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Counting Problems

Define c(s, t) by
1

2 02w = s A - A w)

s,t

Is there a “nice” formula for c(s, t)?
This talk will focus on finding one.



An Example

Zc(t)zt: (112)3 =(14+z+-)1+z+--)1+z+-)

t
Let's compute c(t).
c(t)=#{a,b,c€Z: a,b,c>0, a+b+c=t}

=#{a,beZ: a,b>0, a+ b <t}
= #(P:NZ?),

for some polytope P;.
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An Example

ldea:

» For fixed t, look at
>
(a,b)eP;NZ2

» Plugin x=y=1.

» Investigate what happens as t changes.



An Example
c(t)=#{a,beZ: a,b>0, a+ b < t}.

Example: t = 2.

c(2) = xO° + x1y® 4 x2y0 4 X011 xlyl 4 502 1 —6.
X=y=



An Example

What happens
when t changes?
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(1=x)(1—-y)
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A

(1=x)(1-y)

Xt+1

(1=x)(1—x"1y)

Xflyt+2

(1-x"1y)(1-y)



An Example

A
1
=1 —y)
xttl
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X*l t+2
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This is Brion's Theorem.

Note: t only appears in exponents of numerators!
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We've found the generating function. Now plug in x = 1, then
y=1
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But x =1 is a pole of the first term!



An Example

1 Xt+1 Xflyt+2

-0y @00 xh)  T-x)d-y)

We've found the generating function. Now plug in x = 1, then
y=1

But x =1 is a pole of the first term!

When summed, poles must cancel.



An Example

For each term f, need to find ag.

f=ai1(x—1)"1+a+a(x—1)+- -

(x—l)f:a_1—I—ao(x—l)—l—al(x—1)2+---

0
a(x—l)f:ao+2al(x—1)+
0

x| =
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2nd term:
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2nd term:
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An Example

2nd term:
t4+1
= (1- X))El — x1y)
(x—1)f = 1_Xx“y
1 Y .
a(i(x —1)f = (t+1)x* (tl—_xx)lf})/)—2 X"y - xtt

Taking the derivative creates polynomials in t.



An Example

Putting the three terms together, we have

(t+1)(1—y)+y—y"?

(1-y)?

Plugging in y = 1 as well, the final answer is

(t+1)(t+2)
I S



An Example

Recap:

» Find the generating function. Exponentials in numerator are
linear functions of t. Everything else is constant with t.

» Plug in x = y = 1. Taking derivatives creates a polynomial in
t.



An Example

Recap:

» Find the generating function. Exponentials in numerator are
linear functions of t. Everything else is constant with t.

» Plug in x = y = 1. Taking derivatives creates a polynomial in
t.

This works in general.
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This example is misleadingly simple.
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Not all cones have such nice generating functions, only unimodular
cones do.
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The vertices of the polytopes are not always integral.
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Lie 3

With more than one parameter, vertices may disappear.

syt — 1
2 cls )W = N T A W)

s,t

Corresponding polytope is

{a,beZ: a>0, b>0,2b—a<2t—s, a—b<s—t}
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Lie 3

End up with
S 5ls+ 5+ 52+ 3] +1 ift <s <ot
c(s,t)={st—[3)s— 5+ L+ [52+ (3] +1 fo<2t<s.
L ifo<s<t

Example courtesy of Sven Verdoolaege's barvinok.



Two Sides of the Same Coin

Heads: The nimble a Rational Generating Function

Z c(s, t)zw!

s,t
Tails: The concrete “piecewise step-polynomial”.
You don’t have to choose your favorite representation.

You can translate back and forth in polynomial time.
[Verdoolaege, W]



Thank You!




Two Sides of the Same Coin

Heads: a Rational Generating Function.

A function in the form

flz) = Zo"(l — zbin)(1 — zb2) - (1 — 2P%)’

iel

where z € C”, | is a finite set, a; € Q, p; € Z", and by; € Z" \ {0}.



Two Sides of the Same Coin

Tails: a Piecewise Step-polynomial.
Defined piecewise on polyhedral regions Q;:

c(s) = ci(s), for s € Q;, where

m djj
ci(s) = Z i H LPijk(s) ]
j=1 k=1

with ajj € Q and pjjc are degree one polynomials over Q.



Two Sides of the Same Coin

» Rational generating functions are nimble.

» Piecewise Step-polynomials are concrete.



Two Sides of the Same Coin

Theorem
Fix d and k. There is a polynomial time algorithm that:

> Given a rational generating function f(x) in d variables, with
at most k binomials in each denominator, computes the
piecewise step polynomial c(s) such that

> Given a piecewise step-polynomial ¢ : Z9 — 7. of degree at
most k, computes the rational generating function f.



Two Sides of the Same Coin

Given a rational generating function,

f(z) = Zai(l ~ba)(1 = gha) - (1= )

iel

» Each term is a vector partition function. Compute each, and
combine at the end.

» Divide parameter space into pieces, based on the vertices of
the corresponding polytope, and compute it for each piece.

» Brion: Break up into cones. The vertex of each cone is the
floor of a linear function.

» Barvinok: Decompose each cone into unimodular cones.

» Plug in x = 1. Taking derivatives to do this will create
step-polynomials.
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Two Sides of the Same Coin

Note: This proof
» Shows that c(s) is a piecewise quasi-polynomial.
» Gives an explicit formula for c(s).

» Computes a concise formula quickly (in polynomial time).



Two Sides of the Same Coin

Conversely, given a piecewise step-polynomial,

» For each step-monomial, create a polytope P C R? x R* such
that
c(s) =#{acZK: (s,a) € P}.

» Find the rational generating function
f(z,x) = Z z°x%.
(s,a)ePNZAtk

» Compute

f(z,1) =) c(s)z".

S
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Thank You!




