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Abstract

We present a family of unimodal maps, arising from a simple queueing model, which
exhibits reverse bifurcations. We compare and contrast this with bifurcations occurring
in the well-known logistic family of unimodal quadratic maps.
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1. Introduction

In a recent paper in this journal [1], Frame and Meachem presented computer exper-
iments in which a quartic family of one-dimensional maps exhibited reverse bifurcations.
In particular, tangent and period-doubling bifurcations, well-known to occur in the logis-
tic family [2], appear in this quartic family with both forward and reverse orientations.
In this paper we present a unimodal (or one-hump) one-dimensional map, derived from
a simple queueing model, which exhibits bifurcations akin to those found in the study
of the quartic family. Interestingly, reverse bifurcations occur in mappings much less
topologically sophisticated than a three-hump quartic function.

2. Bifurcations

The road to chaos for one-dimensional maps often follows a sequence of period-
doubling bifurcations as a parameter increases, as illustrated by the logistic family
Lk(x) = kx(1−x). It is easy to check that if k ∈ [0, 4], then for any x0 ∈ [0, 1], Lk(x0) ∈
[0, 1]. For such k, the orbit of x0, defined to be the set O+(x0) = {x0, x1 = Lk(x0), x2 =
Lk(x1), ...}, remains bounded within [0, 1]. Of interest is how orbits O+(x0) change as
the parameter k increases.

The simplest way to proceed is via computer simulation. In Fig. 1 we plot the long-
term behavior of O+(0.5) versus k. That is, for a given k, we compute the first 200 terms
in O+(0.5), then plot iterates 101-200 vertically above k. The resulting plot is called



an orbit diagram. The choice of x0 = 0.5 is due to a result of Singer [3], which states
that for a map having negative Schwarzian derivative, any attracting periodic behavior
must draw in the orbit of a critical point. One can show Lk has negative Schwarzian
derivative, with x0 = 0.5 its sole critical point.

As this remarkable diagram is discussed at length in [1], we focus here on the two
types of bifurcations which occur within. Note that for k slightly less than 3, O+(0.5)
converges to a stable fixed point (depending on k). A fixed point is a point of intersection
of the graph of Lk and the line y = x; it is stable if it attracts orbits which start nearby.
As proven in [2], a fixed point x = p is stable if |L′

k(p)| < 1. A period n-point x = q is a
fixed point of the n-fold composition Ln

k(x), and it is stable if |(Ln
k)′(q)| < 1. The orbit

of a period n-point is called an n-cycle. An orbit which starts sufficiently close to any
point in a stable n-cycle will limit on that period-n behavior over time.

For k slightly larger than 3, O+(0.5) converges to a stable 2-cycle. This period-
doubling bifurcation as k increases through 3 is illustrated in Fig.2. Note that the fixed
point x = pk changes from stable to unstable (that is, |L′

k(pk)| > 1 so that orbits which
start nearby move away). As k continues to increase, a stable 4-cycle appears via a
period-doubling bifurcation of the function L2

k(x), followed by a stable 8-cycle arising in
a period-doubling bifurcation of the function L4

k(x), and so on. These period-doublings
continue until k ≈ 3.57, where chaos first appears.

The second type of bifurcation occurring in the logistic family is a tangent bifurcation.
Note the 3-cycle appearing out of the chaotic morass in Fig. 1. The function L3

k(x)
undergoes a tangent bifurcation at k ≈ 3.828, as illustrated in Fig. 3. Thus, Lk progresses
from having no 3-cycles, to one 3-cycle, and then to a stable-unstable pair of 3-cycles as
k increases through 3.828.

It is quite fun investigating the plot in Fig. 1 by zooming in on various regions—it
is indeed a surprisingly rich diagram. Regardless of how you search, however, you will
find only period-doubling and tangent bifurcations. In addition, once a cycle is created,
it persists, though it changes from stable to unstable as discussed above. That this
is the case follows from work of Milnor and Thurston [4]. That this need not be the
case for quartic maps is the substance of [1]. In the following we present a unimodal
map with period-doubling, tangent and reverse bifurcations similar to those found in
the quartic family. Here, unimodal means that the map has one critical point c, and is
either increasing for x < c and decreasing for x > c, or vice versa. Note that while all
quadratic maps are unimodal, a unimodal map need not be quadratic.

Interestingly, our unimodal map arises in a simple queueing model [5].
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3. A queueing model

Suppose a component of a queueing system consists of a server with a queue of size
two (see Fig. 4). Each time period two jobs A and B arrive in the queue at constant
rates α and β, respectively. The server will devote φA and φB time units to jobs A and
B each time period. Letting xn and yn denote the lengths of queues A and B at the
nth time period, assume φA and φB are each functions of the difference xn− yn in queue
lengths. We also assume the server devotes more time to the job having the longer queue,
and further that this component of the network is closed in the sense that the server’s
capacity equals the sum of the input rates. After normalizing, we have

α + β = φA + φB = 1. (1)

Note that α, β ∈ (0, 1).

The evolution equations for the queue lengths are then given by

xn+1 = xn + α− φA(xn − yn) (2)

yn+1 = yn + β − φB(xn − yn). (3)

In adding (2) and (3) and using (1), we see that xn+1 + yn+1 = xn + yn, so that for all
n, xn + yn = C, C a constant. Plugging yn = C − xn into (2) and setting C = 2 to
ensure sufficient workload [5], we have

xn+1 = xn + α− φA(2xn − 2). (4)

We need only specify φA to complete the model. The simplest choice would be an
all-or-nothing function, in which case the server devotes the entire time period to the
job having the longer queue (see Fig. 5). However, this choice reduces (4) to a family of
rigid rotation circle maps [5], the dynamics of which are well-understood [6].

A second possibility is the S-shaped curve sketched in Fig. 5. Such a curve is in-
creasing, has a unique inflection point x̂, and is concave up for x < x̂ and concave down
for x > x̂. (In Fig. 5, x̂ = 0.) If we include a parameter which adjusts the steep-
ness of the graph at x̂, then this function can be viewed as an approximation to the
all-or-nothing case. In all that follows, we choose such an S-shaped curve by setting
φA(x) = 1/(1 + e−λx), λ > 0, in which case (4) becomes

xn+1 = fα,λ(xn) = xn + α− 1
1 + e−2λ(xn−1)

, α ∈ (0, 1).

The orbit of x0 under fα,λ then corresponds to the length of queue A after successive
time periods.
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4. Dynamics

For λ > 2, the maps fα,λ are bimodal (or two-hump) maps as seen in Fig. 6. More-
over, for α ∈ ( 1

1+e4 , 1
1+e−4 ) ≈ (0.018, 0.982), fα,λ : [0, 2] → [0, 2], as is easily checked.

Assuming these parameter range values, we reduce to a unimodal map as follows.

Let c− = c−(λ) and c+ = c+(λ), respectively, denote the left and right critical points
of fα,λ. Note that each depends only on λ. Suppose that for some λ0, fα,λ0(c

−) < c+.

Then fα,λ0 maps the interval [0, c+] to itself and, moreover, fα,λ0 restricted to [0, c+] is
a unimodal map. In addition, the inequality fα,λ0(c

−) < c+ will hold for an interval of
α-values as changing α simply shifts the graph up or down, without changing the critical
points. For this λ0, we then have a one-parameter (namely α) family of unimodal maps
fα,λ0 : [0, c+] → [0, c+]. This is the type of unimodal family which will serve as our
example exhibiting reverse bifurcations.

In a similar fashion, if fα,λ1(c
+) > c− for some λ1, then fα,λ1 : [c−, 2] → [c−, 2] is a

unimodal family. In Fig. 7 we plot the (α, λ)-parameter range for which the restriction
of fα,λ to either [0, c+] or [c−, 2] yields a unimodal family as described above. The blue
curve corresponds to (α, λ) for which fα,λ(c−) = c+, while the red curve represents (α, λ)
with fα,λ(c+) = c−.

In Fig. 8 we plot fα,λ-orbit diagrams for four different λ-values. We have chosen
(α, λ) so that in each case fα,λ is a unimodal map which takes the interval [0, c+] to
itself, that is, we restrict fα,λ to [0, c+]. As with the logistic map, one can show fα,λ has
negative Schwarzian derivative, so that if there is attracting periodic behavior the orbit
of the critical point c− will be drawn to it. To generate these diagrams, we thus plot the
long-term behavior of O+(c−) as a function of α.

Period-doubling and period-halving bifurcations are clearly evident in Fig. 8(a). Also
observe that, although each plot begins with a sequence of period-doubling bifurcations,
the complexity of O+(c−) increases with increasing λ. In Fig.8(d), notice the right-most
period-5 window. Two close-ups of this window are presented in Fig. 9, in which we
see the logistic bifurcation diagram with orientation reversed. Hence, for λ = 8, fα,8

undergoes infinitely many period-halving and reverse tangent bifurcations.

As discussed in [1], this phenomena can be explained via trapping regions. In Fig.
10 we focus on a neighborhood of the critical point c− for f5

α,8. The trapping region is
a rectangle having one corner on the smallest fixed point of f5

α,8 greater than c− and
the other corners as pictured. Note the remarkable quadratic-like nature of the graph
of f5

α,8 in the trapping region—it clearly resembles that of an upside-down logistic map.
As discussed in [1], while Lk is concave down, Lk(0.5) increases with increasing k (so
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the concave down hump moves up with increasing k). The difference and the source of
the reverse bifurcations in our case is that the graph of f5

α,8 is concave up near c− and
f5

α,8(c
−) increases with α (the concave up hump moves up with increasing α). The entire

range of orbit behavior exhibited in Fig. 1 appears in Fig. 9, though with orientation
reversed.

5. Conclusion

We have provided an example of a family of unimodal maps which exhibits both
forward and reverse period-doubling and tangent bifurcations. This family arises from a
simple queueing model, and as such the regular and chaotic orbits can be interpreted in
terms of changes in a queue length over time.

Our example was found by restricting a bimodal map to an invariant interval on which
the function has one hump. One can naturally consider the dynamics of the bimodal
map fα,λ : [0, 2] → [0, 2] by choosing (α, λ) in the white region in Fig. 7. As there are
two critical points, there now exists the possibility of having two distinct stable cycles
for one (α, λ) pair. This bistability does indeed exist, as seen in Fig.11.

In general, the addition of the second hump complicates matters significantly in terms
of seeking to understand orbit behavior (see [7] and references therein). For our bimodal
family the orbit diagrams, which now may differ for O+(c−) and O+(c+), are even yet
more complicated (see Fig. 12). The reader might enjoy numerically investigating such
diagrams which, at this point, are not completely understood.
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1 3

Fig. 1. Left: the orbit diagram for the logistic map. Right: The portion of the orbit diagram for
3.72 ≤ k ≤ 3.88. Note the period-5 and period-3 “windows”.
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Fig. 2. The period-doubling bifurcation at k = 3 is illustrated by graphical iteration. As k

increases through 3, the fixed point pk changes from stable (red) to unstable (blue) and a stable
2-cycle is born. The straight line is the diagonal y = x.
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Fig. 3. The tangent bifurcation for L3
k is illustrated by graphical iteration. The top row contains

graphs of Lk, while the bottom row contains plots of L3
k. Red: k = 3.8. Green: k = 3.8284.

Blue: k = 3.84.
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Fig. 4. The model for the queue of size 2.
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1

Fig. 5. Two model functions φA, each a function of the difference in queue lengths xn−yn. Left:
The all-or-nothing model. Right: The S-shaped curve model.
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Fig. 6. For λ > 2, fα,λ : [0, 2] → [0, 2] is a bimodal map. Left: For λ = 8, fα,8 is unimodal on
and maps [0, c+] to itself. Right: fα,8 is also unimodal on and maps [c−, 2] to itself.

11



2 4 6 8 10 12 14

0.2

0.4

0.6

0.8

λ

α

Fig. 7. In the blue region, fα,λ restricted to [0, c+] is unimodal. In the red region, fα,λ restricted
to [c−, 2] is unimodal.
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1.3 (a) λ = 7

0 0.42
0.4

1.3 (b) λ = 7.2

0 0.40
0.4

1.3 (c) λ = 7.6

0 0.39
0.4

1.3 (d) λ = 8

Fig. 8. The long-term behavior of O+(c−) under fα,λ : [0, c+] → [0, c+], as a function of α, for
λ = 7, 7.2, 7.6, 8.
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5 4 3 2 1 0

Fig. 9. Left: The period-5 window for λ = 8 evident towards the right in Fig.8(d), 0.33 ≤ α ≤
0.35. Right: Zooming in on the branch second from the top in this period-5 window.
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2 1 0

Fig. 10. The graph of f5
α,8 in a neighborhood of c− at the α-values indicated on the right side of

Fig. 9. The trapping region, which varies with α, is bounded by the red rectangle.
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Fig. 11. Bistability for (α, λ) = (0.575, 18). The left critical point c− is attracted to a 3-cycle,
while the right critical point c+ is attracted to a 6-cycle.
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Fig. 12. The long-term behavior of O+(c−) for λ = 21. Left: 0.76 ≤ α ≤ 0.8, 0.82 ≤ x ≤ 1.7.
Right: Zooming in on the small box in the upper-left quadrant of the bifurcation diagram on the
left.
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