
Opt Art

Robert Bosch
Dept. of Mathematics

Oberlin College
Oberlin, OH 44074

(bobb@cs.oberlin.edu)

October 24, 2005

Optimization is the branch of mathematics concerned with finding the best
way to complete a task. Certainly, some tasks are easy, and we need not rely on
optimization to tackle them. But many others are much more difficult, so much
so that we may have very little hope of completing them satisfactorily—let alone
optimally—without optimization.

For example, suppose a friend of ours does volunteer work for a Meals-on-
Wheels program. Once a week she bikes to the Meals-on-Wheels headquarters
and picks up 20 meals and a list of 20 names and addresses. She then gets in
the Meals-on-Wheels van, delivers the meals, and returns to headquarters. Her
goal is to drop off the meals in an order that will minimize the number of miles
she’ll travel, as this will minimize fuel consumption, pollutant emissions, and
the amount of time she’ll spend on the job.

Is her task—planning the route she’ll take—an easy one? It depends. If all
of the addresses are on the same road, then it is extremely easy; the optimal
route will be obvious to anyone who takes a look at a map. But if not, it can
be extremely difficult, especially in the case in which the addresses appear to
have been scattered about the city at random. (Why? Why not just list and
evaluate every single route? The answer is that there are 20! ≈ 2.43 × 1018

routes, one for every permutation of the 20 addresses. Even if our friend has
a laptop that can evaluate one trillion (1012) routes per second, she’ll have to
run it for about 28 days if she wants to find the optimal route via complete
enumeration!) Incidentally, this task is an instance of the Traveling Salesman
Problem (TSP), one of the most difficult, important, and well-studied problems
in the optimization field.

Optimization has a seemingly unlimited number of applications. It has been
put to good use in a great number of diverse disciplines: advertising, agriculture,
biology, business, economics, engineering, manufacturing, medicine, telecommu-
nications, and transportation (to name but a few). In this article, we showcase
its amazing utility by describing some applications in the area of art, which at
first glance would seem to have no use for it whatsoever!

1



Photomosaics

A photomosaic is, as the name suggests, a mosaic comprised of photographs.
When we examine a photomosaic from up close, we are able to identify each
individual “building-block” photograph. When we back away from it, we lose
this ability, but we gain something else: our eyes somehow manage to merge
the arrangement of photographs into a recognizable image.

In this section, we describe how to use optimization to create an m × n

photomosaic (one with m rows and n columns of building-block photographs)
that resembles a given target image from photographs that belong to a given
set F of building-block photographs. Usually, each photograph f ∈ F is square
(a k × k array of pixels) and can be used no more than some given number uf

times, with no rotations or reflections. (In our opinion, the best photomosaics
have uf = 1 for each f ∈ F .) To keep things simple here, we assume that
each photograph is black-and-white, and we denote the average brightness of
photograph f by bf ∈ [0, 1], where 0 stands for a completely black photograph
and 1 stands for a completely white one.

Accordingly, we begin by partitioning both our target image and our initially
blank canvas into m rows and n columns of congruent squares. We denote the
brightness of the row-i-column-j square—square (i, j)—of our target image by
βi,j , using the same 0-to-1, black-to-white scale we use for the bf ’s. Our task
amounts to placing photographs from F onto our canvas, one photograph per
square. Our goal is to pick the photographs and place them on the canvas in
such a way that the arrangement of photographs resembles our target image as
closely as possible.

This task is very well suited to optimization. When translated into the
language of mathematics, it becomes an integer program (IP), an optimization
problem with a linear objective function, linear constraints (inequalities and/or
equations), and variables that take on integer values:

Photomosaic IP

minimize
∑

f∈F

m
∑

i=1

n
∑

j=1

(bf − βi,j)
2 xf,i,j

subject to

m
∑

i=1

n
∑

j=1

xf,i,j ≤ uf for each f ∈ F

∑

f∈F

xf,i,j = 1 for each 1 ≤ i ≤ m, 1 ≤ j ≤ n

xf,i,j ∈ {0, 1} for each f ∈ F , 1 ≤ i ≤ m, 1 ≤ j ≤ n.

Note that we have a binary variable xf,i,j for each photograph f ∈ F and
each square (i, j) of our canvas. We interpret xf,i,j = 1 to mean that we should
place photograph f in square (i, j), and xf,i,j = 0 to mean that we definitely
should not make this particular placement.

The idea behind the objective function is fairly simple: Suppose we place
photograph f in square (i, j) (i.e., we set xf,i,j = 1). If the brightness of f is
equal to the brightness of square (i, j) in our target image, we’ve dealt with
square (i, j) as well as anyone could have. But if not (the more likely case), we



should charge ourselves a cost. A reasonable cost is (bf − βi,j)
2, the square of

the discrepancy between the brightness values. Hence the objective function is
the total cost we charge ourselves. Our goal is to make this cost as small as
possible.

The constraints are even easier to interpret. The first set of constraints
ensures that no photograph f ∈ F is used more than uf times. The second set
of constraints guarantees that each square (i, j) of our canvas receives exactly
one photograph.

Although integer programming is NP-hard (which means that there is no
polynomial-time algorithm for integer programming unless P = NP), some
classes of integer programs are quite easy to solve. The Photomosaic IP, being
an integer programming formulation of an instance of the Assignment Problem,
is very easy to solve. It turns out that if we were to “forget” that the variables
must take on integer values and solve the integer program as a linear program
(LP)—replacing each xf,i,j ∈ {0, 1} with 0 ≤ xf,i,j ≤ 1—we would be certain
to get lucky: the optimal solution to this linear program is guaranteed to be
integer valued! Moreover, there are good (i.e., polynomial-time) non-LP-based
algorithms for solving instances of the Assignment Problem.

Thus, from an optimization standpoint, photomosaics are easy to make!
(But note that this does not imply that it is easy to make a good photomo-
saic. Optimization cannot help us solve the difficult task of selecting a set F
of building-block photographs that will fit well with—or perhaps provide com-
mentary on—the target image.)

Historical Note

Of the numerous artists who have constructed photomosaics, Robert Silvers
is the most well known. His algorithm, which is described in his 1996 MIT
M.S. Thesis, Photomosaics: Putting Pictures in Their Place, is not based on
treating the Photomosaic Problem as an Assignment Problem. It is a greedy
algorithm. Silvers writes, “Currently [my] mosiacs are made from the top down.
The negative consequences of this are that the quality of matches is worse at
the bottom of the mosaic than at the top because the best images are used up
first.”

Domino Artwork

In this section we describe how to create a portrait out of complete sets of
double-nine dominoes. Here, our task is to place s sets of double-nine dominoes
on the canvas—with each domino positioned either horizontally or vertically,
covering precisely two squares of the canvas—in such a way that the resulting
arrangment resembles the target image as closely as possible.

Note that in place of a set of building-block photographs F , we have a set
of double-nine dominoes D = {d = (d1, d2) : 0 ≤ d1 ≤ d2 ≤ 9}, and we need
to use each domino d ∈ D exactly s times. Since domino d = (d1, d2) is black
and has d1 white dots painted on one square and d2 white dots painted on the
other, domino d = (d1, d2) can be thought of as a domino-shaped photograph,



half of which has brightness d1 and half of which has brightness d2, with both
brightness values measured on a 0-to-9, black-to-white scale.

Also note that since there are 55 dominoes per set, we need to make sure
that when we partition the target image and canvas into m rows and n columns
of congruent squares, m and n satisfy mn = 110s.

Finally, note that it is convenient here to denote the brightness of the row-
i-column-j square of our target image by an integer 0 ≤ βi,j ≤ 9 (or if we want
higher resolution, with a real number −0.5 ≤ βi,j ≤ 9.5). A completely black
square will be given a brightness of 0 (or −0.5), and a complete white square
will be given a brightness of 9 (or 9.5).

Recall that constructing a photomosaic requires us to make a yes-no decision
for each possible assignment of a photograph f to a square (i, j) of the canvas,
and that in our Photomosiac IP we modeled this via binary variables xf,i,j .
Constructing a domino portrait is more complicated in that we need to make a
yes-no decision for each possible assignment of a domino d to a pair of adjacent
squares of the canvas. But if we construct the set of all adjacent pairs of squares

P =
{

{(i, j), (i + 1, j)} : 1 ≤ i ≤ m − 1, 1 ≤ j ≤ n
}

∪
{

{(i, j), (i, j + 1)} : 1 ≤ i ≤ m, 1 ≤ j ≤ n − 1
}

,

we can then proceed as we did before: we can introduce a binary variable xd,p

for each domino d ∈ D and each pair p ∈ P . We interpret xd,p = 1 to mean
that we should place domino d on the board in such a way that it covers the
squares in pair p; we interpret xd,p = 0 to mean that we shouldn’t do this. And
we quickly arrive at the following integer program:

Domino IP

minimize
∑

d∈D

∑

p∈P

cd,pxd,p

subject to
∑

p∈P

xd,p = s for each d ∈ D

∑

d∈D

∑

p∈P:
p3(i,j)

xd,p = 1 for each 1 ≤ i ≤ m, 1 ≤ j ≤ n.

xd,p ∈ {0, 1} for each d ∈ D, p ∈ P .

The objective function measures the total cost of the resulting arrangement
of dominoes; cd,p is the cost of placing domino d so that it covers the squares
in pair p. Our method for computing cd,p is easy to understand, but hard
to capture in a consise formula. Suppose we place domino d = (3, 5) so that it
covers the squares of pair p = {(10, 10), (10, 11)} and the squares have brightness
values of β10,10 = 6 and β10,11 = 4. If we place the domino with its ‘3’ in
square (10, 10) and its ‘5’ in square (10, 11), we’ll charge ourselves a cost of
(3 − 6)2 + (5 − 4)2 = 10. If we place the domino with its ‘3’ in square (10, 11)
and its ‘5’ in square (10, 10), we’ll do much better, incurring a cost of only
(3 − 4)2 + (5 − 6)2 = 2. In this example, cd,p = min{10, 2} = 2. In general, if
d = (d1, d2) and p = {(i1, j1), (i2, j2)},

cd,p = min
{

(d1 − βi1,j1)
2 + (d2 − βi2,j2)

2, (d1 − βi2,j2)
2 + (d2 − βi1,j1)

2
}

.



As for the constraints, they are very easy to understand. The first set makes
sure that all of the dominoes are placed on the canvas. The second set makes
sure that each square of the canvas is covered by exactly one domino.

At first glance, the Domino Problem appears to be another instance of the
Assignment Problem. After all, we are assigning dominoes to pairs of adjacent
squares of the canvas, making sure that each domino d = (d1, d2) is used s times.
But note that instead of requiring that each pair of adjacent squares receives at
most one domino, we require something stronger: that each square be covered by
exactly one domino. Consequently, the Domino Problem is actually an instance
of an Assignment Problem with side constraints.

When one adds side constraints to an easy-to-solve problem, several things
can happen. The best-case scenario is that the problem remains easy to solve
(i.e., one can find a polynomial-time algorithms for solving instances of the
“new” problem). The next-to-best-case scenario is that the problem becomes
hard to solve in theory, yet is still easy to solve in practice (i.e., there exist
some instances that appear to require an enormous amount of time to solve,
but most instances encounted on a day-to-day basis are easily handled). The
worst-case scenario is that the problem becomes hard to solve, both in theory
and in practice. The Domino Problem falls into the second category.

Historical Note

Ken Knowlton, one of the pioneers of the field of computer graphics, was the first
artist to construct mosiacs using complete sets of dominoes. In 1983 Knowlton
was awarded a patent for his method, which breaks the problem into two sub-
problems. The first subproblem involves partitioning the canvas into domino-
sized regions (i.e., pairs of adjacent squares). Here, the goal is to maximize
the average unbalance, the average amount by which the two brightness values
corresponding to the squares in each domino-sized region differ. The second
subproblem involves assigning dominoes to the domino-sized regions. Here, the
goal is to place the dominoes in such a way that the average brightnesses of
the dominoes match up as closely as possible with the average brightnesses
of the domino-sized regions. Knowlton’s method uses heuristics—quick, simple
algorithms—to obtain fairly high quality (but not necessarily optimal) solutions
to his two subproblems.

In terms of the notation presented here, Knowlton’s first subproblem is to
construct a subset P ′ of P that is a partition of the set of squares of the can-
vas. Knowlton’s second subproblem asks for a solution to the Domino IP, but
with the second set of constraints replaced by a set of Assignment Problem
constraints,

∑

d∈D

xd,p = 1 for each p ∈ P ′.

Indeed, in 1993 Donald Knuth, the author of the classic multi-volume reference
The Art of Computer Programming, presented an update of Knowlton’s method
that treats each of Knowlton’s two subproblems as an instance of the Assign-
ment Problem. The problem with Knuth’s approach is that even if we solve
Knowlton’s two subproblems to optimality, there is no guarantee that we’ll get
something close to the true optimum.



Tiles

Another possibility is to use tiles instead of dominoes or building-block pho-
tographs and require that the edges of neighboring tiles match. We can use, for
example, square tiles that have precisely two white and/or black strands drawn
on them, with exactly one end of a strand exiting each side of the square. The
resulting mosaics resemble Celtic knot drawings.

Here, we have a binary variable xt,i,j for each tile t and each square (i, j)
of the canvas, and we interpret xt,i,j = 1 to mean that we should place tile
t in square (i, j) and xt,i,j = 0 to mean that we shouldn’t. Our objective is
to minimize the total cost of our tile arrangement, and we have two sets of
constraints: constraints that ensure that each square receives exactly one tile,
and constraints that guarantee that the edges of neighboring tiles match. As in
the case of the Domino Problem, we end up with an Assignment Problem with
side constraints.

Continuous Line Drawings

We can also use optimization to create continuous line drawings. The idea is
very simple: First, we place dots down on a blank canvas in such a way that the
group of dots resembles the target image. Next, we construct an instance of the
TSP, viewing the dots as a collection of cities. Here, the salesperson is assumed
to be able to travel as the crow flies, so city-to-city distances are given by the
Euclidean formula. Next, we use a good TSP heuristic (the Lin-Kernighan
heuristic from the Concorde TSP package by Applegate, Bixby, Chvátal, and
Cook) to obtain a high quality (but not necessarily optimal) solution to the
TSP instance. Finally, we draw the salesperson’s tour.

The resulting picture is a continuous line drawing. Since the TSP instance
is Euclidean, the tour will not intersect itself. It will be topologically equivalent
to a circle!

Examples

The four images found on the next page were all based on a photograph of a
Chuck Close self-portrait. Going around clockwise from the top left, we have a
photomosaic, a rendering with 6 complete sets of double-nine dominoes, a knot
drawing, and a continuous line drawing that was obtained via a 10000-city TSP
instance. When printed at actual size, each image is 19.25” wide by 26.25” high.
To view additional examples of Opt Art (including some pictures of domino
portraits constructed out of real dominoes), go to www.dominoartwork.com.

References

1. R.A. Bosch, “Constructing domino portraits,” in Tribute to a Mathema-

gician, ed. B. Cipra et al., A.K. Peters, 2004, 251-256.
2. R. Bosch and A. Herman, “Continuous line drawings via the traveling
salesman problem,” Operations Research Letters 3 (2004) 302-303.



3. C.S. Kaplan and R. Bosch, “TSP Art,” Proceedings of Bridges 2005:

Mathematical Connections in Art, Music and Science (2005) 301-308.
4. K.C. Knowlton, “Representation of designs,” U.S. Patent 4,398,890 (Au-
gust 16, 1983).
5. D.E. Knuth, The Stanford GraphBase, Addison Wesley, 1993.
6. R.S. Silvers, “Photomosiacs: putting pictures in their place,” M.S. Thesis,
The Media Lab, Massachusetts Institute of Technology, 1996.


