An investigation of three-body effects in intermolecular forces. III. Far infrared laser vibration-rotation-tunneling spectroscopy of the lowest internal rotor states of Ar_2HCI

M. J. Elrod, J. G. Loeser, and R. J. Saykally Department of Chemistry, University of California, Berkeley, California 94720

(Received 20 October 1992; accepted 17 December 1992)

The c-type intermolecular out-of-plane bend of Ar_2HCl has been observed at 45.2 cm⁻¹, completing the high resolution far infrared measurements of the three lowest-lying Ar_2HCl bending states which correlate to the j=1 internal rotational state of the HCl monomer. The rotational and nuclear quadrupole hyperfine structures indicate the existence of a Coriolis perturbation. The perturbing state is postulated to be a heavy-atom stretching overtone that is very nearly degenerate with the out-of-plane bend. A partial reassignment of the previously reported [J. Chem. Phys. 95, 3182 (1991)] Ar_2HCl in-plane bend is presented and a treatment of Coriolis effects between the in-plane and Σ bends is discussed. Comparison with dynamically rigorous calculations presented in the accompanying paper [J. Chem. Phys. 98, 5337 (1993)] indicate substantial three-body contributions to the intermolecular potential, which should be determinable from the data presented in this paper.

INTRODUCTION

The investigation of many-body effects in intermolecular interactions has assumed increasing prominence as modern experimental and computational technology has progressed such that it is now possible to begin to address the details of condensed phases of matter. Although the literature of the last several decades is replete with both experimental and theoretical studies of many-body effects, modern ab initio calculations have shown that most such work has seriously underestimated the complexity of the problem. For example, Chalasinski and co-workers have undertaken several ab initio (supermolecular Møller-Plesset perturbation theory) studies of three- and fourbody effects in several van der Waals clusters and have found that the size and form of many-body terms in the potential are strongly system dependent. These calculations have also shown that hydrogen-bonded systems [such as (H₂O)₃, (HF)₃, (HCl)₃, and (NH₃)₃] display large three-body effects ($\sim 10\%$ of pairwise contributions) and that these effects are well approximated by a single term in the perturbation expansion.^{1,2} Conversely, more weakly bound systems (such as Ar₃, Ar₂H₂O, and Ar₂HCl) are expected to show smaller three-body effects that cannot be well approximated by single terms in the perturbation expansion,³⁻⁵ thus potentially making such effects more difficult to determine. Cooper and Hutson⁶ have investigated representative models for three-body dispersion, induction, and short-range forces for the Ar₁ system in an effort to determine the effects of these interactions on the molecular energy levels.

The experimental and theoretical techniques presently being used to address many-body forces have been successfully applied to several prototypical binary systems: i.e., ArHCl, ArHF, ArH₂O, and ArNH₃.⁷⁻¹⁰ Such binary van der Waals complexes have been the subject of intense experimental study by high resolution microwave,¹¹ far infrared,¹² and near infrared¹³ spectroscopy. In particular, the measurement of the low-lying intermolecular vibrations of these complexes has proven to be the most important experimental data, since these motions sample an extensive region of the intermolecular potential energy surface. Therefore, these data, in combination with efficient computational techniques, have permitted the determination of accurate global intermolecular potential surfaces for several of these systems. Although the qualitative details of these surfaces have been firmly established, their quantitative accuracy is critically important for the purpose of the determination of many-body forces, as these effects will be manifested as small deviations from pairwise additivity. Rare-gas dimers clustered with the hydrogen halides are an obvious choice for the study of three-body effects since the rare-gas pair potentials have been well determined by a variety of experimental techniques, and the rare-gashydrogen halide systems have been the corresponding prototypes for anisotropic pair interactions. Of these systems, the ArHCl potential is one of the most thoroughly characterized. Recently, Hutson,⁷ fit all existing microwave, far infrared, and near infrared data for several ArHCl isotopes to a potential that was explicitly dependent on the HCl monomer vibration. The new potential [denoted H6(4,3,0)] certainly represents one of the most accurate existing anisotropic potential energy surfaces, although the most recent far infrared spectroscopic studies have shown that small, yet significant, inaccuracies may exist in the secondary minimum region of the potential.¹⁴

For the reasons discussed above, recent work concerning the effects of many-body forces in intermolecular forces has largely centered around the Ar_2HX systems,^{15–19} with the Ar_2HCl complex receiving the most extensive experimental and theoretical scrutiny. The eventual goal of this work is to measure all spectroscopically accessible states of Ar_2HCl and thus ultimately characterize the full intermolecular potential energy surface, thereby deducing from the form of three-body effects. Towards that end, we have pre-

0021-9606/93/075352-10\$06.00

© 1993 American Institute of Physics

viously reported the measurement of two intermolecular vibration-rotation bands using far infrared laser spectroscopy.^{16–17} These vibrations (and the one reported in the present work) are best understood by considering the HCl subunit as a nearly free rotor. In this case, the lowest-lying intermolecular bending states correlate to the j=1 internal rotational state of the HCl monomer. The intermolecular potential serves to split the threefold spatial degeneracy of the HCl i=1 rotational state, resulting in three unique bending states. Following the notation of Cooper and Hutson,²⁰ these states are identified as the Σ bend (by analogy to ArHCl) and the in-plane and out-of-plane bends (which correspond to the two components of the Π bend of ArHCl). In order to prevent any possible confusion, it should be noted that in previously reported work, we have referred to the Σ bend as the parallel bend. In the present work, we report a partial reassignment of the in-plane bend, an estimate of the effect of Coriolis mixing between the in-plane bend and the Σ bend, and the measurement and analysis of the third j=1 state, the out-of-plane bend.

EXPERIMENT

The far infrared vibration-rotation-tunneling spectra of Ar₂HCl were observed in a continuous supersonic planar jet expansion probed by a tunable far infrared laser spectrometer. The spectrometer has been described in detail previously^{21,22} so only a brief description here will follow. The tunable far infrared radiation is generated by mixing an optically pumped line-tunable far infrared gas laser with continuously tunable frequency modulated microwaves in a Schottky barrier diode to generate light at the sum and difference frequencies ($v = v_{FIR} \pm v_{MW}$). The tunable radiation is separated from the much stronger fixed frequency radiation with a Michelson polarizing interferometer and is then directed to multipass optics which encompass the supersonic expansion. After passing ~ 10 times through the expansion, the radiation is detected by a liquid helium cooled Putley-mode InSb detector and the signal is demodulated at 2f by a lock-in amplifier. Ar_m[HCl]_n clusters were produced by continuously expanding a 0.5% HCl in argon mixture at a stagnation pressure of 2 atm through a 10 cm by 25 μ m slit nozzle planar jet into a vacuum chamber pumped by a 1200 l/s Roots pump. The following far infrared lasers provided the fixed frequency radiation: 1299.9954 GHz CH₃OD, and 1397.1186 GHz CH₂F₂. The unstabilized far infrared laser is typically characterized by a short-term frequency drift of <100 kHz and a long-term drift of ca. 1 MHz. However, the 1397 GHz CH₂F₂ laser exhibited an unusually large long-term frequency drift (~ 10 MHz) and consequently all absorption features were measured in reference to the $J=1\rightarrow 2; F=3/2\rightarrow 1/2$ transition of H ³⁵Cl (1251.480 94 GHz) (Ref. 23) to yield an absolute frequency accuracy of less than 400 kHz for these transitions (absolute frequencies above 1350 GHz). A representative spectrum is presented in Fig. 1.

FIG. 1. Experimental trace of the $2_{20} \rightarrow 3_{30}$ transition of the out-of-plane bend of Ar₂H ³⁵Cl. The individual nuclear hyperfine components are labeled by their F quantum numbers.

RESULTS AND ANALYSIS

Equilibrium geometry and nuclear spin statistical weights

The Fourier-transform microwave spectroscopy work of Klots et al. established the vibrationally averaged ground state geometry of Ar₂HCl as a planar T-shaped asymmetric top of C_{2v} symmetry.^{24,25} Due to the fact that rotation about the C_2 axis involves exchange of identical boson nuclei (⁴⁰Ar; I=0) the total wave function must be symmetric with respect to this motion. Because the C_2 axis corresponds to the a inertial axis in the ground state, nonzero nuclear spin statistical weights exist only for even K_p rotational levels.

Assignment techniques

Because of spectral congestion (typically > 400absorptions/cm⁻¹), varying experimental sensitivity, and the possible existence of perturbations that may destroy ordinarily recognizable features of the spectrum, the task of assigning the observed transitions to their upper and lower state rotational quantum numbers is extremely difficult. We have chosen the common practice of using known ground state energy levels (combination differences) as an assignment technique, while specifically tailoring the details of the method to the characteristics of the experiment and the system under study. As noted in the experiment section, the short-term (several minutes) frequency drift of the unlocked far infrared laser is extremely

small (< 100 kHz) and the long-term (day-to-day) drift is substantially larger (usually ~ 1 MHz). Therefore, absorption features separated by less than 100 MHz are characterized by a very high relative frequency accuracy. The individual components of the nuclear quadrupole hyperfine structure associated with each rovibrational transition observed for Ar₂HCl therefore possess a very high internal frequency accuracy. In contrast, the rovibrational line centers are often separated by several thousand MHz and therefore possess a lower relative frequency accuracy. Rotational-hyperfine energy levels of the ground state of Ar₂HCl were calculated from the work of Klots et al.²⁴ and experimental far infrared combination differences were compared to calculated values to obtain an assignment for the far infrared spectrum. Due to the very high spectral density, many coincidental (and incorrect) assignments maybe obtained from rotational combination differences alone. Although increased long-term frequency accuracy (as was obtained by referencing several absorptions to an internal standard for one of the bands) substantially reduces coincidental assignments, the inclusion of the very accurate hyperfine combination differences proved to be crucial in discriminating correct assignments from merely coincidental ones.

Reassignment of the in-plane bend

We previously reported an assignment and the corresponding molecular constants for a vibration (a b-type band centered at 37.2 cm^{-1}) we tentatively identified as the in-plane bend.¹⁷ Since that time, Cooper and Hutson²⁰ have carried out more rigorous dynamical calculations on the spectroscopic properties of Ar₂HCl, and these results suggested that some of the experimental conclusions reached for this state may be in error. The observed transitions for that band were subjected to the more rigorous combination difference method outlined above and it was indeed found that a few of the transitions had been misassigned. The properly assigned hyperfine-free line centers (Table I) were fit to a Watson S-reduced Hamiltonian²⁶ with the ground state constants held fixed at the values previously determined. In cases where particular distortion constants were not determinable from the data, these parameters were fixed to their ground state values. The nuclear quadrupole hyperfine coupling constants (χ_{xx}, χ_{yy} and χ_{zz}) were determined in a separate least-squares fit, with the line centers determined from the rotational fit. The first-order matrix elements of the nuclear quadrupole Hamiltonian were calculated in the coupled basis set $|JKIF\rangle$ (F=I+J; I=3/2 for both ³⁵Cl and ³⁷Cl).²⁷ The upper state coupling constants were fit with the ground state coupling constants held fixed at the values determined by Klots et al.^{24,25}

The principal effect of the revised assignments on the previously reported molecular constants¹⁷ is that the fitted values determined from the off-diagonal matrix elements (oblate symmetric top basis) in both the rotational and nuclear quadrupole Hamiltonian matrices are changed. Therefore, v_0 , $B_x + B_y$, B_z , and χ_{zz} are essentially unchanged from the previous analysis while $B_x - B_y$ (and

TABLE I. Observed transitions and residuals (MHz) for in-plane bend.

	Ar. H ³⁵ Cl		Ar.H ³⁷ Cl		
Transition	K1211 C				
$J'_{K_pK_o} \leftarrow J''_{K_pK_o}$	Frequency	Res.	Frequency	Res.	
1.0 to 201	1 109 016 5	-1.0			
$1_{10} \leftarrow 1_{01}$	1 115 952.8	0.6			
$2_{12} \leftarrow 3_{03}$	1 109 071.2	-0.8			
$2_{12} \leftarrow 1_{01}$	1 119 257.4	-1.9			
$3_{12} \leftarrow 4_{23}$	1 105 572.7	0.5			
$3_{12} \leftarrow 3_{03}$	1 119 168.2	-0.9			
$3_{12} \leftarrow 3_{21}$ $3_{12} \leftarrow 4_{21}$	1 107 278 1	_0.8			
$3_{13} \leftarrow 2_{03}$	1 120 812.0	-1.1			
$3_{30} \leftarrow 3_{21}$	1 115 937.0	0.4			
$3_{30} \leftarrow 2_{21}$	1 125 845.6	-0.1	1 125 131.7	1.0	
3 ₃₁ ← 2 ₂₀ · · ·	1 124 229.5	-2.4			
$4_{13} \leftarrow 5_{24}$	1 103 747.1	0.3			
$4_{13} \leftarrow 4_{04}$	1 120 741.3	-0.5			
413 - 422 413 - 300	1 124 068 3	-07			
$4_{13} \leftarrow 5_{22}$	1 105 449.9	-0.6	1 105 196.4	0.3	
$4_{14} \leftarrow 4_{23}$	1 108 763.7	0.3	1 100 17011	010	
$4_{14} \leftarrow 3_{03}$	1 122 359.7	-0.5	1 121 786.7	0.7	
4 ₃₁ ← 4 ₂₂	1 117 363.6	2.9			
$4_{31} \leftarrow 4_{40}$	1 113 831.9	3.0			
$4_{32} \leftarrow 4_{23}$	1 119 035.4	-0.3			
$4_{32} \leftarrow 3_{21}$	1 125 975.2	-0.9	1 100 240 6	0.5	
$S_{14} \leftarrow S_{23}$	1 125 592 0	1 2	1 108 340.0	0.5	
$5_{14} \leftarrow +2_{23}$	1 103 589 1	-0.5	1 124 900.5	0.1	
515 ← 404	1 123 874.6	-0.8	1 123 274.0	-0.4	
$5_{33} \leftarrow 5_{24}$	1 120 574.5	0.8	1 120 044.8	-0.8	
5 ₃₃ ← 5 ₄₂	1 110 284.2	0.5	1 109 867.2	0.2	
5 ₃₃ ← 4 ₂₂	1 127 346.9	0.0	1 126 796.1	0.7	
$5_{50} \leftarrow 6_{61}$	1 094 298.3	0.6			
$5_{50} \leftarrow 5_{41}$	1 115 892.2	1.5	1 101 110 4	1.0	
$5_{50} \leftarrow 4_{41}$	1 132 086.0	0.8	1 131 113.4	1.0	
$5_{51} \leftarrow 5_{42}$	1 130 662 6	0.4 1.4	1 130 268 0	-08	
$6_{15} \leftarrow 5_{24}$	1 127 076.5	-0.6	1 126 429.0	-0.8	
6 ₁₆ ← 5 ₀₅	1 125 357.3	-0.5	1 124 730.2	-1.1	
6 ₃₃ ← 7 ₄₄	1 096 607.4	0.1			
6 ₃₃ ← 6 ₂₄	1 120 377.6	0.1			
6 ₃₃ ← 6 ₄₂	1 110 313.1	1.4	4 400 4 40 0	~ ~	
$b_{33} \leftarrow b_{42}$	1 122 080 6	0.8	1 129 663.9	0.0	
$0_{34} \leftarrow 0_{25}$	1 108 419 7	0.8	1 108 152 8	11	
$6_{24} \leftarrow 5_{22}$	1 128 800.5	0.3	1 100 102.0		
6 ₅₁ ← 6 ₄₂	1 117 145.1	3.1	1 116 560.4	1.2	
6 ₅₁ ← 6 ₆₀			1 111 670.6	1.2	
6 ₅₂ ← 6 ₄₃	1 118 683.6	-1.4			
$7_{16} \leftarrow 8_{27}$	1 098 074.3	0.8	1 097 979.8	-0.7	
$7_{16} \leftarrow 7_{07}$	1 123 239.3	-0.9	1 107 959 0	0.1	
$7_{16} \leftarrow 0_{25}$ $7_{17} \leftarrow 6_{04}$	1 126 807 9	-0.5	1 126 155 8		
$7_{14} \leftarrow 8_{45}$	1 094 689.0	0.0	1 094 695.4	0.2	
$7_{34} \leftarrow 7_{25}$	1 121 852.8	1.0			
7 ₃₄ ← 7 ₄₃	1 108 239.1	0.8	1 108 159.6	0.1	
$7_{34} \leftarrow 6_{43}$	1 131 971.6	0.2	1 131 259.1	-0.3	
$7_{35} \leftarrow 8_{26}$	1 096 380.1	0.0	1 100 566 9	0.0	
$7_{35} \leftarrow 0_{24}$	1 130 248.8	-1.1	1 129 500.8	0.0	
$7_{52} \leftarrow 0_{61}$	1 134 397.4	-0.0	1 119 675 2	0.1	
7 ₅₃ ← 6 ₄₂	1 133 860.3	0.4	1 117 013.2	0.1	
$7_{71} \leftarrow 6_{60}$	1 136 817.7	1.3	1 136 339.2	2.1	
8 ₁₇ ← 9 ₂₈	1 096 123.8	-0.2	1 096 070.2	-0.1	
8 ₁₇ ← 8 ₀₈	1 126 702.3	-1.5			
8 ₁₇ ←7 ₂₆	1 129 950.1	-1.1	1 129 256.4	0.8	
8 ₁₈ ← 9 ₀₉	1 097 816.9	-0.2	1 097 717.3	0.9	
0 ₁₈ ← 1 ₀₇ 8 9	1 120 228.0	-0.2	1 12/ 333.0		
$8_{35} \leftarrow 8_{26}$	1 123 296.5	0.2	1 072 790.0	1.5	
8 ₃₅ ← 7 ₄₄	1 133 395.6	-0.3	1 132 681.3	-0.1	

TABLE I. (Continued.)

	Ar.H 35	CI	Ar.H 37	<u></u>
Transition				
$J'_{K_pK_o} \leftarrow J''_{K_pK_o}$	Frequency	Res.	Frequency	Res.
816+-927	1 094 431.4	-0.6		
8 ₃₆ ← 8 ₂₇	1 124 997.9	-0.7	1 124 403.9	1.4
8 ₃₆ ←7 ₂₅	1 131 672.7	0.2	1 130 963.6	-0.8
8 ₅₃ ← 8 ₄₄	1 119 913.3	0.1		
$8_{54} \leftarrow 9_{45}$	1 091 059.2	-0.4	1 101 002 1	14
$0_{54} \leftarrow 0_{45}$ 8-14-7	1 121 399.9	-0.6	1 121 095.1	1.4
871 - 862	1 116 980.0	-3.0	· · ·	
9 ₁₈ ← 10 ₂₉	1 094 144.5	-0.6	1 094 132.3	-0.6
9 ₁₈ ← 8 ₂₇	1 131 344.5	0.0	1 130 628.4	0.3
9 ₁₉ ← 10 ₀₁₀	1 095 834.8	0.8	1 095 775.8	-0.2
9 ₁₉ ← 8 ₀₈	1 129 618.7	0.0	1 128 920.0	
$9_{36} \leftarrow 10_{47}$	1 090 769.3	-0.8		
936 - 927 936 - 846	1 134 788.9	-1.1		
$9_{37} \leftarrow 10_{28}$	1 092 456.1	-0.5	1 092 492.6	-0.8
9 ₃₇ ← 9 ₂₈	1 126 413.0	-1.1		
9 ₃₇ ← 8 ₂₆	1 133 067.7	0.5	1 132 336.9	0.5
9 ₅₄ ← 10 ₆₅	1 087 415.4	0.6		
9 ₅₄ ← 9 ₄₅	1 121 325.6	0.8		
9 ₅₄ ← 0 ₆₃	1 136 243.0	-0.5		
99.	1 123 015.1	0.3		
9 ₅₅ ← 8 ₄₄	1 136 520.4	0.0	F	
9 ₇₃ ← 9 ₆₄			1 119 257.4	1.1
9 ₉₁ ← 10 ₈₂			1 086 492.6	-0.7
$10_{19} \leftarrow 11_{210}$	1 092 139.5	0.5	1 092 169.5	-0.3
$10_{19} \leftarrow 9_{28}$	1 132 711.3	0.7	1 002 909 4	0.6
10 ₁₁₀ ← 11 ₀₁₁	1 130 982 1	0.9	1 130 261 2	-0.5
$10_{10} \leftarrow 11_{10}$	1 088 771.8	-1.0	1 150 201.2	0.5
$10_{37} \leftarrow 10_{28}$	1 126 100.3	-1.3		
10 ₃₇ ← 9 ₄₆	1 136 157.8	0.8	1 135 396.4	-2.5
$10_{38} \leftarrow 11_{29}$	1 090 455.3	-0.5	1 090 534.1	-0.8
10 ₃₈ ← 9 ₂₇	1 134 434.8	-0.6	1 133 682.1	-0.8
$10_{55} \leftarrow 11_{66}$ $10_{10} \leftarrow 10_{10}$	1 085 419.7	0.2		
$10_{55} \leftarrow 9_{46}$	1 139 619.6	0.5		
10 ₅₆ ← 9 ₄₅	1 137 884.0	-0.6		
10 ₇₄ ← 10 ₆₅	1 121 032.4	0.0		
10 ₉₂ ← 10 ₈₃	1 117 611.9	0.4	1 000 100 0	
$11_{110} \leftarrow 12_{211}$	1 001 701 0	26	1 090 182.9	0.0
$11_{111} \leftarrow 12_{012}$	1 132 320 6	2.0	1 131 578 2	2.1
$11_{11} \leftarrow 10_{010}$ $11_{22} \leftarrow 12_{40}$	1 086 752.5	-0.2	1 151 578.2	1.2
$11_{38} \leftarrow 10_{47}$	1 137 503.3	-0.2		
$11_{39} \leftarrow 12_{210}$	1 088 431.3	0.2	1 088 552.3	0.8
$11_{39} \leftarrow 10_{28}$	1 135 779.0	0.0	1 135 004.4	0.9
$11_{56} \leftarrow 11_{47}$	1 124 077.3	-0.2		
$11_{56} \leftarrow 10_{65}$ $12 \leftarrow 11$	1 140 959.4	0.3	1 134 580 2	<u>٥</u> ٩
12 ₁₁₁ ← 12 ₁₀	1 089 730.9	-0.5	1 089 800.8	0.8
$12_{112} \leftarrow 11_{011}$	1 133 631.6	1.0	1 132 871.2	2.4
$12_{310} \leftarrow 13_{211}$	1 086 387.6	1.8		
$12_{310} \leftarrow 12_{49}$			1 096 380.1	0.2
$12_{310} \leftarrow 11_{29}$	1 137 101.4	1.4		
$12_{57} \leftarrow 12_{48}$ $12_{} \leftarrow 11_{}$	1 125 420.8	0.4		
1257 ← 1166 13.12 ← 14-12	1 172 217.7	0.0	1 086 147.4	1.6
$13_{112} \leftarrow 12_{211}$			1 135 865.1	1.0
$13_{113} \leftarrow 14_{014}$	1 087 652.1	-0.5		
13 ₁₁₃ ← 12 ₀₁₂	1 134 920.4	-0.7	1 134 139.2	0.1
$13_{310} \leftarrow 13_{211}$			1 129 474.6	-0.1
$13_{310} \leftarrow 12_{49}$ $13_{344} \leftarrow 12_{49}$			1 139 304.8 1 137 585 8	0.1
14 ₁₁₄ ← 15 ₀₁₅	1 085 554.4	0.9	1 107 303.0	1.0
14 ₁₁₄ ← 13 ₀₁₃	1 136 190.7	-0.9	1 135 389.5	-0.7
$15_{115} \leftarrow 14_{014}$	1 137 443.8	-1.5	1 136 621.9	2.4
16 ₁₁₆ ← 15 ₀₁₅	1 138 686.6	2.3		

TABLE II. Molecular constants (MHz) for in-plane bend (1 σ uncertainties).

	Ar ₂ H ³⁵ Cl	- Ar ₂ H ³⁷ Cl
ν_0	1 115 098.6(3)	1 114 654.1(5)
B _x	1 683.61(2)	1 683.98(3)
B_{ν}	1 682.42(2)	1 621.21(2)
В́,	826.702(9)	811.215(9)
$\tilde{D_{I}}$	0.014 07(13)	0.014 74(19)
D_{JK}	-0.041 8(3)	-0.040 7(4)
D_K	0.022 47(19)	0.020 7(2)
d_1	0.002 479(fixed)	0.002 927(fixed)
d_2	-0.0034(3)	-0.000 456(fixed)
rms error	1.0	1.0

thus the individual values of B_x and B_y) and $\chi_{xx} - \chi_{yy}$ have now been correctly determined. Due to the possibility of rotational axis switching, the molecular constants are expressed in a molecule-fixed axis system as explained in Ref. 17, rather than the conventional principal axis system. The rotational parameters are reported in Table II and the hyperfine coupling constants are reported in Table V for both Ar_3H ³⁵Cl and Ar_2H ³⁷Cl. In order to compare the experimental coupling constants to theoretical values, the following equations provide the relation between these constants and the relevant angular expectation values:

$$\chi_{xx} = \chi_{\text{HCl}} \langle P_2(\cos \theta) \rangle, \tag{1}$$

$$\chi_{yy} - \chi_{zz} = \frac{3}{2} \chi_{\text{HCl}} \langle \Delta(\theta, \phi) \rangle.$$
⁽²⁾

Here χ_{HCl} is the nuclear quadrupole coupling constant of the uncomplexed HCl monomer and $\langle \Delta(\theta, \phi) \rangle$ $=\sin^2 \theta \cos 2\phi$. The deviation of $\langle P_2(\cos \theta) \rangle$ from unity is a measure of the bending amplitude of the HCl monomer, whereas the deviation of $\langle \Delta(\theta, \phi) \rangle$ from zero characterizes the anisotropy of the torsional motion (positive values indicating in-plane localization and negative values indicating out-of-plane localization). The positive sign of the corrected $\langle \Delta(\theta, \phi) \rangle$ value (Table V) indicates that this state is indeed the in-plane bend.

The out-of-plane bend

The out-of-plane bend of Ar_2HCl is characterized by very dense Q-branch structure (indicative of a c-type transition) and was observed around 45.2 cm⁻¹. Due to the values of the upper state nuclear quadrupole coupling constants, it was possible to resolve all four of the strong ΔF $=\Delta J$ hyperfine components for a large number of the rovibrational transitions. These transitions were assigned according to the method outlined above and are recorded in Table III. Once again hyperfine-free line centers were fitted to a Watson S-reduced Hamiltonian and the nuclear quadrupole structure was separately fitted as previously discussed for the in-plane bend. The results of the rotational fit are contained in Table IV for both the Ar_2H ³⁵Cl and Ar_2H ³⁷Cl isotopes. The results of the nuclear quadrupole hyperfine fit are compiled in Table V.

TABLE III. Observed transitions and residuals (MHz) for out-of-plane bend.

TABLE III. (Continued.)

bend.		•				Ar ₂ H ³⁵ Cl		Ar ₂ H ³⁷ Cl	
Transition	Ar ₂ H ³⁵ C		Ar ₂ H ³⁷ C	K	$J_{K_pK_o} \leftarrow J_{K_pK_o}'$	Frequency	Res.	Frequency	Res.
$J'_{K_pK_o} \leftarrow J''_{K_pK_o}$	Frequency	Res.	Frequency	Res.		1 357 317.2	-11.5	1 357 173.4	-0.9
2	1 345 392.1	- 30.9			7 ₃₅ ← 6 ₂₅	1 381 097.0	-11.0	1 380 488.0	-2.1
$2_{11} \leftarrow 2_{21}$	1 355 300.5	-31.6			$7_{52} \leftarrow 8_{62}$	1 331 747.0	58.3		
$2_{11} \leftarrow 1_{01}$	1 362 233.4	-33.5			$7_{52} \leftarrow 7_{62}$	1 358 290.4	58.8		
-11 =01 312 ← 422	1 342 111.4	-17.8	1 342 367.3	-24.8	$7_{52} \leftarrow 6_{42}$	1 382 349.5	58.6		
3 ₁₂ ← 3 ₂₂	1 355 661.6	-16.7			7 ₅₃ ← 8 ₆₃	1 331 000.4	-3.7	1 331 352.8	9.1
3 ₁₂ ← 2 ₀₂	1 365 869.3	-16.5	1 365 568.6	-23.8	- 7 ₅₃ ← 7 ₄₃	1 358 170.1	-3.7	1 358 160.6	8.9
320 ← 440	1 342 205.2	-25.9	1 342 232.4	-14.4	7 ₅₃ ← 6 ₄₃	1 381 903.5	-3.5	1 381 260.5	9.1
$3_{30} \leftarrow 2_{20}$	1 366 062.1	-24.8	1 365 798.8	-15.8	$7_{70} \leftarrow 8_{80}$	1 330 762.6	24.7		
3 ₃₁ ← 4 ₄₁	1 341 942.3	-18.6	· .		$7_{70} \leftarrow 6_{60}$	1 382 127.7	25.1		
$3_{31} \leftarrow 2_{21}$	1 365 987.5	-17.0			8 ₁₇ ← 9 ₂₇	1 326 560.9	45.1		
4 ₁₃ ← 5 ₂₃			1 339 188.2	3.7	8 ₁₇ ← 8 ₂₇	1 357 126.2	43.8		
4 ₁₃ ← 3 ₀₃			1 369 151.1	3.3	$8_{17} \leftarrow 7_{07}$	1 384 311.2	43.7		
$4_{14} \leftarrow 5_{24}$	1 338 562.3	0.0	at a		8 ₃₅ ← 9 ₄₅	1 327 576.1	-186.7	1 328 240.2	- 17.0
414 ← 404	1 355 555.5	-1.8	•		8 ₃₅ ← 8 ₄₅	1 358 115.8	186.5	1 358 160.6	-17.0
4 ₃₁ ← 5 ₄₁	1 339 651.8	-32.7	1 339 887.9	-6.9	8 ₃₅ ← 7 ₂₅	1 385 278.6		1 384 785.7	- 16.3
4 ₃₁ ← 3 ₂₁	1 369 982.0	-32.1	1 369 473.0	-7.0	8 ₃₆ ←9 ₄₆	1 327 188.1	-5.8	1 327 638.4	-40.2
$4_{32} \leftarrow 5_{42}$	1 339 137.0	-26.3	1 339 303.2	4.7	8 ₃₆ ← 8 ₂₆	1 357 740.1	-7.3	1 357 592.0	-39.7
4 ₃₂ ← 4 ₂₂	1 356 200.3	-26.2			8 ₃₆ ← 7 ₂₆	1 384 914.4	-7.4		
$4_{32} \leftarrow 3_{22}$	1 369 749.3	-26.3	1 369 397.2	4.3	8 ₅₃ ← 9 ₆₃	1 328 922.0	216.7		
5 ₁₄ ← 6 ₂₄	1 335 797.9	-1.5	1 336 084.6	12.0	8 ₅₂ ← 7 ₄₃	1 386 492.5	217.9		
5 ₁₄ ← 5 ₂₄	1 356 180.9	-3.2	· .		854 ← 954	1 328 323.2	89.2	1 328 722.8	-25.3
5 ₁₄ ← 4 ₀₄	1 373 175.9	-3.2	1 372 732.2	11.8	854 ← 84A	1 358 850.2	91.0	1 358 642.0	25.7
5 ₁₅ ← 6 ₂₅	1 335 349.8	30.5		~	854 ← 7AA	1 385 996.6	89.9	1 385 210.6	-24.9
5 ₁₅ ← 5 ₀₅	1 355 742.7	30.8			8 ₇₁ ← 9 ₀₁	1 329 603.6	-4.6		
5 ₃₂ ← 6 ₄₂	1 336.604.3	6.9			871 + 761	1 386 995.1	-4.6		
5 ₃₂ ← 4 ₂₂	1 373 828.6	7.5			872 ← 982	1 328 537.5	-18.3		
5 ₃₃ ← 6 ₄₃	1 336 163.3	- 8.7	1 336 443.8	23.6	872 ← 762	1 386 366.5	-17.0		
5 ₃₃ ← 5 ₂₃	1 356 543.9	-9.2	1 356 447.8	24.6	912 + 928	1 357 475.5	52.4		
5 ₃₃ ← 4 ₂₃	1 373 528.9	-9.2	1 373 076.0	24.0	9 ₁₈ - 8 ₀₈	1 388 055.7	52.8		
5 ₅₀ ← 6 ₆₀	1 336 343.8	14.6			910 ← 1020	1 322 378.3	-181.5		
5 ₅₀ ← 4 ₄₀	1 373 922.7	-13.5			9 ₁₀ ← 9 ₀₀	1 356 352.1	-181.2		
5 ₅₁ ← 6 ₆₁	1 335 972.8	5.1			$9_{36} \leftarrow 10_{46}$	1 324 877.7	-31.5		
5 ₅₁ ← 4 ₄₁	1 373 759.6	3.8			936 ← 946	1 358 803.7	-32.3		
6 ₁₅ ← 7 ₂₅	1 332 693.8	11.0	• .		9 ₃₆ ← 8 ₂₆	1 389 357.0	-32.6		
6 ₁₅ ← 6 ₂₅	1 356 471.7	8.7			9 ₃₇ ← 10 ₄₇	1 324 244.9	-0.2		
6 ₁₅ ← 5 ₀₅	1 376 864.6	9.0			9 ₂₇ ← 9 ₂₇	1 358 184.8	-2.0		
6 ₁₆ ← 7 ₂₆	1 332 195.2	97.8			. 9 ₂₇ ← 8 ₂₇	1 388 751.9	-2.5		
6 ₁₆ ←6 ₀₆	1 355 984.3	97.5			954 ← 1064	1 325 888.8	-62.6		
6 ₃₃ ← 7 ₄₃	1 333 686.8	129.5			9 ₅₄ ← 9 ₆₄			1 359 791.0	<u> </u>
6 ₃₃ ← 6 ₄₃	1 357 421.0	130.6			9 ₅₄ ← 8 ₄₄	1 390 292.4	-62.3	1 389 710.3	-15.
6 ₃₃ ←5 ₂₃	1 377 801.8	130.3			$9_{55} \leftarrow 10_{65}$	1 325 401.1	-68.5	1 326 179.0	43.8
6 ₃₄ ←7 ₄₄	1 333 038.6	-120.6			9 ₅₅ ← 9 ₄₅	1 359 310.4	69.3	1 359 395.4	43.7
6 ₃₄ ←6 ₂₄	1 356 808.7	-120.7			955 ← 845			1 389 315.8	43.7
6 ₃₄ ←5 ₂₄	1 377 193.2	- 120.9		10.6	$10_{19} \leftarrow 10_{29}$	1 357 836.5	52.0		
6 ₅₁ ←7 ₆₁	1 334 415.4	-31.0	1 334 536.4	10.6	$10_{19} \leftarrow 9_{09}$	1 391 810.1	52.2		
6 ₅₁ ←5 ₄₁	1 378 254.3	-30.9	1 377 482.3	9.8	$10_{110} \leftarrow 11_{210}$	1 319 260.6	-162.1		
6 ₅₂ ← 7 ₆₂	1 333 638.5	-29.0			10 ₁₁₀ ← 10 ₀₁₀	1 356 627.1	-161.9		
6 ₅₂ ← 6 ₄₂	1 357 696.5	30.4			10 ₃₇ ← 11 ₄₇	1 322 048.2	-30.1		
6 ₅₂ ← 5 ₄₂	1 377 857.1	- 30.3			10 ₃₇ ← 10 ₄₇	1 359 359.8	-29.8		
7 ₁₆ ←8 ₂₆	1 329 618.4	30.2			10 ₃₇ ← 9 ₂₇	1 393 300.8	-31.0		
7 ₁₆ ← 7 ₂₆	1 356 791.0	28.6	1 356 648.5	11.8	$11_{110} \leftarrow 12_{210}$	1 317 478.8	46.6		
7 ₁₆ ←6 ₀₆	1 380 580.1	28.4	1 379 980.8	11.4	$11_{110} \leftarrow 11_{210}$	1 358 210.2	43.6		
7 ₁₇	1 329 144.4	247.5			$12_{111} \leftarrow 12_{211}$	1 358 600.7	31.1		
7 ₁₇ ←7 ₀₇	1 356 331.0	248.9			13 ₁₁₂ ← 13 ₂₁₂	1 359 011.3	18.1		
7 ₃₄ ← 8 ₄₄	1 330 610.7	-30.2			14 ₁₁₃ ← 14 ₂₁₂	1 359 445.2	7.6		
7 ₃₄ ←6 ₂₄	1 381 528.6	_30.0			15114 ← 15114	1 359 903.8	1.1		
$7_{35} \leftarrow 8_{45}$	1 330 155.4	9.9	1 330 548.1	-1.8					

J. Chem. Phys., Vol. 98, No. 7, 1 April 1993

Downloaded 30 Jun 2005 to 132.162.177.17. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp

TABLE IV. Molecular constants (MHz) for out-of-plane bend of Ar₂HCl.

	Ar ₂ H ³⁵ Cl	Ar ₂ H ³⁷ Cl
ν ₀	1 355 140.(31.0)	1 355 130.(16.0)
B_x	1 774.(2.0)	1 767.3(1.9)
B_{v}	1 752.(2.0)	1 679.9(1.3)
B _z	854.6(6)	835.1(7)
$\bar{D_J}$	0.06(2)	-0.031 8(7)
D_{JK}	-0.12(5)	-0.039 33(fixed)
D_{K}	-0.07(3)	0.017 83(fixed)
d_1	0.002 479(fixed)	0.002 927(fixed)
d_2	-0.000 406 6(fixed)	-0.000 456(fixed)
rms error	77.3	21.0

DISCUSSION

Coriolis coupling: General considerations

It may be seen from Table IV that the rms errors from the rotational fits for the out-of-plane bend of Ar₂HCl are substantially larger than would be expected from the experimental uncertainties. This effect is the signature of a

strong heterogeneous perturbation, which is most likely due to a Coriolis interaction. In addition, the in-plane and Σ bends are also *expected* to interact via a Coriolis mechanism, although the perturbation is not apparent simply from the residuals resulting from the zero-order rotational fit. We therefore turn to a general discussion of the possible and observed effects of Coriolis coupling in the Ar₂HCl system.

The standard vibration-rotation Hamiltonian used for the fitting of spectra usually neglects the Coriolis cross terms in the full Hamiltonian because such effects are often too small to be determined from experimental data. Although it is possible to treat these effects perturbatively, it is often desirable, especially in the case of fitting to high resolution data and/or strong mixing between states, to explicitly form the full Hamiltonian matrix and diagonalize to obtain energies. The exact form of the Coriolis operator depends on the form of the Hamiltonian usedwhich in turn is often determined by the most appropriate basis set—but it can be expressed generally as βJ_{i} , where i=a, b, c (corresponding to the principal axes) and β is a constant. The molecule-fixed axes for Ar₂HCl (Ref. 17) correspond to the principal axes in the following manner for the states of relevance: $x \leftrightarrow a$, $y \leftrightarrow b$, and $z \leftrightarrow c$. In the case

TABLE V. Nuclear quadrupole coupling constants and angular expectation values.

	Out-of-pl	ane bend	In-plane-bend		
	Ar ₂ H ³⁵ Cl	Ar ₂ H ³⁷ Cl	Ar ₂ H ³⁵ Cl	Ar ₂ H ³⁷ Cl	
$\gamma_{xx}(MHz)$	1.72(15)	0.9(5)	0.0(2)	0.0(2)	
$\chi_{\nu\nu}$ (MHz)	14.08(15)	11.5(5)	-17.2(2)	-13.2(2)	
χ_{zz} (MHz)	-15.81(6)	-12.1(2)	17.29(7)	13.3(2)	
$\langle P_2(\cos\theta) \rangle$	-0.025(2)	-0.017(9)	0.000(3)	0.000(4)	
$\langle \Delta(\theta,\phi) \rangle$	-0.295(2)	-0.309(7)	0.340(3)	0.331(5)	

of Ar₂HCl. Cooper and Hutson²⁰ have used a diatomdiatom Hamiltonian, which results in two Coriolis operators: $J \cdot j_{Ar-Ar}$ and $J \cdot j_{HCl}$. Because j_{HCl} and especially \mathbf{j}_{Ar-Ar} are only approximate quantum numbers, essentially all states can couple through these operators. In order to determine the appropriate matrix element for any two interaction Ar₂HCl vibrational states, the transformation properties of J_i in the molecular symmetry group $C_{2n}(M)$ must be considered. Because it can be shown that the J_i transform the same as the rotations,²⁸ reference to the $C_{2\nu}(M)$ character table reveals J_a , J_b , and J_c transform as A_2 , B_1 , and B_2 , respectively. Therefore, in order to ensure a totally symmetric direct product $(\Gamma_1 \times \Gamma_{\text{Coriolis}} \times \Gamma_2)$ $=A_1$), the direct product of the two interacting states (Γ_1 $\times \Gamma_2 = \Gamma_{\text{Coriolis}}$ indicates the nonvanishing βJ_i^{28} The symmetries of the 10-lowest-lying vibrational states of Ar₂HCl, the nonvanishing Coriolis interactions, and the associated matrix elements (calculated in the oblate symmetric top basis) are presented in Table VI.

Coriolis coupling: The in-plane and Σ bends

The in-plane and Σ bends¹⁶ are coupled by a *c*-type Coriolis interaction, although the coupling is apparently relatively weak since both bands can be fit with good residuals to the zero-order rotational Hamiltonian parameters. An explicit deperturbation was attempted, using the appropriate form of the matrix element from Table VI, but the multiplying coefficient β could not be determined from the data. Nevertheless, even in the limit of weak coupling, the rotational constants can be substantially affected by such an interaction by as much as a few percent. Because the calculations of Cooper and Hutson yield structural rotational constants,²⁰ it is desirable to recover the structural contributions to the experimental rotational constants (which also include any dynamical effects) in order to make the comparison between theory and experiment.

The $\mathbf{J} \cdot \mathbf{j}_{HCI}$ contribution to the Coriolis coupling constant β can be estimated in the limit of free internal rotation of the HCl monomer (characterized by the angular momentum quantum number \mathbf{j}_{HCI}). At this point, it is not possible to reasonably estimate the magnitude of the $\mathbf{J} \cdot \mathbf{j}_{Ar-Ar}$ coupling, therefore, it is arbitrarily set to zero (although there is no real justification for this choice). Estimating β from the $\mathbf{J} \cdot \mathbf{j}_{\text{HCl}}$ interaction alone yields $\beta = B_i [2j_{\text{HCI}}(j_{\text{HCI}}+1)]^{1/2}$. For the particular case of coupling under consideration here, B_i was chosen to be the approximate structural rotational constant along the c axis (B_r) . Since the Ar₂HCl bending states of interest correlate to the j=1 rotational state of the HCl monomer, β is simple two times the rotational constant. In direct fits to experimental data for the ArHCl system, the coupling constant between the Σ and Π bends (to which the in- and out-of-plane bends of Ar₂HCl correlate) has been determined to be 2833 MHz or 1.6 times the rotational constant.²⁹ The deviation of β from 2*B* results from the breakdown of \mathbf{j}_{HCI} as a rigorously good quantum number, which is a consequence of the anisotropic potential. In an attempt to remove the effects of Coriolis coupling from the experimental rotational constants, we have refit the data with

J. Chem. Phys., Vol. 98, No. 7, 1 April 1993 Downloaded 30 Jun 2005 to 132.162.177.17. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp

TABLE	VI.	Symmetries	of relevant	vibrational	states and	Coriolis	coupling 1	matrix elements.
-------	-----	------------	-------------	-------------	------------	----------	------------	------------------

Symmetries		Coriolis types and matrix elements		
State ^a	Г	$\Gamma_1 \times \Gamma_2$	Matrix element ^b	
ground state	A ₁	$A_2(a \text{ type})$	$\beta [J(J+1) - K(K \pm 1)]^{1/2} \Delta K', K \pm 1$	
wagging stretch	A_1	$B_1(b \text{ type})$	$\pm \beta [J(J+1) - K(K \pm 1)^{1/2} \delta K', K \pm 1]$	
y bend	$\dot{B_2}$	$B_2(c \text{ type})$	βΚδ _{κ' κ}	
breathing stretch	$\tilde{A_1}$			
in-plane bend	B_2			
parallel bend	$\tilde{A_1}$			
out-of-plane bend	$\dot{B_1}$			
wag. stretch $(v=2)$	A_1			
γ bend + wag. stretch	$\hat{B_2}$			
χ bend (v=2)				

^aStates listed in estimated ascending energy order.

^bMatrix elements calculated in oblate symmetric top basis.

assumed values for β [and using a structural value of $B_{z}(s)$ =850 MHz]. The results for the in-plane bend in Table II and the parameters reported for the Σ bend in Ref. 16 then correspond to an assumed value of $\beta = 0$. Fits for assumed values for β of $2B_z$ (free rotor value), $1.6B_z$ (ArHCl value), and $1.3B_z$ (an educated guess for the more anisotropicAr₂HCl) were performed and the results are contained in Table VII. Because the B_r and B_v rotational constants did not vary with different assumed values for β , only the values for B_r are reported. Although the structural rotational constants calculated by Cooper and Hutson are not in absolute quantitative agreement with experiment (Table VIII),²⁰ it is interesting to note that the calculated *difference* between the in-plane and Σ bend B_z constants (21 MHz) is in much better agreement with the experimental difference for an assumed value of $\beta = 1.3 B_z$ (22 MHz) than for any of the other assumed values of beta. In addition, in order to appreciate the small magnitude of this interaction, the sum-of-squares wave-function amplitudes recovered from the matrix diagonalization for three rotational levels of the in-plane bend are also reported in Table VII. The small degree of mixing in the J=5 rotational level is particularly significant since the nuclear hyperfine quadrupole coupling constants for the in-plane and Σ bends were fitted from similar low-J rovibrational transitions. Therefore, the fact that the hyperfine structure could be accurately fitted without explicitly treating the Coriolis interaction is consistent with the notion

TABLE VII. Results of in-plane and parallel bend Coriolis analysis.

	$\beta = 2B_{-}(s)$	$\beta = 1.6B_{-}(s)$	$\beta = 1.3 B_{-} s(s)$	β=0
(MHz) B_z	867.44	852.72	843.85	826.70
(MHz)	842.24	856.96	865.83	883.04
In-plane bend con	tribution to th	he square modu	ilus of the wave f	inction

In-plane bend contribution to the square modulus of the wave function for a number of individual rotational states

$ \psi_{\text{in-plane}}(5_{15}) ^2$	0.98	0.99	0.99	1.00
$ \psi_{\text{in-plane}}(10_{110}) ^2$	0.95	0.97	0.98	1.00
$ \psi_{\text{in-plane}}(15_{115}) ^2$	0.91	0.94	0.96	1.00

that the perturbation is quite weak. Nevertheless, we again note that even this weak perturbation causes changes of $\sim 2\%$ in the effective rotational constants determined from a fit of the data to a pure rotational Hamiltonian ($\beta=0$). For the purposes of comparing experimental and theoretical rotational constants in an effort to determine possible three-body effects in Ar₂-HCl, neglecting Coriolis effects to the rotational constants that result in deviations as much as 2% from the corresponding "structural" values is an unacceptable approximation.

Coriolis coupling: The out-of-plane bend

The out-of-plane bend of Ar_2HCl appears to be much more strongly perturbed, as is evidenced by the large residuals resulting from the zero-order rotational fit. In fact, the rms error is more than two orders of magnitude larger than the experimental uncertainties. In addition, although the uncertainties in the rotational constants reflect the poor fit, it should be noted that the results for the $Ar_2H^{37}Cl$ isotope cannot be obtained by simply mass scaling the $Ar_2H^{35}Cl$ results, indicating that the fitted constants may be less reliable than the stated uncertainties reveal.

Unfortunately, the perturbing state is almost definitely one that carries little transition intensity of its own (a "dark" state). The calculations of Cooper and Hutson indicate that the first overtone of the "wagging stretch" (see Cooper and Hutson²⁰ for an explanation of the heavy-atom vibrational modes) is the most likely candidate for the identity of the dark state.³⁰ In fact, all possible perturbing states are heavy-atom vibrations whose motions do not result in an appreciable change in the dipole moment of the complex and are therefore "dark." Although there are many unassigned lines in the spectral region around the out-of-plane bend, it was not possible to definitively assign any of these lines to a possible perturbing state, and therefore it is not currently possible to perform a rigorous deperturbation of the spectra. In addition, it is difficult to provide an estimate for β , since the coupling of the endover-end rotation to these motions is not easily represented in the otherwise-convenient free-rotor basis. However, it is worth noting that the β parameter for the Π bend-stretch

Downloaded 30 Jun 2005 to 132.162.177.17. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp

TABLE VIII. Comparison of experimental and theoretical results for Ar_2H ³⁵Cl.

	Observed (1σ)	Calc. 1 ^a	Calc. 2 ^b	Calc. 3 ^e				
Ground state ^d								
$B_{\rm x}({\rm MHz})$	1733.8560(4)	•••	1757.19	1756.99				
$B_{\nu}(MHz)$	1667.921 40(4)	1702.4	1671.10	1668.24				
$B_{z}(MHz)$	844.444 87(16)	857.6	849.53	848.73				
$\langle P_2(\cos\theta) \rangle$	0.4165(4)	0.4540	0.4472	0.4429				
$\langle \Delta(\theta,\phi) \rangle$	0.0313(2)	0.02179	0.0222	0.0255				
	In-pl	ane bend ^e						
$v_0(\text{cm}^{-1})$	37.195 426(10)	40.315	39.587	39.190				
$B_{x}(MHz)$	1683.61(2)	•••	1744.23	1744.98				
$B_{\rm v}({\rm MHz})$	1682.42(2)	1730.8	1694.27	1686.04				
$B_{z}(MHz)$	826.702(9)	864.8	851.25	849.22				
$\langle P_2(\cos\theta)\rangle$	0.000(3)	-0.0330	0.0191	0.0031				
$\left< \Delta(\theta, \phi) \right>$	0.340(3)	0.3673	0.3531	0.3441				
	Σ	bend ^f						
$v_0(cm^{-1})$	39.554 709(10)	42.589	40.734	41.325				
$B_{\rm x}({\rm MHz})$	1733.70(4)	•••	1753.23	1753.72				
$B_{\rm v}({\rm MHz})$	1720.89(3)	1793.4	1758.94	1766.59				
$B_{z}(MHz)$	883.040(13)	879.2	868.55	870.47				
$\langle \tilde{P}_2(\cos\theta) \rangle$	0.291(3)	0.2943	0.2772	0.2752				
$\langle \Delta(\theta,\phi) \rangle$	0.062(7)	0.04296	0.0474	0.0591				
	Out-of-plane bend ⁸							
$v_0(cm^{-1})$	45.2026(10)	47.236	46.686	46.542				
$B_{\rm x}({\rm MHz})$	1774.0(2.0) ^h	•••	1750.15	1749.94				
$B_{\rm p}({\rm MHz})$	1752.0(2.0) ^h	1740.8	1706.72	1705.52				
$B_{z}(MHz)$	854.6(6) ^h	867.1	856.59	856.21				
$\langle P_2(\cos\theta) \rangle$	-0.025(2)	0.0030	0.0140	-0.0224				
$\langle \Delta(\theta,\phi) \rangle$	-0.295(2)	-0.3098	-0.3146	-0.3197				

^aCalc. 1 refers to the dynamically approximate clamped-Ar₂ calculations on the H6(3)+HFD-C pairwise-additive surface (Ref. 15).

^bCalc. 2 refers to the full five-dimensional dynamical calculation on the H6(3)+HFD-C pairwise-additive surface (Ref. 20).

^cCalc. 3 refers to the full five-dimensional dynamical calculation on the H6(4,3,0) + HFD-C pairwise additive surface (Ref. 20).

^dReferences 16 and 24.

Reference 17 and this work.

Reference 16.

⁸This work.

^hSee text for discussion of reliability of these fitted constants.

interaction in ArHCl was experimentally determined to be about one-third of the value determined for the Σ -II bend interaction.²⁹ Because of the smaller coupling coefficient, one would expect a bend-stretch interaction to be more *localized* (more dependent on near resonance) than a similar bend-bend interaction.

It is of considerable interest to determine the probable energy separation of the two interacting states for the purpose of roughly locating the position of the "dark" state. By using features of the spectra to determine where the two interacting states "cross" (become resonant) one can obtain a qualitative estimate of the desired energy difference. Clearly, large residuals in the zero-order rotational fit indicate states which are more nearly resonant than states with smaller residuals. In addition, the observed nuclear quadrupole hyperfine structures are also determined by a linear combination of the pure "bright" and "dark" state hyperfine contributions. Consequently, large rotational residuals should correlate with large hyperfine residuals. It should be noted that the *relative* measured accuracy for the hyperfine energies (1 to 10^2) is much less than the *relative* measured accuracy for rotational energies (10^4 to 10^5). Therefore, the hyperfine structure is not as sensitive to perturbations as are the rotational energies.

Unfortunately, only four transitions with exceptionally large rotational residuals (>60 MHz) have fully resolved (and therefore more accurately measured) hyperfine structure. By reference to Table I, it may be seen that the transitions which involve the 6_{16} , 7_{17} , 9_{19} , and 10_{110} upper state levels possess very large rotational residuals and it is these transitions for which fully resolved hyperfine structure has been measured. It is also of interest to note that the 6_{16} and 7₁₇ levels are characterized by large positive residuals while the 9_{19} and 10_{110} levels are characterized by large *negative* residuals. This is suggestive of a "crossing" occurring around the 8_{18} level, which has thus far eluded assignment. The nuclear quadrupole structure also shows evidence for strong mixing; these transitions are the only fully resolved hyperfine spectra which, upon inclusion in the hyperfine fit, did not yield residuals consistent with expected experimental uncertainties. In an attempt to further quantify the correlation between the rotational and hyperfine residuals, the upper state hyperfine coupling constants associated with these transitions were assumed to be the result of the following linear combination:

$$\chi_{ii}(\text{observed}) = c^2 \chi_{ii}(\text{dark state})$$

+
$$(1-c^2)\chi_{ii}$$
(out-of-plane bend). (3)

The χ_{ii} for the out-of-plane bend were fixed at the experimentally determined values and the χ_{ii} for the dark state were assumed to be the same as for the ground state (a good approximation for the heavy-atom vibrational states in the limit of weak potential coupling to the HCl bending states). The hyperfine structure for each transition was subsequently fit, with c as the variable parameter. The determined c coefficients did indeed correlate with the rotational residuals, yielding values (rotational residuals in parentheses) of 0.27 (98 MHz), 0.55 (248 MHz), 0.36 (-181 MHz), and 0.34 (-162 MHz) for the 6_{16} , 7_{17} , 9_{19} , and 10_{110} levels, respectively. As a caveat, it should be noted that the quality of the fit was not sensitive to the χ_{ii} values assumed for the dark state. However, this information is strong support for a fairly localized perturbation that is near resonant around the 8_{18} rotational level of the out-of-plane bend. Because the "crossing" occurs at a relatively low total rotational energy (about 4 cm^{-1}), it is likely that the separation of the two interacting vibrational states is 1 cm^{-1} or less.

Coriolis coupling: General conclusions

From the arguments presented above, it is apparent that Coriolis mixing in the Ar_2HCl system can lead to substantial effects in the spectra through a subtle interaction (the in-plane-bend- Σ -bend interaction) or more obviously, through a strong perturbation (the out-of-plane-

FIG. 2. Energy level correlation diagram for the Ar_nHCl (n=0,1,2) systems. Measured far infrared transitions for Ar_2HCl are denoted by solid arrows. States whose energies have been experimentally determined are represented by thick lines and calculated states (thin lines) are from the results of Cooper and Hutson (Ref. 20).

v=2 wagging stretch interaction). Although these instances should become more ubiquitous as the cluster size increases (due to an increase in the density of states), these interactions have been shown to have important effects on the spectra of all four prototypical binary systems mentioned in the introduction (ArHCl, ArHF, ArH₂O, and ArNH₃).⁷⁻¹⁰ Weak Coriolis interactions are particularly troublesome since it is often not possible to detect the existence of such coupling from fits to a purely rotational Hamiltonian, although the effects on the rotational constants can still be substantial. Accurate vibrational calculations for Ar₂HCl have made an approximate understanding of these effects possible, although full rovibrational calculations will be needed to fully account for these interactions. We emphasize that similar considerations should be expected to be important for similar and larger systems and that these effects will likely often compromise a "structural" interpretation of experimental rotational constants.

Comparison of experiment and theory

Since all three Ar_2HCl bending vibrations that correlate to the j=1 internal rotational state of the HCl monomer (see Fig. 2) have now been measured, the experimental data set is sufficient to warrant a meaningful comparison with theoretical results. For the purposes of exploring the capabilities and limitations of various theoretical efforts, we have included comparisons with three different pairwise-additive calculations (Table VIII). The three-dimensional (Ar2 clamped) dynamical calculations of Hutson, Beswick, and Halberstadt¹⁵ using the H6(3) potential³¹ are expected to be the least accurate results because of the dynamically approximate nature of the method and the use of the now-superseded H6(3) ArHCl pair potential. Also included for comparison are the recent calculations of Cooper and Hutson²⁰ which fully treat the five-dimensional dynamical problem. They have used a variational method with both the H6(3) and the more reliable H6(4,3,0) ArHCl pair potentials in order to determine the sensitivity of the molecular parameters to the ArHCl pair potential. Therefore, comparison between columns 2 and 3 in Table VIII indicate separately the effects of the dynamical approximation of Hutson, Beswick, and Halberstadt [for both calculations use the H6(3) ArHCl pair potential] and comparison between columns 3 and 4 indicate separately the effects of the different pair potentials on the molecular parameters (for both calculations are dynamically rigorous).

It may be seen that there are fairly substantial differences between the dynamically approximate and the full five-dimensional calculation, thus demonstrating the necessity of the computationally expensive calculation. In our previous analysis of the in-plane bend,¹⁷ we concluded that the experimental rotational constants indicated substantial potential coupling between the Ar₂ coordinates and the HCl bending motions and that for this reason more rigorous dynamical calculations were needed. The reassignment of the in-plane bend and the resulting molecular constants in this work does not compromise the logic of those conclusions, which were based on changes in the experimental rotational constants on the order of a few percent. However, the full dynamical calculations actually reveal very small potential mixing of these states.²⁰ We have shown in this work that even weak Coriolis perturbations can lead to significant changes in the experimental rotational constants and that "structural" conclusions based on small changes in the experimental rotational constants are, in fact, extremely tenuous. Indeed, inspection of the experimental and calculated rotational constants for all three excited bending states reveals some very substantial discrepancies, indicating the probable effects of Coriolis coupling. In order to allow comparison between experiment and theory for these very valuable parameters, it will be necessary to explicitly treat these Coriolis effect effects in future calculations.

The agreement between calculated and observed band origins and angular expectation values is qualitatively good. However, in the instance of agreement between the measured and calculated band origins, it should be noted that experimental uncertainties are on the order of less than 0.001 cm⁻¹ and the level of convergence for these calculated quantities²⁰ is about 0.01 cm⁻¹, whereas the discrepancies *between* the measured and calculated values are larger than 1 cm⁻¹. Therefore, it must be concluded that the pairwise-additive potential energy surface is not sufficiently accurate to obtain agreement with experiment. The comparison between calculations using the two different ArHCl potentials provides some measure of the possible discrepancies introduced by slight inaccuracies in the pair potentials. Although the differences resulting from the two calculations are non-negligible, it may be noted that the discrepancies between the two theoretical values are substantially less than the discrepancy between experimental and theoretical values. In addition, the results from the more accurate potential do not necessarily correspond with better agreement with experiment. Therefore, it may be concluded that potential inadequacies in the ArHCl pair potential cannot be entirely responsible for the theoreticalexperimental inconsistencies. However, the results of Cooper and Hutson²⁰ indicate that the effects of three-body forces can indeed be of the same magnitude as the current disagreement between experiment and theory and that it should be possible to directly determine these forces from the spectra reported in this work. Such efforts are in progress.

ACKNOWLEDGMENTS

The authors wish to thank Jeremy Hutson and Adam Cooper for providing the results of preliminary calculations and for helpful discussions throughout the course of this work. This work was supported by the National Science Foundation (Grant No. CHE-9123335). M.J.E. thanks the University of California for a graduate fellowship.

- ¹G. Chalasinski, S. M. Cybulski, M. M. Szczesniak, and S. Scheiner, J. Chem. Phys. **91**, 7048 (1989).
- ²M. M. Szczesniak, R. Kendall, and G. Chalasinski, J. Chem. Phys. 95, 5169 (1991).
- ³G. Chalasinski, M. M. Szczesniak, and S. M. Cybulski, J. Chem. Phys. 92, 2481 (1990).
- ⁴G. Chalasinski, M. M. Szczesniak, and S. Scheiner, J. Chem. Phys. 94, 2807 (1991).
- ⁵G. Chalasinski, M. M. Szczesniak, and B. Kukawska-Tarnawska, J. Chem. Phys. 94, 6677 (1991).

- ⁶A. R. Cooper, S. Jain, and J. M. Hutson, J. Chem. Phys. 98, 2160 (1993).
- ⁷J. M. Hutson, J. Phys. Chem. 96, 4237 (1992).
- ⁸J. M. Hutson, J. Chem. Phys. 96, 6752 (1992).
- ⁹R. C. Cohen and R. J. Saykally, J. Phys. Chem. **94**, 7991 (1990); J. Chem. Phys. (submitted).
- ¹⁰C. A. Schmuttenmaer, J. G. Loeser, and R. J. Saykally (unpublished).
 ¹¹S. Novick, K. Leopold, and W. Klemperer, in *Atomic and Molecular Clusters*, edited by E. Bernstein (Elsevier, Amsterdam, 1990).
- ¹²R. C. Cohen and R. J. Saykally, J. Phys. Chem. **96**, 1024 (1992).
- ¹³D. J. Nesbitt, Chem. Rev. **88**, 843 (1988).
- ¹⁴ M. J. Elrod, B. C. Host, D. W. Steyert, and R. J. Saykally, Mol. Phys. (in press).
- ¹⁵J. M. Hutson, J. A. Beswick, and N. Halberstadt, J. Chem. Phys. 90, 1337 (1989).
- ¹⁶ M. J. Elrod, D. W. Steyert, and R. J. Saykally, J. Chem. Phys. 94, 58 (1991).
- ¹⁷ M. J. Elrod, D. W. Steyert, and R. J. Saykally, J. Chem. Phys. **95**, 3182 (1991).
- ¹⁸A. McIlroy, R. Lascola, C. M. Lovejoy, and D. J. Nesbitt, J. Phys. Chem. **95**, 2636 (1991).
- ¹⁹A. McIlroy and D. J. Nesbitt, J. Chem. Phys. 97, 6044 (1992).
- ²⁰A. R. Cooper and J. M. Hutson, J. Chem. Phys. 98, 5337 (1993), preceding paper.
- ²¹G. A. Blake, K. B. Laughlin, K. L. Busarow, R. C. Cohen, D. Gwo, C. A. Schmuttenmaer, D. W. Steyert, and R. J. Saykally, Rev. Sci. Instrum. 62, 1701 (1991).
- ²²G. A. Blake, K. B. Laughlin, K. L. Busarow, R. C. Cohen, D. Gwo, C. A. Schmuttenmaer, D. W. Steyert, and R. J. Saykally, Rev. Sci. Instrum. 62, 1693 (1991).
- ²³I. G. Nolt, J. V. Radostitz, G. DiLonardo, K. M. Evenson, D. A. Jennings, K. R. Leopold, M. D. Vanek, L. R. Zink, A. Hinz, and K. V. Chance, J. Mol. Spectrosc. **125**, 274 (1987).
- ²⁴T. D. Klots, C. Chuang, R. S. Ruoff, T. Emilsson, and H. S. Gutowsky, J. Chem. Phys. 86, 5315 (1987).
- ²⁵T. D. Klots and H. S. Gutowsky, J. Chem. Phys. 91, 63 (1989).
- ²⁶J. K. G. Watson, J. Chem. Phys. 46, 1935 (1967).
- ²⁷ H. P. Benz, A. Bauder, and Hs. H. Gunthard, J. Mol. Spectrosc. 21, 156 (1966).
- ²⁸ P. R. Bunker, *Molecular Symmetry and Spectroscopy* (Academic, New York, 1979).
- ²⁹S. W. Reeve, M. A. Dvorak, D. W. Firth, and K. R. Leopold, Chem. Phys. Lett. **181**, 259 (1991).
- ³⁰A. R. Cooper and J. M. Hutson (private communication).
- ³¹J. M. Hutson, J. Chem. Phys. 89, 4550 (1988).