its interval of convergence, but which
nevertheless again leads to the divergent series
(8). The reason for this “failure” in spite of ap-
parently adequate caution is mildly subtle;
an examination of it may therefore be instructive
in itself, and in any case will bring us closer to the
rigorous treatment promised in Secs. I and II,
as well as to the answer called for in the final
paragraph of See. I1.

To avoid using Eq. (6) where it does not hold,
we split the final member of Eq. (5) into two
terms:

A
(A z)et exp(x)dr }
I, =32 A, (14
ol eyt 0
where
* (A z)texp(x)dx
A, = 15
-/x [1+exp(z) ] %)
For A>>1 it is easy to show that
A, =0[N* exp(—))], (16)

which means, simply, that for sufficiently large A
the ratio of | A, | to the quantity in brackets in
Eq. (16) is less than some positive constant

7" The only attempt at a proof that I have seen in
print is by C. W. Gilham, Proe. Leeds Phil. Lit. Soc,,
Sci. Sec. 8, 117 (1936). Gilham uses Cauchy’s form of the
remainder in Taylor’s formula, but in so doing makes a
serious blunder that invalidates his effort. With sufficient
care, however, Cauchy’s version of Taylor’s theorem can
be used to achieve a valid demonstration of the asymp-
totic character of Eq. (8); it thus provides an alternative
to the method suggested in the final sentence of Sec. II.
See also Sec. VI below.
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independent of A. (Proof of this fact, invariably
absent from the literature I have perused, is
reserved for Sec. V below.) Because of the de-
creasing exponential in Eq. (16), | A, ] can be
made less than a constant times any inverse
power of A, provided M is sufficiently great. We
therefore proceed to ignore the term containing
A,in (14).

Y wlexp(z)de

- [1+exp(z) -

Ci=

A
2/
0

The result Egs. (17) and (18) is accurate so long
as M is great enough to justify the neglect of A, in
Eq. (14). The only trouble lies in the circumstance
that the integrals in Eq. (18) cannot, except for
7= 0, be evaluated in closed form; it is the attempt
to avoid the consequent difficulty that yields the
same divergent series (8) obtained in Sec. II.
The ill-starred procedure runs as follows:

For even j, we have from Eq. (18) and the
first two members of Eq. (13)

Cj=2 {
0

where

© giexp(z)dr
[1+exp(z) P
@l exp(z)de

Bi= -/ [Ttexp(@) T

In a manner similar to the demonstration of
Eq. (16) (but also reserved for Sec. V) it is easy
to show that

B;=0[Nexp(—\) 1.

It therefore follows, because of the decreasing
exponential in Eq. (21), that each B; can be
made arbitrarily small—less than a constant
times any inverse power of A—by taking A
sufficiently great. This fact then leads to the
omission of each B; from Eq. (19), which brings
Eq. (17) into identity with Eq. (8)—for all A
divergent!

The cause of the foregoing breakdown is the
circumstance that, Eq. (21) notwithstanding, the
value of B; for any given A>1 is arbitrarily large
for sufficiently large j;—is greater, indeed, than
[(\7/4) exp(—\) ], as shown in Sec. V below. The

—B]} =b;—2B;, (19)

(20)

(21)
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Term-by-term integration in Eq. (14) with the
use of KEq. (6) is now justified®; we thus arrive at
the modified result Eq. (8):

I e )\o'+1/‘30'+2) Z

7=0

("“;1) N, (17)

with b; replaced by

(odd j)

xiexp(z)dz

[1+emp(@) P (18)

(even 7).

result (21) renders B; small merely for any fized
7 when ) is great enough. No matter how small the
errors one commits in neglecting B; in Eq. (19)
for “early” values of j, it therefore follows that
eventually the quantities omitted tend to infinity
with 7. Yet this distressing fact, somehow over-
looked by a number of authors listed in Ref. 2
who are more cautious in their initial approach to
our problem, leads us to understand with some
confidence how Eq. (8)—namely, Eq. (17) with
¢;="b; for all 7—may still furnish a useful large-r
approximation of I,. The argument runs as
follows:

(1) Since the right-hand member of Eq. (17)
converges to I, (for the term-by-term integration
leading to the result is valid), we expect any
given partial sum® of this series to furnish a
reasonable approximation to I,. (Admittedly no
attempt is made here to prove that any given
partial-sum approximation can be made arbi-
trarily sharp by taking A sufficiently great; it is
this gap that consigns the argument merely to the

“plausible” category.)

(ii) With the approximation to I, thus prov1ded
by a finite number of terms of Eq. (17), we replace
the finite collection of nonvanishing ¢; involved

8 The binomial series is convergent at both endpoints
of its convergence interval when the exponent is positive.
See, for example, K. Knopp, Theory and Application of
Infinite Series (Hafner Publishing Co., New York, 1950),
2nd ed., pp. 286-287.

® By “partial sum” is meant, in the usual way, the
sum of a finite number of consecutive terms, beginning
with the first.
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by the corresponding set of b—thereby com-
mitting a finife number of errors.

(iii) The total error perpetrated in (ii)—as a
finite sum of arbitrarily small errors for suffi-
ciently great A—can thus be made as small as
one pleases by taking A large enough.

The firm conclusion from (1) (i), and (1) is
that a partial sum of the divergent series (8) is
equal, within an arbitrarily small error for great
enough A, to the corresponding partial sum of the
convergent series (17). If we moreover accept as
intuitively reasonable that Eq. (17) should econ-
verge the more rapidly the greater )\, the asymp-
totic character of Eq. (8) then becomes plausible.

IV. RIGOROUS TREATMENT

Starting with Eq. (14), but dropping A,
because of Eq. (16) and our assumed limitation to
sufficiently large A, we rewrite I, in the form

g [ 1o2) exp(@)de
1,=8 /0 [Itexp (@)’ (22)
where
fa'(x) = (7\+x)”+1-|— ()\_x)a+l; (23)

Eq. (22) is achieved by splitting off the integral
from —X\ to 0in Eq. (14), making the substitution
y=—z in it, using the identity (12), and then
rewriting the dummy variable y as z. When
|z 1<\, we can expand Eq. (23) as a Taylor
series after the manner of Eq. (6):

L@)=2h % (";) (a/n)%

k=0

=+ {1+ (c+1) (/2) (z/7)?

+ 2 emsls e

that is, the odd powers of (z/)\) in Eq. (6) drop
out and the even powers “appear twice.” In
accordance with Eq. (7),

()

_ (et Da(o=1) -~ (043 —-2k) (s+2—2k)

(2k)!

(25)
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Term-by-term integration after substitution of
Eq. (24) into Eq. (22) would of course lead
directly to Eqgs. (17) and (18), and the difficulties
encountered in Sec. III. Instead we keep one eye
on Eq. (24) and define the functions g, through

fol@) =20 {143 o+ D)o J(z/N? =+ (2/N)g.(2) };

(26)
that is,

z(N2) (Ao (2) —2— (o+1) o (2/0)?}
o+1

a Z < 2k >< )

Qur task, now, is to obtain numerical bounds on
the | g,(z) | for 0<z<\. From the fact that the
numerator of Kq. (25) is the produet of the even
number 2k of factors, we infer that all the series
coefficients in Eq. (27) are positive when ¢ =% and
all negative when o=32. It therefore follows that
gia(2) 18 positive and increasing on 0<z <A, and
that gs2(z) is negative and decreasing on 0<<x <.
From these facts we conclude that the maximum

of | g,(z) | on 0<a <\ is achieved at z=2X for both
=1 and o=%. From Eqs. (27) and (23), then,

[go(z) 1<l ge (V) |
=3I A, (A) =2~ (o+1)o |
=2 —1-1(dtDe|  (0<z<))

9o () =

(Jz1<N). (27)

, (28)

whence, after successive substitutions of ¢ =1 and
o=%, we infer?

| g.(z) 1<0.05 for 0<z<A. (29)

Returning to Eq. (22), we now use Eq. (26)
instead of Eq. (24) to obtain [with neglect of A,
in Eq. (14), as justified by Eq. (16)]

2)\0+1
I”= 3lr+2
M4 (o+41) (0/2) (x/2)?] exp (2)da
x {fo [ltexp(2) P +G”}
= (/5 ek b (o4 Doed 426}, (30)

1 The constant 0.05 is chosen for convenience of
writing; it could be replaced by any number greater than
the larger of the two numbers computed by substituting

=1 and o=4% into the final member of Eq. (28).
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where

ooy [ TED @
0

[1+exp(@) P ’

and the ¢; are defined by (18) for j=0, 2. Because
of Eq. (29), we can put an upper bound on
Eq. (31):

2% exp(z)dx

A
G100 [

A
<0.05)\‘4/ z* exp(—z)dx
0

<O.05)\‘4'f ztexp(—z)dr=1.2x"% (32)
0

Finally, without fear of introducing a divergent
series of errors, we effect the approximation—
justified when A is great enough by Egs. (19)
and (21) for =0 and j=2—that replaces ¢, ce
respectively by bo, bo. With the further assumption
that \ is sufficiently great for us to ignore a small
multiple of A* compared with the first two
embraced terms in the last member of Eq. (30),
we then use Egs. (32) and (10) for j=0 and j=2
to rewrite Eq. (30) as

I,= (M) (1420 (e +1)an?}  (33)

(accurate to within a multiple of A*=?), where as is
given by Eq. (11) for j=2. Since! as= (#?/12),
Eq. (33) reads

L= (/) {1+o(o+1) (x*/6)N 7} (0=3%, %)
(34)
to the accuracy stated when A>>1.

Once Eq. (34) has been achieved, it is a straight-
forward matter to obtain the physically interesting
results through substitution into Kq. (4). Indeed
the expression

E=(3N/5)[14 (57%/12%) ]

where 7o (“‘Fermi energy at absolute zero”) is the
limiting value of 7 as 8—o (T'—0) with V and N

(35)

1 The value of az=1—272432—4"24-... can be ob-
tained by a variety of methods. One surprising way is to
expand the funection ¥ (z) =22 on —7 <z <= as a Fourier
series of period 2r; the fact that y(0) =0 then yields
a,=72/12. Another method is found in the study of the
Bernoulli numbers; see Ref. 8, pp. 238-239, for example,
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held fixed—is derived in many text books?? from

the equivalents of Eqgs. (4) and (34). From Eq.

(35) and g=(1/kT), the well-known
Cy=(0E/0T )y = (z%/2) Nk (kT /n0) (36)

quickly follows for the heat capacity of the ideal
electron gas at reasonable temperatures.

V. CERTAIN ORDER-OF-MAGNITUDE
ESTIMATES USED IN THE FOREGOING

A proof of Eq. (21) can be accomplished as
follows: We increase the integrand of Eq. (20)
by dropping the 1 from the denominator brackets
and so obtain the inequality ’

| B; 1< / z? exp (—x)dz. (37)

A
Since j is a nonnegative integer, the right-hand
member of Eq. (37) can be evaluated in closed
form through j-fold integration by parts, which
gives
| By 1< (LA (= 1N NN
Xexp(—A) <K\ exp(—r), (38)

with some fixed K; for all A greater than a suffi-
ciently large value. By definition, Egs. (38) and
(21) are the same.

Proof of Eq. (16) is slightly more intricate,
because ¢ in Eq. (15) is nonintegral. For this
reason we carry out here the details only for =1,
and merely indicate the extension necessary for
proving the o =% case: We increase the integrand
of Eq. (15) by dropping the 1 from the denomi-
nator brackets, and by replacing the numerator A
with z; we then get

| A, 1<2"+1/ 7t exp (—x)dz. (39)
A

Two integrations by parts in Eq. (39) then pro-
vide

| A, [<20t1 {N’H exp(—A)+ (e+1)A" exp(—N)

+(U+1)J/wx“_1 eXp(_x)d:)c} . 40)

12 8ee any of the books listed under Refs. 1 and 2.
One must of course use the definition A=g% and solve
for n in terms of 7 from the first equation in Eq. (4)
with knowledge that limg.. (8I1/2) =%6%'%, according to
Eq. (34). The computation consistently rejects powers
of (8%)~! higher than the second.
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(For ¢ =% we must integrate by parts a third time
in order to place on z the negative exponent
(¢—2) in the final-term integrand.) Since
(6—1) <0 when o=4%, and since all the terms in
braces are positive, the right-hand member of
Eq. (40) is increased if we replace = by A*7%; it
therefore follows that, for ¢ =3,

[4, <21 {)\”“ exp(—\)+ (e+1)N exp(—2)

+ (o+1)ors? fw exp(——x)dx}

A
=271 {14 (DA (o 1) oA 2]A7H exp (—\)
<@QAtexp(—\), (41)

for some fixed @, for all X greater than a sufficiently
large value. It should be transparently clear
that the same result, with perhaps a different
value of @, for the different value of ¢, must hold
for ¢=32. The identity of Kqs. (41) and (16)
holds by definition.

Finally we show that B, has the lower bound
L(Ai/4) exp(—A)] for A>1: We decrease the
integrand of Eq. (20) by replacing the denomi-
nator with [exp (z) +exp(2) %, whence

1 7=
B;> */ zfexp(—z)dx
475

> i/ Mexp(—z)dr=($\) exp(—N\).
A

VI. REMARKS

The right-hand member of Eq. (26) might be
characterized as a Taylor’s formula with re-
mainder, but the remainder term does not fit any
of the standard forms. If g,(2) were instead
expressed in familiar Lagrange fashion as (a con-
stant times) the fourth derivative of f, evaluated
at an undetermined ¢ (0<¢<z), the difficulty of
obtaining an upper bound for the term G, in
Eq. (30) would be insurmountable. The barrier
would be the unboundedness as x—A of this fourth
derivative, according to Eq. (23) with =1, 3.
The use in place of Eq. (26) of Taylor’s formula
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with the Cauchy form of the remainder® —the
writing, namely, of

fo(x)=1.(0)+ (27" (0)2*

+ (4D (1 —0)%." (bz)zt,  (42)
for some 8 with 0 <0< 1—does, however, lead to a
tractable procedure for finding a numerical bound
on G, in Eq. (30).

It is essentially a matter of taste whether one
prefers to derive the major result of this paper
with the aid of Eq. (42) or to use the technique of
Sec. IV for the derivation. The latter is a simplifi-
cation of a spring 1968 class lecture, which was in
turn an extreme simplification of one of my class
lectures a year earlier. The use of the Cauchy
remainder was suggested to me in summer 1968
by a paper of Gilham? that purports to prove the
asymptotic character of Eq. (8).
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