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Fully coupled six-dimensional calculations of the water dimer
vibration-rotation-tunneling states with a split Wigner pseudo spectral
approach
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A novel and efficient pseudospectral method for performing fully coupled six-dimensional bound
state dynamics calculations is presented, including overall rotational effects. A Lanczos based
iterative diagonalization scheme produces the energy levels in increasing energies. This scheme,
which requires repetitively acting the Hamiltonian operator on a vector, circumvents the problem of
constructing the full matrix. This permits the use of ultralarge molecular basis sets~up to over one
million states for a given symmetry! in order to fully converge the calculations. The Lanczos
scheme was conducted in a symmetry adapted spectral representation, containing Wigner functions
attached to each monomer. The Hamiltonian operator has been split into different terms, each
corresponding to an associated diagonal or nearly diagonal representation. The potential term is
evaluated by a pseudospectral scheme of Gaussian accuracy, which guarantees the variational
principle. Spectroscopic properties are computed with this method for four of the most widely used
water dimer potentials, and compared against recent terahertz laser spectroscopy results.
Comparisons are also made with results from other dynamics methods, including quantum Monte
Carlo ~QMC! and reversed adiabatic approximation calculations. None of the potential surfaces
produces an acceptable agreement with experiments. While QMC methods yield good results for
ground~nodeless! states, they are highly inaccurate for excited states. ©1997 American Institute
of Physics.@S0021-9606~97!01020-9#
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I. INTRODUCTION

While the study of intermolecular forces has a very lo
history, tremendous progress in our understanding of the
tails of molecular interactions has been achieved in the
several years.1–4 This has occurred because of major a
simultaneous advances in high resolution spectroscop
weakly bound clusters,1,2 ab initio calculations of intermo-
lecular potential surfaces~IPS!,5 and in the theoretical meth
ods used to describe the dynamics that occur on the IPS1,3,6

These advances have now permitted the direct determina
of accurate and detailed IPS for systems with two, three,
four fully coupled degrees of freedom.

These potential surface determinations have gener
proceeded via direct least squares fits of far-IR and mid
vibration-rotation-tunneling~VRT! and microwave spectra
which were constrained with other available data~multipole
moments, dispersion coefficients, virial coefficients,...!. In
order to perform such calculations for systems with 3
more coupled degrees of freedom, accurate and very effic
dynamics methods must be employed, since a nonlinea
gression analysis will typically involve;100 calls to the
algorithm which calculates the spectra from the IPS. If o
employs a variational method with anL2 finite basis repre-

a!Present address: Hope College, Department of Chemistry, Holland
49422-9000.
J. Chem. Phys. 106 (20), 22 May 1997 0021-9606/97/106(20)/85

wnloaded¬27¬Jun¬2001¬to¬132.162.161.158.¬Redistribution¬subject¬to¬
e-
st

of

on
d

lly
R

r
nt
e-

e

sentation~FBR!, it is generally found that at least 10 bas
functions per degree of freedom are required for spect
copy accuracy. In order to calculate VRT spectra from
IPS for the general case of two interacting linear molecu
with frozen internal motions~usually a very good approxi
mation!, this necessitates the solution of an eigenvalue pr
lem of dimension 104. Elrod and Saykally1 employed such
an L2 approach in their determination of the fou
dimensional~4D! IPS of (HCl)2, but upon extending this
approach to the six-dimensional~6D! case of two interacting
polyatomics both CPU time requirements (} N3) and storage
demands (}N2) thus become prohibitive. Nevertheless,
most impressive demonstration ofL2 variational method
was recently presented by van der Avoird and co-workers
which an empirical potential model was employed to qua
titatively reproduce all measured properties of the ammo
dimer ~microwave and VRT spectra, dipole momen
nuclear quadrupole splittings of the (NH3)2 and (ND3)2
isotopomers.7 However, the considerable expense of this c
culation still precludes a rigorous determination of the I
through regression analysis.

A number of innovative approaches to this problem ha
appeared recently. The collocation method,8–10 used for the
determination of the three-dimensional~3D! Ar–H2O

11,12

and Ar–NH3
13 potentials, yields very simple programmin

and essentially complete generality with respect to the fo
of the potential and basis functions, but suffers from t
I

852727/18/$10.00 © 1997 American Institute of Physics
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FIG. 1. The three internal tunneling pathways giving rise to energy level splittings, as discussed in the text.
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computational inefficiency associated with the no
symmetric eigenvalue problem. Quantum Monte Ca
~QMC! methods developed so far14–18offer a convenient and
efficient extension to larger systems. A recent demonstra
of the power of this method was presented by Liuet al.4

wherein a fully coupled 30D treatment of the VRT dynam
in the water hexamer with diffusion quantum Monte Ca
~DQMC! using Stone’s ASP potential model produced exc
lent agreement for ground state~nodeless! properties with
far-IR laser spectroscopy results. Such QMC methods su
from a great difficulty in treating excited states, howev
J. Chem. Phys., Vol. 106
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and this limits their usage for potential surface determi
tions.

The method we describe in the present paper consis
a Lanczos based, split Hamiltonian formulation of the pro
lem. Initiated by Feit and Fleck19,20 and Kosloff and
Kosloff,21,22 the split Hamiltonian method makes use of tw
different representations associated with the Hamiltonian
erator. In its original formulation, the kinetic energy part w
evaluated in the spectral representation~plane waves!, while
a grid was used for the potential. It should be noted that th
two representations are equivalent, being related by a uni
, No. 20, 22 May 1997
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transform@multidimensional fast Fourier transform~FFT!#.
Such a split representation has been confined for many y
to iterative time dependent propagation methods~see Ref. 23
for a review!. It was later introduced in bound states calc
lations by Friesneret al.24 through the adiabatic pseudospe
tral ~APS! method. The scheme, based on the iterative La
zos method has been applied to the simulation of S
spectra. In this formulation, the spectral representation c
sisted of the adiabatic eigenstates$Fn(q;ua)% with respect
to some slow coordinateu:

H~ua!Fn~q;ua!5En~ua!Fn~q;ua!. ~1!

These adiabatic states were computed on a two-dimens
grid qp by means of the successive adiabatic reduct
~SAR! method of Bac˘ić and Light,25,26 and were used in the
treatment of Friesneret al. to perform the spectral to grid
transformation using the collocation matrices

Rpn
~a!5Fn~qp ;ua!. ~2!

This grid representation was then used in order to evalu
some residual terms of the Hamiltonian operator~non-
adiabatic coupling terms!. Finally, the effect of these term
was expressed in the spectral representation by means o
inverse grid to spectral representation

R215@R1
–R#21

–R1 ~3!

defined by least squares fitting.
The innovative aspect of this method is that of using

contracted spectral representation as the primary one. Fr
numerical point of view, a contracted representation is m
more efficient as it is associated with a narrower spectr
compared to an uncontracted one. This property is of utm
importance as it governs the convergence properties of
subsequent iterative~Lanczos! eigenstates calculation. An
other consequence of using such a contracted basis is th
ensures converged matrix elements of the Hamiltonian

TABLE I. Water dimer parameters used in the calculations.

RO–H51.808846 a.u. HOĤ5104.5° mH2O,H2O
59.00525 a.m.u

Bx514.5216 cm21 By59.2778 cm21 Bz527.8806 cm21

FIG. 2. Structure of the wave function (vA ,vB)-components in the un-
coupled basis setBunc for a total angular momentum valueJ51.
J. Chem. Phys., Vol. 106
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erator. As discussed by Friesner,27 the inverse transform@Eq.
3# allows one to eliminate the aliasing terms associated w
evaluating the residual terms on a grid. One thus regains
variational principle which is otherwise lost. This approa
has been recently generalized and applied to tetra-ato
systems.28

The next step in the development of using contrac
basis sets in split Hamiltonian algorithms is due to Corey a
colleagues. In a very important paper, Corey and Lemoin29

had shown how one can transform between a spherical
monics basis set and a two-dimensional grid associated
the polar angles. The key point of this transformation is t
it treats exactly the apparent singularity of the kinetic ene
operator (sin22 u]2/]w2) that appears in a pure grid descri
tion. As a result, the spectrum of the kinetic energy opera
displays the smallest possible range. This paper establis
an efficient handling of a multidimensional grid associat
with general non-direct product basis sets. The essential
parture from Light’s original formulation30 is that one no
longer seeks a unitary transform between the two repre
tations. As a result, the two representations are no lon
equivalent, the spectral representation becoming the prim
one as it is more compact.31–35

Recently the split Hamiltonian method has been appl
by one of us~C.L.!32 to the computation of the VRT states o
the Ar–H2O van der Waals complex. The key feature of t
calculation was the definition of a grid associated with
basis of Wigner functions, similar in spirit to Corey an
Lemoine’s approach for spherical harmonics.29 It consists of
a Jacobi transform followed by a double Fourier transfor
In order to maintain the variational principle within th
scheme, care has been taken to remove the aliasing t
resulting from evaluating the potential on a grid. This h
been realized by using a grid size significantly larger than
spectral representation dimension. When combined with
Lanczos algorithm36,37 for extracting the low lying eigen-
states, this split Wigner pseudospectral~SWPS! method was

TABLE II. Symmetry adapted linear combination vectors for to the diffe
ent irreducible representationsG. l is defined asJ1 j A1 j B .

uj1 ,V& u j Aj BkAkB ; jV&
uj2 ,V& u j Bj AkBkA ; j V̄&
uj3 ,V& u j Aj Bk̄Ak̄B ; j V̄&
uj4 ,V& u j Bj Ak̄Bk̄A ; jV&

G u j Aj BkAkB ; jV,G& (kA ,kB) parity

A1
1 j11(21)lj21(21)l1 jj31(21) jj4 e e

A2
1 j12(21)lj21(21)l1 jj32(21) jj4 o e

B1
1 j12(21)lj21(21)l1 jj32(21) jj4 e e

B2
1 j11(21)lj21(21)l1 jj31(21) jj4 o o

E1 j11(21)l1 jj3 o e or eo
j21(21)l1 jj4 o e or eo

A1
2 j11(21)lj22(21)l1 jj32(21) jj4 e e

A2
2 j12(21)lj22(21)l1 jj31(21) jj4 o e

B1
2 j12(21)lj22(21)l1 jj31(21) jj4 e e

B2
2 j11(21)lj22(21)l1 jj32(21) jj4 o o

E2 j12(21)l1 jj3 o e or eo
j22(21)l1 jj4 o e or eo
, No. 20, 22 May 1997
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shown to be both very efficient and versatile with respec
the form of the potential, as well has having minimal stora
requirements.

In the present paper we describe the application of
SWPS method to the calculation of VRT spectra of the
water dimer system. With this approach, we are able
quantitativelyevaluate several widely used IPS for the wa
dimer with respect to their ability to reproduce high precisi
VRT spectra recently measured with far infrared laser me
ods, as well as ground state microwave spectra.

There are a maximum of 16 equivalent structures of
water dimer that can be generated without breaking
chemical bond.38 The dimer tunnels along low-energy barri
pathways on the IPS to access the different structures.
mutation of the nuclei gives rise to 8 equivalent structur
Inversion of these structures through the center of mass

TABLE III. J50 energy levels obtained from a 5D calculation using t
Clementi and coworkers surface. The interfragment distanceR* was set to
5.6242 a.u. Wigner basis sets corresponding tojmax511 have been used on
each monomer. Figures in parentheses correspond to the energy cha
the level position associated with an increase in the basis set size
jmax21 to its actual value ofjmax.

B1
1 ——— 12.21 (20.09)

E1 ——— 4.36 (20.04)
1152.26 (20.09) A1

1 ———

B2
2 ——— 10.79 (20.02)

E2 ——— 8.28 (20.00)
1151.37 (20.13) A2

2 ———

A1
2 ——— 7.32 (20.00)

E2 ——— 0.04 (20.01)
1149.50 (20.08) B1

2 ———

A2
1 ——— 6.76 (10.02)

E1 ——— 2.78 (10.03)
1133.27 (20.07) B2

1 ———

B1
2 ——— 1.86 (20.04)

E2 ——— 0.83 (20.05)
1111.75 (20.09) A1

2 ———

B2
2 ——— 2.69 (20.00)

E2 ——— 1.60 (10.07)
196.50 (20.09) A2

2 ———

B1
1 ——— 5.62 (20.02)

E1 ——— 3.17 (10.03)
181.18 (20.08) A1

1 ———

A2
1 ——— 1.41 (20.16)

E1 ——— 0.45 (20.08)
175.03 (10.02) B2

1 ———

B2
2 ——— 1.25 (20.00)

E2 ——— 0.66 (10.01)
112.48 (20.02) A2

2 ———

B1
1 ——— 1.26 (10.01)

E1 ——— 0.79 (20.02)
21113.31 (20.17) A1

1 ———
J. Chem. Phys., Vol. 106
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erates 8 more configurations. If the equilibrium structu
contains a plane of symmetry, as the evidence currently s
ports, then there are only 8 distinct configurations. The p
mutation inversion~PI! symmetry groupG16 is typically
used to explain the resulting splittings in the rovibration
levels.G16 is isomorphic with theD4h(M ) point group and
is consistent with observed VRT dynamics. For further d
cussion of the water dimer group theory see References
40.

Acceptor tunneling has the lowest energy barrier mak
it the most feasible tunneling motion on the IPS. This moti
allows for the exchange of the protons in the water molec
acting as the H-bond acceptor. Figure 1 shows the propo
pathway, but the net effect is a C2 rotation of the acceptor
about its symmetry axis. Each rovibrational energy level
the non-tunneling water dimer is split into two.

The next most feasible tunneling motion is identified
donor-acceptor interchange tunneling. There are several
sible pathways with the most likely one being the gea
motion shown in Fig. 1.41 In donor-acceptor interchange, th

e in
m

TABLE IV. Same as Table III for the RWK2 surface. Ajmaxvalue of 13 has
been used for each monomer.

B2
2 ——— 10.81 (20.16)

E2 ——— 0.54 (20.02)
1188.74 (10.00) A2

2 ———

B1
1 ——— 0.21 (10.00)

E1 ——— 0.18 (10.00)
1171.84 (20.02) A1

1 ———

A1
2 ——— 0.15 (20.02)

B1
2 ——— 0.07 (20.01)

1168.54 (20.08) E2 ———

A2
1 ——— 0.27 (10.00)

E1 ——— 0.09 (20.02)
1158.17 (10.01) B2

1 ———

B1
2 ——— 0.13 (20.01)

E2 ——— 0.01 (20.01)
1125.53 (10.02) A1

2 ———

B2
2 ——— 0.09 (10.01)

E2 ——— 0.09 (20.02)
1108.00 (10.01) A2

2 ———

B1
1 ——— 0.44 (10.00)

E1 ——— 0.29 (20.01)
1107.45 (10.01) A1

1 ———

A2
1 ——— 0.04 (20.02)

E1 ——— 0.01 (10.02)
158.82 (20.01) B2

1 ———

E2 ——— 0.06 (10.01)
B2

2 ——— 0.04 (10.00)
127.50 (10.00) A2

2 ———

E1 ——— 0.10 (10.02)
B1

1 ——— 0.04 (10.00)
21305.65 (20.04) A1

1 ———
, No. 20, 22 May 1997
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roles of the individual donor and acceptor water molecu
are swapped. The effect is to split the energy levels i
three, but by a much smaller degree than that of acce
tunneling. These two tunneling motions resolve all degene
cies in the water dimer.

The final rearrangement identified is that of donor tu
neling wherein the H-bond donor permutes its protons. T
barrier to this motion is relatively high and results in a sm
shift of the energy levels, but causes no further splitting.

The water dimer has been the subject of a large num
of experimental and theoretical studies. High resolut
microwave,42,38,43–51mid-IR,52–55 and far-IR56–59,39 spectra
have all been measured. From these investigations, the
drogen bond tunneling dynamics occurring in lowK levels
of the ground state and the first excited acceptor bend
state are well characterized,58,60 and several other intermo
lecular vibrations have recently been measured and part
analyzed.61 Several different dynamical methods have
cently been employed to calculate the VRT states co
sponding to a variety of IPS that have been determined

TABLE V. Same as Table III for the ASP1 surface. Ajmax value of 10 has
been used for each monomer.

B2
2 ——— 16.52 (20.17)

E2 ——— 10.81 (20.13)
1135.20 (10.02) A2

2 ———

A1
2 ——— 11.06 (20.10)

E2 ——— 1.20 (10.00)
1125.12 (20.01) B1

2 ———

B1
1 ——— 21.00 (20.16)

E1 ——— 9.45 (20.05)
1124.54 (20.07) A1

1 ———

A2
1 ——— 9.76 (20.05)

E1 ——— 3.19 (10.02)
1115.05 (20.11) B2

1 ———

B1
2 ——— 3.65 (20.03)

E2 ——— 2.57 (20.11)
1103.15 (10.03) A1

2 ———

B2
2 ——— 1.68 (10.02)

E2 ——— 1.05 (20.06)
198.24 (20.02) A2

2 ———

B1
1 ——— 10.41 (20.02)

E1 ——— 7.98 (20.07)
183.18 (20.02) A1

1 ———

A2
1 ——— 7.62 (20.04)

E1 ——— 1.81 (10.01)
172.88 (10.05) B2

1 ———

B2
2 ——— 1.83 (20.01)

E2 ——— 1.07 (20.01)
110.60 (20.02) A2

2 ———

B1
1 ——— 2.47 (20.01)

E1 ——— 1.82 (10.00)
2984.75 (20.18) A1

1 ———
J. Chem. Phys., Vol. 106
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this system. Lewerentz and Watts62 have used QMC to cal-
culate the tunneling splittings and intermolecular vibratio
on the RWK2 surface,63 while Gregory and Clary64 used a
DQMC method to calculate ground state structural proper
with the RWK2, ASP1 and ASP265 surfaces. Althorpe and
Clary66 employed the reversed adiabatic approximat
~RAA! to calculate ground state tunneling splittings and s
eral intermolecular vibrations, using these same three
models in a 5D approximation to the coupled dynami
These authors67 later presented a novel DVR scheme f
multidimensional dynamics calculations, and also applie
to the water dimer VRT dynamics, but again using a 5
fixed R approximation. In addition to these explicit calcul
tions of the VRT dynamics, a large number ofab initio cal-
culations have addressed this system~see Refs. 68, 69 and
references cited therein!, generally calculating the minimum
energy structures with harmonic frequencies and intensit
but one study68 also calculated barriers for the three distin
tunneling pathways for degenerate structural rearrangeme

In this paper, we present converged fully coupled 6

TABLE VI. Same as Table III for the ASP2 surface. Ajmax value of 10 has
been used for each monomer.

B1
1 ——— 14.82 (20.12)

E1 ——— 6.86 (20.06)
1129.22 (20.06) A1

1 ———

E2 ——— 12.60 (20.11)
A1

2 ——— 11.90 (20.15)
1128.19 (10.05) B1

2 ———

B2
2 ——— 14.73 (20.16)

E2 ——— 0.33 (20.01)
1126.41 (10.03) A2

2 ———

A2
1 ——— 15.74 (20.14)

E1 ——— 7.57 (20.10)
1104.45 (10.03) B2

1 ———

E2 ——— 8.94 (20.09)
B2

2 ——— 5.20 (20.02)
196.88 (10.03) A2

2 ———

A2
1 ——— 3.41 (20.01)

E1 ——— 2.78 (10.02)
192.93 (20.05) B2

1 ———

A1
2 ——— 5.40 (20.02)

B1
2 ——— 5.13 (20.04)

187.91 (20.04) E2 ———

B1
1 ——— 11.57 (20.04)

E1 ——— 5.64 (20.08)
186.09 (10.08) A1

1 ———

B2
2 ——— 3.49 (20.03)

E2 ——— 1.69 (20.01)
14.60 (20.01) A2

2 ———

B1
1 ——— 4.00 (20.03)

E1 ——— 3.11 (20.03)
21050.63 (20.18) A1

1 ———
, No. 20, 22 May 1997
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TABLE VII. J50 energy levels obtained from a 5D calculation on the Clementi and coworkers surface
jmax511 and differentkmax values for the Wigner basis set attached to each monomer.

kmax511 kmax59 kmax57

B2
2 —– 2.69 B2

2 —– 2.70 B2
2 —– 2.70

E2 —– 1.60 E2 —– 1.61 E2 —– 1.90
196.50 A2

2 —– 196.49 A2
2 —– 196.19 A2

2 —–

B1
1 —– 5.62 B1

1 —– 5.62 B1
1 —– 5.69

E1 —– 3.17 E1 —– 3.17 E1 —– 2.95
181.18 A1

1 —– 181.19 A1
1 —– 181.23 A1

1 —–

A2
1 —– 1.41 A2

1 —– 1.41 A2
1 —– 1.41

E1 —– 0.45 E1 —– 0.46 E1 —– 0.64
175.03 B2

1 —– 175.02 B2
1 —– 174.66 B2

1 —–

B2
2 —– 1.25 B2

2 —– 1.25 B2
2 —– 1.25

E2 —– 0.66 E2 —– 0.66 E2 —– 0.98
112.48 A2

2 —– 112.48 A2
2 —– 112.17 A2

2 —–

B1
1 —– 1.26 B1

1 —– 1.26 B1
1 —– 1.26

E1 —– 0.79 E1 —– 0.79 E1 —– 0.51
21113.31 A1

1 —– 21113.31 A1
1 —– 21112.93 A1

1 —–
ix
el

ed

t 6
A
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e
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the
rious
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fer-

ge
calculations of the VRT levels of the water dimer for all s
intermolecular vibrations, including the tunneling sub-lev
of all symmetries for bothK50 andK51. Four of the best
existing intermolecular potential surfaces were employ
namely theab initio one of Clementi and co-workers70 and
the semi-empirical RWK263 and ASP65 surfaces. This en-
ables a direct comparison to be made between our exac
SWPS results and those from both the approximate 5D R
treatment66 and the 6D QMC62 and DQMC64,71 results, as
well as with precise experimental measurements. The ou
of the paper is as follows. In Sec. II, we first review th
Hamiltonian operator describing the dimer, and describe
different representations used to perform the calculatio
J. Chem. Phys., Vol. 106
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,
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e

e
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Section III deals with convergence tests with respect to
angular basis set associated to each monomer, for the va
IPS explored in this paper. In Sec. IV, we present the V
spectra of the 6D water dimer corresponding to these dif
ent surfaces. Finally, Sec. V presents our conclusions.

II. METHOD OF CALCULATIONS

A. Hamiltonian operator

We used the Brockset al. rigid rotor formulation72

which gives the Hamiltonian, after the normalization chan
C→R21C, as
TABLE VIII. J50 energy levels obtained from a 5D calculation on the RWK2 surface usingjmax513 and
different kmax values for the Wigner basis set attached to each monomer.

kmax511 kmax59 kmax57

E2 —– 0.09 E2 —– 0.10 E2 —– 0.53
B2

2 —– 0.09 B2
2 —– 0.09 B2

2 —– 0.09
1108.00 A2

2 —– 1107.99 A2
2 —– 1107.91 A2

2 —–

B1
1 —– 0.44 B1

1 —– 0.44 B1
1 —– 0.59

E1 —– 0.29 E1 —– 0.27 A1
1 —– 0.15

1107.45 A1
2 —– 1107.45 A1

2 —– 1107.66 E2 —–

A2
1 —– 0.04 A2

1 —– 0.03 E1 —– 0.38
E1 —– 0.01 E1 —– 0.02 A2

1 —– 0.03
158.82 B2

1 —– 158.81 B2
1 —– 158.71 B2

1 —–

E2 —– 0.06 E2 —– 0.07 E2 —– 0.54
B2

2 —– 0.04 B2
2 —– 0.04 B2

2 —– 0.04
127.50 A2

2 —– 127.48 A2
2 —– 127.42 A2

2 —–

E1 —– 0.09 E1 —– 0.09 B1
1 —– 0.34

B1
1 —– 0.04 B1

1 —– 0.03 A1
1 —– 0.30

21305.65 E1 —– 21305.63 A1
1 —– 21305.45 A1

1 —–
, No. 20, 22 May 1997
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TABLE IX. J50 energy levels obtained from a 5D calculation on the ASP1 surface usingjmax510 and
different kmax values for the Wigner basis set attached to each monomer.

kmax510 kmax58 kmax56

B2
2 —– 1.68 B2

2 —– 1.68 B2
2 —– 1.77

E2 —– 1.05 E2 —– 1.04 E2 —– 0.75
198.24 A2

2 —– 198.25 A2
2 —– 198.89 A2

2 —–

B1
1 —– 10.41 B1

1 —– 10.41 B1
1 —– 10.45

E1 —– 7.98 E1 —– 7.99 E1 —– 8.51
183.18 A1

1 —– 183.18 A1
1 —– 183.15 A1

1 —–

A2
1 —– 7.62 A2

1 —– 7.61 A2
1 —– 7.59

E1 —– 1.81 E1 —– 1.80 E1 —– 1.42
172.88 B2

1 —– 172.89 B2
1 —– 173.34 B2

1 —–

B2
2 —– 1.83 B2

2 —– 1.83 B2
2 —– 1.85

E2 —– 1.07 E2 —– 1.05 E2 —– 0.35
110.60 A2

2 —– 110.61 A2
2 —– 111.41 A2

2 —–

B1
1 —– 2.47 B1

1 —– 2.47 B1
1 —– 2.47

E1 —– 1.82 E1 —– 1.83 E1 —– 2.47
2984.75 A1

1 —– 2984.75 A1
1 —– 2984.62 A1

1 —–
tw

n

o-

s

le

e

n-

n

he
ding
cor-

rease
H52
\2

2mAB

]2

]R2 1Hrot
~A!1Hrot

~B!1V~R,V~A!,V~B!!

1
1

2mABR
2 $J21 j222j–J% ~4!

where

~1! R is the distance between the centers of mass of the
monomersA andB, andmAB their reduced mass,

~2! Hrot
(a) and jA are respectively the rotational Hamiltonia

and angular momentum of monomera,
~3! j5 jA1 jB is the coupled internal rotational angular m

mentum,
~4! J5 j1l the total angular momentum (l is the angular

momentum of the monomer centers of mass!,
~5! andV (a)[(w (a),u (a),x (a)) represents the Euler angle

defining the orientation of monomera in the body fixed
axes.

The parameters used in the calculations are given in Tab

B. Spectral representations

The total spectral representation is written as the dir
product

Banĝ $uSn&,n51,NS%

with theS’s chosen as sine functions:

Sn~R!5A2

L
sin
np~R2Rmin!

L
, ~5!

whereL5Rmax2Rmin is the box size. These provide a co
venient basis set to describe the relativeR motion confined
to the interval@Rmin , Rmax#.

In order to perform the calculations, several differe
angular basesBang are used, which are described below.
J. Chem. Phys., Vol. 106

001¬to¬132.162.161.158.¬Redistribution¬subject¬to¬
o

I.

ct

t

TABLE X. J50 energy levels obtained from a 6D calculation using t
Clementi and co-workers SCF/CI surface. Wigner basis sets correspon
to jmax511 have been used on each monomer. Figures in parentheses
respond to the energy change in the level position associated to an inc
in the basis set size fromjmax21 to its actual value ofjmax.

B2
2 ——— 3.03 (10.01)

E2 ——— 1.39 (10.01)
1140.27 (10.02) A2

2 ———

A2
1 ——— 5.83 (10.02)

E1 ——— 2.16 (10.04)
1136.62 (20.08) B2

1 ———

E1 ——— 0.75 (20.00)
B1

1 ——— 0.75 (20.00)
1129.13 (10.03) A1

1 ———

B1
2 ——— 1.38 (20.00)

E2 ——— 0.40 (10.05)
1114.57 (20.06) A1

2 ———

B2
2 ——— 2.58 (20.00)

E2 ——— 1.77 (10.06)
191.69 (20.03) A2

2 ———

B1
1 ——— 5.08 (20.02)

E1 ——— 3.00 (10.04)
177.31 (20.07) A1

1 ———

A2
1 ——— 0.76 (20.01)

E1 ——— 0.23 (20.05)
169.81 (20.02) B2

1 ———

B2
2 ——— 0.89 (20.00)

E2 ——— 0.52 (10.01)
116.72 (20.02) A2

2 ———

B1
1 ——— 0.76 (20.00)

E1 ——— 0.65 (20.01)
21060.08 (20.12) A1

1 ———
, No. 20, 22 May 1997
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TABLE XI. Same as Table X for the RWK2 surface. Ajmax value of 12 has
been used for each monomer.

A1
2 ——— 0.21 (20.03)

B1
2 ——— 0.11 (10.03)

1168.41 (20.07) E2 ———

A2
1 ——— 0.32 (20.00)

E1 ——— 0.11 (10.01)
1156.43 (20.02) B2

1 ———

B1
2 ——— 0.14 (20.00)

E2 ——— 0.01 (20.01)
1123.86 (20.09) A1

2 ———

E2 ——— 0.14 (10.01)
B2

2 ——— 0.09 (20.00)
1106.23 (20.05) A2

2 ———

B1
1 ——— 0.48 (20.00)

E1 ——— 0.35 (20.01)
1104.76 (20.05) A1

1 ———

A2
1 ——— 0.06 (20.02)

B2
1 ——— 0.02 (20.02)

159.10 (20.10) E1 ———

E2 ——— 0.06 (20.05)
B2

2 ——— 0.05 (10.00)
127.01 (20.02) A2

2 ———

E1 ——— 0.11 (10.07)
B1

1 ——— 0.04 (10.00)
21215.74 (20.08) A1

1 ———

TABLE XII. Same as Table X for the ASP1 surface. Ajmax value of 10 has
been used for each monomer.

A2
1 ——— 13.52 (20.01)

E1 ——— 3.52 (10.01)
1111.98 (20.07) B2

1 ———

B1
2 ——— 2.96 (20.02)

E2 ——— 0.70 (20.07)
1103.22 (10.02) A1

2 ———

E2 ——— 2.86 (20.07)
B2

2 ——— 1.86 (10.02)
191.39 (20.01) A2

2 ———

B1
1 ——— 8.98 (20.03)

E1 ——— 7.55 (20.06)
175.00 (20.02) A1

1 ———

A2
1 ——— 4.94 (20.03)

E1 ——— 0.76 (10.03)
170.96 (20.00) B2

1 ———

B2
2 ——— 1.47 (20.00)

E2 ——— 0.97 (20.01)
113.31 (20.01) A2

2 ———

B1
1 ——— 1.80 (20.01)

E1 ——— 1.80 (10.01)
2923.74 (20.13) A1

1 ———
J. Chem. Phys., Vol. 106

wnloaded¬27¬Jun¬2001¬to¬132.162.161.158.¬Redistribution¬subject¬to¬
1. The uncoupled basis set Bunc

This basis is defined as the direct product of Wign
bases$u j a ,ka ,va&% on each monomer times a Wigner bas
$uJ,V,M &% for the total angular momentum:

Bunc5$u j A ,kA ,vA&% ^ $u j B ,kB ,vB&% ^ $uJ,V,M &%.

It will only be used as an intermediate between the coup
representation and the grid~see Sec. II C!.

Expressed in the uncoupled basis setBunc, the wave
function displays many zero elements, depending on thJ
value. Figure 2 represents the case forJ51. In this figure,
thevA andvB indices run between2 j A and j A , and2 j B
and j B respectively. Due to the largej A and j B values used in
order to reach convergence, the proportion of null eleme
is very high~up to 96% whenj A5 j B513 andJ50). This
sparsity has been taken into account as only the non-
elements were stored.

TABLE XIII. Same as Table X for the ASP2 surface. Ajmax value of 10 has
been used for each monomer.

A1
2 ——— 14.17 (20.11)

E2 ——— 10.94 (20.10)
1126.59 (10.01) B1

2 ———

B1
1 ——— 19.02 (20.12)

E1 ——— 9.78 (10.03)
1121.70 (20.08) A1

1 ———

B2
2 ——— 17.25 (20.10)

E2 ——— 3.11 (20.01)
1117.25 (20.01) A2

2 ———

A2
1 ——— 15.59 (20.09)

E1 ——— 3.81 (20.05)
1102.34 (20.02) B2

1 ———

A2
1 ——— 2.47 (20.02)

E1 ——— 1.65 (10.01)
189.34 (20.04) B2

1 ———

E2 ——— 10.88 (20.08)
B2

2 ——— 6.00 (20.01)
188.16 (20.00) A2

2 ———

A1
2 ——— 7.07 (20.02)

B1
2 ——— 7.07 (20.03)

185.93 (20.03) E2 ———

B1
1 ——— 10.99 (20.02)

E1 ——— 7.76 (20.06)
174.09 (10.02) A1

1 ———

B2
2 ——— 3.31 (20.02)

E2 ——— 1.67 (20.01)
16.31 (20.01) A2

2 ———

B1
1 ——— 3.54 (20.01)

E1 ——— 3.24 (20.03)
2981.65 (20.10) A1

1 ———
, No. 20, 22 May 1997
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2. The coupled basis set Bcpl

In order to contract this angular basis, one can define
coupled basis set

Bcpl5$u j Aj BkAkB ; jV&uJ,V,M &%,

where

TABLE XIV. J51 energy levels obtained from a 6D calculation using t
Clementi and coworkers surface. Wigner basis sets correspondin
jmax510 have been used on each monomer.

A2
1 ——— 2.58

E1 ——— 1.71
191.77 B2

1 ———

B1
1 ——— 3.73

E1 ——— 1.68
183.36 A1

1 ———

B2
2 ——— 2.12

E2 ——— 0.72
182.06 A2

2 ———

A2
1 ——— 2.12

E1 ——— 0.72
182.06 B2

1 ———

A1
2 ——— 5.10

E2 ——— 2.96
177.39 B1

2 ———

B2
2 ——— 0.77

E2 ——— 0.28
168.92 A2

2 ———

B2
2 ——— 0.72

E2 ——— 0.18
119.70 A2

2 ———

A2
1 ——— 0.72

E1 ——— 0.18
119.70 B2

1 ———

A2
1 ——— 0.89

E1 ——— 0.51
116.74 B2

1 ———

B1
1 ——— 0.94

E1 ——— 0.44
112.60 A1

1 ———

A1
2 ——— 0.94

E2 ——— 0.44
112.59 B1

2 ———

A1
2 ——— 0.76

E2 ——— 0.66
21059.57 B1

2 ———
J. Chem. Phys., Vol. 106

wnloaded¬27¬Jun¬2001¬to¬132.162.161.158.¬Redistribution¬subject¬to¬
eu j Aj BkAkB ; jV&5 (
vA1vB5V

^ j Aj BvAvBu j Aj BjV&

3u j A ,kA ,vA&u j B ,kB ,vB&, ~6!

u j A ,kA ,vA&u j B ,kB ,vB&

5 (
j5u j A2 j Bu

j5 j A1 j B

^ j Aj BvAvBu j Aj BjV&u j Aj BkAkB ; jV&, ~7!

^ j Aj BvAvBu j Aj BjV& being a Clebsch–Gordan coefficien

to
TABLE XV. Same as Table XIV for the ASP1 surface. Ajmax value of
10 has been used for each monomer.

E1 ——— 2.86
A2

1 ——— 1.86
191.39 B2

1 ———

A1
2 ——— 5.42

E2 ——— 2.50
183.07 B1

2 ———

B1
1 ——— 5.41

E1 ——— 2.49
183.07 A1

1 ———

A2
1 ——— 5.21

E1 ——— 0.01
181.94 B2

1 ———

B2
2 ——— 5.21

E2 ——— 0.62
181.94 A2

2 ———

A1
2 ——— 8.98

E2 ——— 6.94
175.00 B1

2 ———

B2
2 ——— 4.93

E2 ——— 0.76
170.96 A2

2 ———

B2
2 ——— 1.35

E2 ——— 0.14
118.13 A2

2 ———

A2
1 ——— 1.35

E1 ——— 0.14
118.13 B2

1 ———

A2
1 ——— 1.47

E1 ——— 0.97
113.31 B2

1 ———

B1
1 ——— 2.14

E1 ——— 1.06
111.61 A1

1 ———

A1
2 ——— 2.14

E2 ——— 1.06
111.61 B1

2 ———

A1
2 ——— 1.80

E2 ——— 1.79
2923.35 B1

2 ———
, No. 20, 22 May 1997
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This representation is used to compute theHrot
(A) , Hrot

(B) , and
centrifugal1Coriolis terms as will be shown later on.

3. The symmetry adapted bases Bsym
(G)

The G16 permutation-inversion symmetry of th
(H2O)2 complex allows us to subdivide the angular basis
into 10 symmetry adapted bases, corresponding to the di
ent irreducible representations~Irrep! G ’s. The way to con-
struct symmetry adapted vectorsu j Aj BkAkB ; jV,G& from the
coupled basis vectors,

u j Aj BkAkB ; jV,G&

5c1
~G!u j Aj BkAkB ; jV&1c2

~G!u j Bj AkBkA ; j V̄&

1c3
~G!u j Aj Bk̄Ak̄B ; j V̄&1c4

~G!u j Bj Ak̄Bk̄A ; jV&, ~8!

wherek̄[2k, is given in Table II.

TABLE XVI. Same as Table XIV for the ASP2 surface. Ajmax value of
10 has been used for each monomer.

A2
1 ——— 6.00

E1 ——— 1.47
188.15 B2

1 ———

A1
1 ——— 7.07

B1
1 ——— 7.06

185.93 E1 ———

A1
1 ——— 6.65

B1
1 ——— 0.60

182.92 E2 ———

B1
1 ——— 6.65

A1
1 ——— 0.61

182.90 E1 ———

A1
2 ——— 10.97

E2 ——— 7.76
174.09 B1

2 ———

B2
2 ——— 3.23

E2 ——— 0.92
112.86 A2

2 ———

A2
1 ——— 3.23

E1 ——— 0.92
112.86 B2

1 ———

B1
1 ——— 4.01

E1 ——— 2.36
19.46 A1

1 ———

A1
2 ——— 4.01

E2 ——— 2.36
19.46 B1

2 ———

A2
1 ——— 3.31

E1 ——— 1.67
16.31 B2

1 ———

A1
2 ——— 3.54

E2 ——— 3.24
2981.25 B1

2 ———
J. Chem. Phys., Vol. 106

wnloaded¬27¬Jun¬2001¬to¬132.162.161.158.¬Redistribution¬subject¬to¬
t
r-

In the following, we will use$un&G ,n51,NG% as a short-
hand notation for the elements of the symmetry adapted b
corresponding to the IrrepG, and $u i &v ,i51,Nv% for the
elements of the coupled basis set.

C. Grid representation

The different spectral representations defined just ab
allows one to easily compute the effect of the various pa
of the Hamiltonian operator, except for the potential. T
complete scheme will be presented in the next subsect
Now we discuss how the potential term is handled.

The method to evaluate the potential term consists
using a general pseudospectral method as defined
Friesner27 for the case of electronic structure calculation
This method resorts to an intermediate grid representat
tantamount to making use of a quadrature rule in or
to compute the matrix elements in the spectral represe
tion. The potential function depends on the 6 coordina
$u (A),x (A),u (B),x (B),w5w (A)2w (B),R%, where (w (A),u (A),
x (A)) represents the three Euler angles orienting mono
a in the BF frame. The grid representation corresponds
the set of values$Caqbsgp% taken by the wave functionC on
the 6D grid$ua

(A)3xq
(A)3ub

(B)3xs
(B)3wg3Rp%.

The most convenient basis set to start from in order
transform to the grid representation is the uncoupled
Bang^ $uSn&,n51,NS%. That is, starting from a wave func
tion expressed as

uCJM&5 (
j A ,kA , j B ,kB ,vA1vB5V,n

C j AkAvAj bkBvBn
JM

3u j A ,kA ,vA&u j B ,kB ,vB&uJ,V,M &uSn&, ~9!

one wants to compute its amplitudes$Caqbsgn
JM % on the grid.

This spectral-to-grid transform is performed in several s
cessive steps.

The first step consists in switching from the radial ba
set $uSn&,n51,NS% to a grid $Rp5Rmin1pDR% by means of
the orthogonal collocation matrix73

Upn
~R!5A 2

NR11
sin

npp

NR11
. ~10!

It should be recalled here that we are using a numberNR of
grid points larger than the numberNS of sine functions. This
matrix allows one to define the intermediate representa
$C j AkAvAj bkBvBp

JM % by means of the transformation

C j AkAvAj BkBvBp
JM 5(

n
Upn

~R!C j AkAvAj BkBvBn
JM . ~11!

The inverse~grid to spectral! transform is performed by
means of the inverse operation

C j AkAvAj BkBvBn
JM 5(

n
~Unp

~R!!1C j AkAvAj BkBvBp
JM . ~12!

The second step deals with the angular to Euler g
transformation. One of us32 recently showed how one ca
, No. 20, 22 May 1997
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FIG. 3. Energy level diagrams obtained from experiments, the Clementi SCF/CI, the RWK,2 the ASP1 and ASP2 surfaces.
ho
transform from a Wigner basis set$Dmk
j (w,u,x)% to a 3D

grid $wg3ua3xq)% associated with the Euler angles~the
reader is referred to this paper for more details on the met
which will be briefly recalled below!. For a wave function
specified by its components on a Wigner basis set

c5(
jkm

c jkmDmk
j , ~13!
J. Chem. Phys., Vol. 106

wnloaded¬27¬Jun¬2001¬to¬132.162.161.158.¬Redistribution¬subject¬to¬
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the method first performs a Legendre transform

cakm5(
j
Ra j

~m,k!c jkm , ~14!

whereRa j
(m,k) is the orthogonal matrix
, No. 20, 22 May 1997
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Ra j
~m,k!5A2 j11

2
dmk
j ~cosua!Ava, ~15!

cosua andva being respectively the abscissae and weig
of a Nu points Gauss–Legendre quadrature, followed b
double inverse Fourier transform overw andx:

$caqg%5F wx
21$cakm%. ~16!

The global inverse transform~grid→spectral! is performed
by first direct Fourier transforming

$cakm%5F wx$caqg%, ~17!

followed by the reverse Legendre transform

c jkm5(
a

Ra j
~m,k!cakm. ~18!

This scheme has to be adapted to the case consid
here, as the potentialV depends only on thew5wB2wA

angle, and not on F5wB1wA. Consequently, the
V5vB1vA index is a good quantum number with respe
to V, as can be seen from the equivalence

eivAwAeivBwB5e1/2~VF1vw!, ~19!

wherev5vB2vA . It has been shown by Halberstadt
74 that

due to symmetry, the integration overw can be made inde
pendent of theF variable, and running from 0 to 2p. It
results that the following integral

1

4p2E
0

2p

dwAE
0

2p

dwBe
2 i ~vAwA1vBwB!

3V~wB2wA!ei ~vA8wA1vB8wB! ~20!

can be recast into the equivalent one

FIG. 4. J50 tunneling splittings obtained from experiments, the Cleme
SCF/CI, the RWK2, the ASP1 and ASP2 surfaces.
J. Chem. Phys., Vol. 106
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dVV8

1

2pE0
2p

dwe2 1/2vwV~w!e1/2v8w. ~21!

The transformation from the angular spectral representa
to the five-dimensional grid can thus be realized by the f
lowing successive operations, performed for every va
V5vB1vA compatible with theJ value:

~i! transform to the$ua
A3ub

B% grid

CakAbkBvp
JMV

5 (
j Aj B ,vB1vA5V

Ra j A

~vA ,kA!Rb j B

~vB ,kB!
C j AkAvAj BkBvBp

JM , ~22!

~ii ! transform to the$xq
(A)3xs

(B)3fg% grid by a 3D inverse
Fourier transform

$Caqbsgp
JMV %5F xAxBw

21 $CakAbkBvp
JMV %. ~23!

Going back to the$u j A ,kA ,vA&u j B ,kB ,vB&% representa-
tion is realized by applying the inverse transforms in reve
order, i.e.,~ii ! then ~i!.

D. The split Hamiltonian formulation

This is basically the same scheme as the one used
viously by one of us~C.L.! for the Ar2H2O complex,32 the
differences coming only from the number of terms of t
Hamiltonian operator. It consists in repetitively applyingH
on the wave function expressed in theBsym

(G)
^ $uSn&% basis set

i

FIG. 5. Same as Fig. 4 for totalJ51.
, No. 20, 22 May 1997
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FIG. 6. Comparison of low-lying intermolecular vibrations as obtained from an exact 6D calculation for the different potential energy surfaces:~a! first excited
A1

1 state;~b! first excitedB2
1 state;~c! first excitedA2

2 state;~d! first excitedA1
2 state;~e! second excitedB2

1 state;~f! first excitedA1
2 state.
als
FIG. 7. Same as Fig. 6 for the dissociation energyD0.
J. Chem. Phys., Vol. 106
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FIG. 8. Interchange tunneling splitting calculated for the four potenti
with the exact SWPS~black bars! or approximate RAA~white bars! method,
as compared to the experimental value.
, No. 20, 22 May 1997
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FIG. 9. Same as Fig. 8 for the acceptor tunneling splitting.

FIG. 10. Comparison of results, using the RWK2 surface, as obtained
the harmonic approximation, the Lewerenz and Watts~Refs. 62! QMC cal-
culations, the Althorpe and Clary~Ref. 66,67! RAA calculations, and our
6D SWPS calculations~a! O–O torsion frequencyn12 ; ~b! acceptor bend
frequencyn8; ~c! acceptor rotationn11 .
J. Chem. Phys., Vol. 106
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uCJMG&5 (
nVn

CnVn
JMGun,V&uJVM &uSn& ~24!

in order to propagate the Lanczos scheme. The choice o
symmetry adapted basis results from the fact that it con
tutes the most compact basis for expressing the Lanczos
tors$uun&%. We now briefly recall the Lanczos algorithm, an
then discuss the different terms into which the Hamilton
was split, as well as their associated representations.

Starting from some initial vectoruu0&, the Lanczos
algorithm36 recursively generates the Krylov spac
$uun&n50,NL%

bn11uun11&5~H2an!uun&2bnuun21&, ~25!

wherean5^unuHuun& and bn115^un11uHuun& are respec-
tively the diagonal and off-diagonal terms ofH in this new
basis set.

In order to perform the recursions,H as given by Eq.~4!
has been split into 4 terms, namely

H5TR1HAB1Hcc1V, ~26!

where each term has been handled as shown be

m

FIG. 11. Comparison of results, using the RWK2 surface, as obtained f
DQMC ~black bars! or SWPS ~white bars! calculations:~a! interchange
tunneling splitting;~b! acceptor tunneling splitting;~c! dissociation energy
D0.
, No. 20, 22 May 1997
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1. Radial kinetic energy T R

This term, TR52\2/2mAB]2/]R2, is diagonal in the
initial representation~Eq. 24!, resulting in the effect

TRuCJMG&5 (
nVn

~np\!2

2mAB
CnVn

JMGun,V&uJVM &uSn&. ~27!

2. Monomer rotational terms H AB5HA1HB

The rotational kinetic energy termHa displays analytic
expressions in a Wigner basis set$u jkv&% given by

Hau jkv&5$ 1
2~Bx1By!~ j ~ j11!2k2!1Bzk

2%u jkv&

1 1
4 ~Bx2By!F jk

1u jk12v&

1 1
4 ~Bx2By!F jk

2u jk22v&, ~28!

where F jk
65@ j ( j61)2k(k61)]1/2@ j ( j61)2(k61)(k6

2)]1/2. In order to exploit the above relations, one has
switch to the coupled basis setBcpl

uCJMG&5 (
j AkAj BkBjVn

C j AkAj BkBjVn
JMG u j Aj BkAkB ; jV&

3uJ,V,M &uSn&. ~29!

As Eq. ~28! only involves changes in thek index, theHa

terms can be directly applied in this representation.

3. Coriolis and centrifugal term H CC

This term,HCC51/2mABR
2$J21 j222j–J% also displays

simple analytic expressions in the coupled angular basis

HCCu jV&uJ,V,M &

5@J~J11!1 j ~ j11!22V2#u jV&uJ,V,M &

1CJV
1 Cj V

1 u jV11&uJ,V11,M &

1CJV
2 CjV

2 u jV21&uJ,V21,M &, ~30!

whereCjV
6 5@ j ( j61)2V(V61)#1/2. The 1/2mABR

2 factor
in front of HCC is handled by switching to the$Rp% grid,
where it is diagonal, by means of Eq.~11!

$C j AkAj BkBjVn
JMG %→$C j AkAj BkBjVp

JMG % ~31!

4. Potential term V

As discussed before, this last term is diagonal in the
grid times the total angular momentum representat
$ua

(A)3xq
(A)3ub

(B)3xs
(B)3Fg3Rp% ^ $uJ,V,M &%, which can

be reached, as discussed in Sec. II C, by means of
~22–23!

$C j AkAj BkBjVp
JMG %→$Caqbsgp

JMGV .% ~32!

Once a term ofH has been applied in its own represe
tation, the result is transformed back to the symmetriz
times the sine functions basis setBsym^ $uSn&% in which the
Lanczos vectors are expressed.
J. Chem. Phys., Vol. 106
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III. ANGULAR BASIS CONVERGENCE TESTS

In this section, we study the size of the angular basis s
required in order to converge the calculations. This is re
ized by computing the energy levels at a fixed relative se
ration R* for increasing angular basis sizes until conve
gence is reached. We used forR* the value (R*55.6242
a.u.! close to the equilibrium geometry of the dimer. As w
be shown in the next section, such fixedR calculations are
much faster than full 6D ones including theR coordinate.
Four different water dimer potential energy surfaces are s
cessively studied, namely the Clementi and co-workers’70

the RWK263 and the ASP1 and ASP265 surfaces. These con
vergence tests are then used in the next section. In the
series of calculations presented, no restriction has been
plied to the uncoupled angular basis set, except for the m
mum j value jmax allowed for each monomer. Th
kmax5jmax constraint will then be relaxed in subsequent c
culations.

A. Unrestricted angular basis

In this case, the angular basis set for each mono
reads as

$u j a ,ka ,va&,2 j a<va< j a ;2 j a<ka< j a ;0< j a< jmax%.

The convergence tests consist of increasing thisjmax value.
The angular basis set is therefore specified by a single
rameter,jmax. The grid representation of the angular wa
function involves other parameters, namely the numbers
grid points associated with each of the five Euler angles.
found by experimentation that using 2–3 more poin
than the number of functions associated with an angle
sures convergence of the results with respect to the b
definition. For example, theu grid dimension was set to
Nu5jmax13, while for the x and w grids Nx5Nw

>(2 jmax11)12. This latter inequality reflects the fact tha
the x andw angles were handled by fast Fourier transfo
~FFT! routines which restrict the allowed dimensions.

As described so far, this scheme would gener
huge grid sizes, of dimension of the order of (jmax
13)2@(2 jmax11)12]3. The vast majority of these grid
points are associated with geometries corresponding to
high potential energies, close to or above the dissocia
threshold (V50). At these points, the wave function has
be negligible for bound states localized near the bottom
the well ~located at circa21800 cm21). For our present
concerns, one can thus safely ignore these points and se
corresponding amplitudes to zero when transforming to
grid representation. In practice, we have used an ene
threshold ofVthres52300 cm21 for the potential, restricting
the grid definition to the points located below this thresho
The results for all four potential energy surfaces are given
Tables III–VI, and are discussed now.

These tables are organized in such a way as to dis
the acceptor and interchange tunneling splittings, e
though those quantities should be computed from a 6D
culation ~see Sec. IV!. Only the levels converged to within
, No. 20, 22 May 1997
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0.01 cm21 with respect to the Lanczos scheme have b
reported.

In each table, the different columns display respectiv
the ground (A1

1) energy, the relative position of each acce
tor tunneling manifold band, the associated symmetry s
levels, and finally their relative energies with respect to
band origin. The figures in parentheses provide an estim
of the convergence with respect to the angular basis se
specified byjmax. They correspond to the energy change
the level position associated to an increase in the basis
size from jmax21 to its actual value ofjmax. It results from
these tables that largejmax values have to be used (>10), in
order to converge the energy levels within a few hundred
of a wave number. It should be noticed that a particula
high value,jmax513, had to be used for the RWK2 surface
order to converge the symmetry pattern for each acce
tunneling manifold.

B. Restricted angular basis

In order to test the actual angular basis required for c
vergence of the splittings, we have relaxed thekmax5jmax
constraint in a second series of calculations. More spe
cally, keeping jmax at the values precedently obtained, w
have reduced the maximum valuekmax allowed for thek
index. The results, displayed in Tables VII–IX for three
the surfaces, show the following trends:

~i! the positions of the degenerate levels (E6) start to
significantly change forkmax<jmax22,

~ii ! the acceptor tunneling splittings are correctly d
scribed down tokmax.jmax24,

~iii ! for the interchange tunneling splittings, thekmax val-
ues can safely be further reduced tojmax25 without
noticeable relative changes.

IV. RESULTS

A. Assessing the model potentials

The results of the fully converged 6D calculations of t
water dimer VRT states are presented in Tables X–X
~The expensiveJ51 calculations were not performed for th
RWK2 surface as theJ50 results are already in poor agre
ment with experiments.!

Energy level diagrams showing the acceptor and in
change tunneling splittings in theJ50,1 andK50,1 states
of the vibrational ground state corresponding to each of
four potentials examined in this work are given in Fig.
together with the experimental energy levels deduced fr
microwave and far-IR spectroscopy.It is immediately clear
upon inspecting these diagrams that none of the poten
surfaces examined in this work can describe the eigenst
of the water dimer at even a qualitatively correct level
detail. To illustrate the nature of the discrepancies in det
bar graphs of the acceptor and interchange tunneling s
tings and rotational constants~B1C!/2 calculated by the
SWPS method for each of the four potentials are prese
along with the experimental results in Figs. 4 and 5.

The Clementi and co-workers self-consistent fie
J. Chem. Phys., Vol. 106
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configuration interaction~SCF/CI! potential does very well
in reproducing the experimental interchange splitting, b
badly overestimates the effects of acceptor tunneling. T
RWK2 potential, widely regarded as the best effective wa
dimer surface, drastically underestimates~by an order of
magnitude! the interchange splitting and overestimates
acceptor splitting by a factor of 3. It is also the most anis
tropic surface, requiring the largest angular basis, as
scribed in the previous section. The ASP1 surface ba
overestimates the interchange splitting and is somewhat
for the acceptor tunneling, whereas ASP2 exaggerates
interchange splitting by a factor of 5 and underestimates
acceptor splitting. Interestingly, the only difference betwe
these two highly detailed distributed multipole potent
models65 with Tang–Toennies damping functions is in th
treatment of dispersion, with ASP2 incorporating the exte
sive results of Rijks and Wormer,75,76 while ASP1 uses the
perturbation theory results of Szczesniacet al.77 This illus-
trates the extreme sensitivity of the VRT dynamics to t
details of the dispersion interactions, which is perhaps s
prising since the intermolecular attraction is dominated
electrostatics in all of these models.

On the other hand, thestructureof the dimer expressed
in the rotational constants is quite well represented by
four potentials. This illustrates an important point:The struc-
ture of a hydrogen bonded complex does not provide a s
sitive probe of the intermolecular potential; it is therefore
limited use by itself for characterizing intermolecular force
being a necessary but not sufficient constraint.The tunneling
splittings and~as we shall see! intermolecular vibrations,
however, provide anexactingmeasure of the potential en
ergy, and can therefore serve as a direct route for their
perimental determination. This has been shown previou
for the simpler cases of Ar–HCl,3 Ar–H2O,

12 and
Ar–NH3.

13 Not surprisingly, the four water dimer potentia
examined here differ widely in the representation of the
termolecular vibrations, as shown in Fig. 6, and differ co
siderably in the values they produce for the ground st
~vibrationally averaged! dissociation energy~Fig. 7!, as well
as for the ground state tunneling splittings.

B. VRT Dynamics: 5D vs 6D treatments

Due to the difficulties inherent in carrying out a com
pletely rigorous treatment of the intermolecular dynamics
curring in weakly bound complexes, usually involving se
eral fully coupled degrees of freedom, it has been custom
to employ various approximate methods for this purpose.
those cases which have been examined in detail,
Ar–H2O,

12 and Ar–NH3,
13 it has been shown that the exclu

sion of the radial motion from the explicitly coupled dynam
ics leads to serious errors when angular-radial coupling
the potential mixes stretching and bending states. It is th
fore important to explore the consequences of adiabatic
separating, or simply fixingR in calculations of the water
dimer VRT dynamics.

The most common of these is the reversed adiabatic
, No. 20, 22 May 1997
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proximation ~RAA!, in which the center of mass distanc
(R) is held fixed during a fully coupled calculation with th
Euler angles, and the calculation repeated at a seriesR
values. The resulting one-dimensional radial Schro¨dinger
equation is then solved for each angular eigenstate. For
water dimer, this approach involves explicitly solving a fiv
dimensional angular Hamiltonian, which can be done e
ciently in a basis of Wigner functions. Althorpe and Cla
have published two 5D treatments of the VRT dynamics
the water dimer, one employing a direct diagonalization
three values of R and subsequent computation of the ra
eigenvalues for each symmetry66 and the other a novel DVR
approach67 at a fixed value ofR.

In Figs. 8 and 9, we compare our rigorous SWPS res
with the RAA calculations of Althorpe and Clary.66 In these
graphs, the exact 6D calculations are given in black, wh
the white bars represent the results of approximate
~RAA! calculations~see below!. From these figures, we ca
see that the two calculations give similar results for
J50 interchange splittings, but widely different values f
the acceptor splittings. Our energy levels were obtained w
considerably larger basis sets~up to j513 on both mono-
mers and including all relevantk values! and yielding fully
converged~to 0.01 cm21) energies, and differ significantly
from theirs. In the RAA calculations, the basis was trunca
at jmax58 andkmax54 for both monomers~being of dimen-
sion 3300 for nondegenerate representations and about
times larger for theE states! and incorporated the couple
states approximation~i.e., treatingK as a conserved quan
tity!. Moreover, memory restrictions limited their calcul
tions toK50 andJ50. Energy level convergence to withi
0.5–1.0 cm21 was claimed in their study. Comparison b
tween their direct diagonalization FBR method and th
DVR approach implied a combined error from truncation
the potential expansion and convergence not excee
2 cm21 for the first two levels of each symmetry and le
than 0.2 for the ground state tunneling splittings. Hence
least part of the difference between our SWPS results and
RAA calculations is in the level of convergence, but t
principal difference lies again in the fact that theR motion
must be rigorously included in the dynamics if truly quan
tative results are to be obtained.

C. VRT dynamics: WDVR vs quantum Monte Carlo
methods

Watts and co-workers14,15,62 have pioneered the use o
diffusion quantum Monte Carlo methodology for calculati
properties of hydrogen bonded clusters,14,15 with extensive
applications to the water dimer. This approach permitte
fully coupled treatment of the VRT dynamics, ideally yiel
ing exact~for a given potential! results for the ground state
Calculations of the properties of excited states are not
ously difficult to carry out, however, due to the requireme
for accurate knowledge of the nodal surfaces of the exc
state wave function. Nevertheless, Watts and co-work
have published calculations for both the ground state and
J. Chem. Phys., Vol. 106
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excited vibrational states~both intra- and inter-molecular!
employing the QMC method. Recently, Gregory and Clar17

have achieved much higher accuracy for ground state p
erties of the water dimer with a combination of correlat
sampling techniques and the rigid body diffusion quant
Monte Carlo~RBDQMC! approach developed by Buch.18 By
employing exact nodal constraints derived from the mole
lar symmetry group, they were able to efficiently compu
the tunneling splittings in the ground vibrational state of t
dimer. In Figs. 10 and 11, we compare our SWPS res
against those obtained with QMC methods for both grou
state properties and for several excited intermolecular vib
tional states, using the RWK2 potential surface. It is imm
diately apparent that the excited state QMC results62 are very
inaccurate, again due to the severe problems associated
rigorously specifying the nodal constraints. The potentia
more accurate RBDQMC results for the ground state tunn
ing splittings are in good agreement with the SWPS resu

D. The intermolecular vibrations

Values calculated with the SWPS method for the low
~below 150 cm21) excited intermolecular vibrations are pre
sented in Fig. 9. As the eigenvectors were not computed
this work, we are not currently able to specify the nature
these vibrations. Lewerenz and Watts62 did so for a few low-
lying vibrations in their QMC treatment~see Fig. 11!, but as
we have discussed above, their results are highly inaccu
due to the problems inherent in specifying the nodal surfa
for these excited eigenstates. It is clear from their work, ho
ever, that the intermolecular vibrations of the water dim
cannot be described as normal modes, and generally inv
all six large amplitude coordinates. In Fig. 11, we compa
the normal mode frequencies calculated with the RWK2
tential by Coker and Watts,15 and a set of harmonic frequen
cies from a recentab initio calculation.69 We see that these
disagree by as much as a factor of 2 for some low-ly
excited states.

V. DISCUSSION

The rigorous 6D SWPS results presented here for
water dimer VRT dynamics permit a number of general co
clusions to be drawn regarding previous work and futu
directions. First, while the approximate 5D methods can
be used for quantitative comparison of potential surfac
they may be useful in the initial stages of an IPS fit to sp
troscopic data. The exciting new advances in DQMC me
odology may ultimately be combined with SWPS for th
purpose, as these are cheaper and may allow non-pair
contributions to the IPS of large clusters to be added i
systematic way78 as recently shown by Gregory an
Clary.17,64,71 Specifically, they showed that by adding th
iterated many-body induction and three-body dispersion
teractions to the ASP pair potential, they were able to rep
duce thestructuresof the water trimer, tetramer, pentam
, No. 20, 22 May 1997
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and hexamer recently determined by far-IR las
spectroscopy.4 It remains to be seen whether these ma
body potentials can reproduce the VRTdynamicsin these
systems, however.

The work presented here has also demonstrated
none of the water dimer potentials examined so far - con
ered the best available - is capable of describing the tun
ing dynamics or intermolecular vibrations observed by h
resolution spectroscopy at an acceptable level of accur
Hence, there is a clear motivation to determine a new IPS
the water dimer by least squares inversion of VRT data
has been accomplished for simpler systems.12,5,13 Such ef-
forts will be greatly facilitated by the SWPS formulatio
presented here.
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