The Unreasonable Ubiquitousness of Quasi-polynomials

Kevin Woods, Oberlin College

Reasonable

$S_{t}=\left\{(x, y) \in \mathbb{Z}^{2}:|x| \leq \frac{t}{2}\right.$,
$\left.|y| \leq \frac{t}{2}\right\}$

$\left|S_{t}\right|= \begin{cases}t^{2}, & \text { for } t \text { odd, } \\ (t+1)^{2}, & \text { for } t \text { even. }\end{cases}$

$\left|S_{s, t}\right|=\left\{\begin{array}{l}\frac{s^{2}}{2}-\left|\frac{s}{2}\right| s+\frac{s}{2}+\left|\frac{s}{2}\right|^{2}+\left|\frac{s}{2}\right|+1, \\ s t-\left|\frac{s}{2}\right| s-\frac{t^{2}}{2}+\frac{t}{2}+\left|\frac{s}{2}\right|^{2}+\left|\frac{s}{2}\right|+1, \\ \frac{t^{2}}{2}+\frac{3 t}{2}+1 .\end{array}\right.$

Unreasonable

$S_{t}=\left\{(x, y) \in \mathbb{Z}^{2}:|2 x+(2 t-2) y| \leq t^{2}-2 t+2,|(2 t-2) x-2 y| \leq t^{2}-2 t+2\right\}$

$\left|S_{t}\right|=\left\{\begin{array}{l}t^{2}-2 t+2, \\ t^{2}-2 t+5 .\end{array}\right.$
Vertices of the convex hull of $S_{t}=$

Conjectures

Let $S_{t} \subseteq \mathbb{Z}^{n}$ be defined with quantifiers, boolean operations, and linear inequalities with coefficients polynomial in t. Then, eventually, (cf. top-right box)

1. The set $\left\{t: S_{t}\right.$ is nonempty $\}$ is periodic.
2. $\left|S_{t}\right|$ is a quasi-polynomial.
3. For fixed $c, \max _{x \in S_{t}} c \cdot x$ is a quasi-polynomial, and any fixed number of elements in S_{t} can be written as quasi-polynomials.
4. $\sum_{\mathbf{a} \in S_{t}} \mathrm{x}^{\mathrm{a}}$ can be written as a rational function with exponents quasi-polynomial in t.

Conjectures are not true with more than one parameter:
If $S_{s, t}=\left\{(x, y) \in \mathbb{N}^{2}: s x+t y=s t\right\}$
$=\operatorname{conv}\{(t, 0),(0, s)\}$,
then $\left|S_{s, t}\right|=\operatorname{gcd}(s, t)+1$.
The Frobenius number of $t, t+1, t+4$
$=$ the largest integer not expressible as a sum of t 's, $(t+1)$'s, and $(t+4)$'s

$$
= \begin{cases}\frac{1}{4} t^{2}+2 t-1, & \text { if } t \equiv 0 \bmod 4, \\ \frac{1}{4} t^{2}+\frac{7}{4} t-2, & \text { if } t \equiv 1 \bmod 4, \\ \frac{1}{4} t^{2}+\frac{3}{2} t-3, & \text { if } t \equiv 2 \bmod 4, \\ \frac{1}{4} t^{2}+\frac{5}{4} t-1, & \text { if } t \equiv 3 \bmod 4 .\end{cases}
$$

References

- Alexander Barvinok, "Integer points in polyhedra".
- Kevin Woods, "Presburger arithmetic, rational generating functions, and quasi-polynomials".
- Danny Calegari and Alden Walker, "Integer hulls of linear polyhedra and scl in families".
- Sheng Chen, Nan Li, and Steven Sam, "Generalized Ehrhart polynomials".
- Bjarke Roune and Kevin Woods, "The parametric Frobenius problem"

