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f(s,t) =#{(x,y) EN?: 2y —x <2t —s5, x —y <s—t}.

0<2t<s 0<s<t

s Bls+3+ 152+ 15)+1 if t <'s <2t
f(s, t) = sf—L%Js—tg—l—%—l—L%Jz—i—L%J—l—l if 0 <2t <s,
C+3d+1 if0<s<t.

Example courtesy of Sven Verdoolaege's barvinok.
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In all of these examples, S; is defined with linear inequalities
a-x < b(t), and a does not depend on t.

1
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Let S; is the set of integer points in a polytope defined with linear
inequalities a(t) - x < b(t), where a(t) and b(t) are polynomials in
T.

Then |S;| is eventually a quasi-polynomial [Sheng Chen, Nan Li,
Steven Sam].
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Given relatively prime a; € Z, define the Frobenius number
F(a1,...,an) to be the largest integer not in the semigroup
generated by the a;. Let oy € Z,, 5; € Z.

Then F(agt + P1,...,ant + By) is eventually a quasi-polynomial
in t [Bjarke Roune, KW; inspired by Stan Wagon].

Defining the Frobenius number requires heavy use of quantifiers:

39/\1,)\2€N2 53 =X -7+ X -10.
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» Dominance: If f # g, then we eventually either always have
f(t) > g(t) or always have g(t) > f(t).

» Rounding: 8 converges to a polynomial, and [gEgJ is
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1b. When nonempty, one can eventually specify some p(t) € S¢,

where p(t) has quasi-polynomial entries.

One can eventually specify some p(t) € S; maximizing some
c - x. (Frobenius Problem)

1d. If |S¢] < k for all t, then one can specify

1lc.

St = {pi(t),pia(t), ..., pir; (1)}

for sufficiently large t = i mod m (as in Calegari-Walker).
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generators.

» Given a parametric matrix A(t) defining a toric ideal /4, we
can do it for the set of (u™,u~) € N2¢ such that x*" — x" is
an element of some Grobner basis of /4.

» We can do it for test sets, neighborhood complexes, ...
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