Counting with Rational Generating Functions

Kevin Woods, Oberlin College
(joint work with Sven Verdoolaege, Universiteit Leiden)

Counting Problems

Example: $P=\left[-\frac{1}{2}, \frac{1}{2}\right] \times\left[-\frac{1}{2}, \frac{1}{2}\right] \subseteq \mathbb{R}^{2}$.

Define $c(t)=\#\left\{t P \cap \mathbb{Z}^{2}\right\}$, for $t \in \mathbb{Z}_{+}$.

Counting Problems

Example: $P=\left[-\frac{1}{2}, \frac{1}{2}\right] \times\left[-\frac{1}{2}, \frac{1}{2}\right] \subseteq \mathbb{R}^{2}$.

Define $c(t)=\#\left\{t P \cap \mathbb{Z}^{2}\right\}$, for $t \in \mathbb{Z}_{+}$.

$$
c(t)=\left\{\begin{array}{ll}
(t+1)^{2}, & \text { for } t \text { even } \\
t^{2}, & \text { for } t \text { odd }
\end{array}=\left(2\left\lfloor\frac{t}{2}\right\rfloor+1\right)^{2} .\right.
$$

Counting Problems

Define $c(s, t)$ by

$$
\sum_{s, t} c(s, t) z^{s} w^{t}=\frac{1}{(1-z w)\left(1-z^{2} w\right)(1-z)(1-w)} .
$$

Is there a "nice" formula for $c(s, t)$?
This talk will focus on finding one.

An Example

$$
\sum_{t} c(t) z^{t}=\frac{1}{(1-z)^{3}}=(1+z+\cdots)(1+z+\cdots)(1+z+\cdots)
$$

Let's compute $c(t)$.

$$
\begin{aligned}
c(t) & =\#\{a, b, c \in \mathbb{Z}: a, b, c \geq 0, a+b+c=t\} \\
& =\#\{a, b \in \mathbb{Z}: a, b \geq 0, a+b \leq t\} \\
& =\#\left(P_{t} \cap \mathbb{Z}^{2}\right)
\end{aligned}
$$

for some polytope P_{t}.

An Example

$$
\sum_{t} c(t) z^{t}=\frac{1}{(1-z)^{3}}=(1+z+\cdots)(1+z+\cdots)(1+z+\cdots)
$$

Let's compute $c(t)$.

$$
\begin{aligned}
c(t) & =\#\{a, b, c \in \mathbb{Z}: a, b, c \geq 0, a+b+c=t\} \\
& =\#\{a, b \in \mathbb{Z}: a, b \geq 0, a+b \leq t\} \\
& =\#\left(P_{t} \cap \mathbb{Z}^{2}\right)
\end{aligned}
$$

for some polytope P_{t}.

An Example

$$
\sum_{t} c(t) z^{t}=\frac{1}{(1-z)^{3}}=(1+z+\cdots)(1+z+\cdots)(1+z+\cdots)
$$

Let's compute $c(t)$.

$$
\begin{aligned}
c(t) & =\#\{a, b, c \in \mathbb{Z}: a, b, c \geq 0, a+b+c=t\} \\
& =\#\{a, b \in \mathbb{Z}: a, b \geq 0, a+b \leq t\} \\
& =\#\left(P_{t} \cap \mathbb{Z}^{2}\right)
\end{aligned}
$$

for some polytope P_{t}.

An Example

$$
\sum_{t} c(t) z^{t}=\frac{1}{(1-z)^{3}}=(1+z+\cdots)(1+z+\cdots)(1+z+\cdots)
$$

Let's compute $c(t)$.

$$
\begin{aligned}
c(t) & =\#\{a, b, c \in \mathbb{Z}: a, b, c \geq 0, a+b+c=t\} \\
& =\#\{a, b \in \mathbb{Z}: a, b \geq 0, a+b \leq t\} \\
& =\#\left(P_{t} \cap \mathbb{Z}^{2}\right)
\end{aligned}
$$

for some polytope P_{t}.

An Example

Idea:

- For fixed t, look at

$$
\sum_{, b) \in P_{t} \cap \mathbb{Z}^{2}} x^{a} y^{b} .
$$

- Plug in $x=y=1$.
- Investigate what happens as t changes.

An Example

$$
c(t)=\#\{a, b \in \mathbb{Z}: a, b \geq 0, a+b \leq t\} .
$$

Example: $t=2$.

$$
c(2)=x^{0} y^{0}+x^{1} y^{0}+x^{2} y^{0}+x^{0} y^{1}+x^{1} y^{1}+\left.x^{0} y^{2}\right|_{x=y=1}=6
$$

An Example

What happens when t changes?

An Example

$$
\begin{array}{r}
\left(1+x+x^{2}+\cdots\right) \\
\cdot\left(1+y+y^{2}+\cdots\right) \\
=\frac{1}{(1-x)(1-y)}
\end{array}
$$

An Example

An Example

$$
\begin{aligned}
& \frac{1}{(1-x)(1-y)} \\
- & \frac{x^{t+1}}{(1-x)\left(1-x^{-1} y\right)}
\end{aligned}
$$

An Example

$$
+\frac{x^{-1} y^{t+2}}{\left(1-x^{-1} y\right)(1-y)}
$$

An Example

$$
\begin{aligned}
& \frac{1}{(1-x)(1-y)} \\
- & \frac{x^{t+1}}{(1-x)\left(1-x^{-1} y\right)} \\
+ & \frac{x^{-1} y^{t+2}}{\left(1-x^{-1} y\right)(1-y)}
\end{aligned}
$$

An Example

$$
\begin{aligned}
& \frac{1}{(1-x)(1-y)} \\
- & \frac{x^{t+1}}{(1-x)\left(1-x^{-1} y\right)} \\
+ & \frac{x^{-1} y^{t+2}}{\left(1-x^{-1} y\right)(1-y)}
\end{aligned}
$$

This is Brion's Theorem.

Note: t only appears in exponents of numerators!

An Example

$$
\frac{1}{(1-x)(1-y)}-\frac{x^{t+1}}{(1-x)\left(1-x^{-1} y\right)}+\frac{x^{-1} y^{t+2}}{\left(1-x^{-1} y\right)(1-y)}
$$

We've found the generating function. Now plug in $x=1$, then $y=1$.

An Example

$$
\frac{1}{(1-x)(1-y)}-\frac{x^{t+1}}{(1-x)\left(1-x^{-1} y\right)}+\frac{x^{-1} y^{t+2}}{\left(1-x^{-1} y\right)(1-y)}
$$

We've found the generating function. Now plug in $x=1$, then $y=1$.

But $x=1$ is a pole of the first term!

An Example

$$
\frac{1}{(1-x)(1-y)}-\frac{x^{t+1}}{(1-x)\left(1-x^{-1} y\right)}+\frac{x^{-1} y^{t+2}}{\left(1-x^{-1} y\right)(1-y)}
$$

We've found the generating function. Now plug in $x=1$, then $y=1$.

But $x=1$ is a pole of the first term!

When summed, poles must cancel.

An Example

For each term f, need to find a_{0}.

$$
\begin{aligned}
f & =a_{-1}(x-1)^{-1}+a_{0}+a_{1}(x-1)+\cdots \\
(x-1) f & =a_{-1}+a_{0}(x-1)+a_{1}(x-1)^{2}+\cdots \\
\frac{\partial}{\partial x}(x-1) f & =a_{0}+2 a_{1}(x-1)+\cdots \\
\left.\frac{\partial}{\partial x}(x-1) f\right|_{x=1} & =a_{0}
\end{aligned}
$$

An Example

For each term f, need to find a_{0}.

$$
\begin{aligned}
f & =a_{-1}(x-1)^{-1}+a_{0}+a_{1}(x-1)+\cdots \\
(x-1) f & =a_{-1}+a_{0}(x-1)+a_{1}(x-1)^{2}+\cdots \\
\frac{\partial}{\partial x}(x-1) f & =a_{0}+2 a_{1}(x-1)+\cdots \\
\left.\frac{\partial}{\partial x}(x-1) f\right|_{x=1} & =a_{0}
\end{aligned}
$$

An Example

For each term f, need to find a_{0}.

$$
\begin{aligned}
f & =a_{-1}(x-1)^{-1}+a_{0}+a_{1}(x-1)+\cdots \\
(x-1) f & =a_{-1}+a_{0}(x-1)+a_{1}(x-1)^{2}+\cdots \\
\frac{\partial}{\partial x}(x-1) f & =a_{0}+2 a_{1}(x-1)+\cdots \\
\left.\frac{\partial}{\partial x}(x-1) f\right|_{x=1} & =a_{0}
\end{aligned}
$$

An Example

For each term f, need to find a_{0}.

$$
\begin{aligned}
f & =a_{-1}(x-1)^{-1}+a_{0}+a_{1}(x-1)+\cdots \\
(x-1) f & =a_{-1}+a_{0}(x-1)+a_{1}(x-1)^{2}+\cdots \\
\frac{\partial}{\partial x}(x-1) f & =a_{0}+2 a_{1}(x-1)+\cdots \\
\left.\frac{\partial}{\partial x}(x-1) f\right|_{x=1} & =a_{0}
\end{aligned}
$$

An Example

2nd term:

$$
\begin{aligned}
f & =-\frac{x^{t+1}}{(1-x)\left(1-x^{-1} y\right)} \\
(x-1) f & =\frac{x^{t+1}}{1-x^{-1} y} \\
\frac{\partial}{\partial x}(x-1) f & =\frac{(t+1) x^{t} \cdot\left(1-x^{-1} y\right)-x^{-2} y \cdot x^{t+1}}{\left(1-x^{-1} y\right)^{2}} \\
\left.\frac{\partial}{\partial x}(x-1) f\right|_{x=1} & =\frac{(t+1)(1-y)-y}{(1-y)^{2}} .
\end{aligned}
$$

An Example

2nd term:

$$
\begin{aligned}
f & =-\frac{x^{t+1}}{(1-x)\left(1-x^{-1} y\right)} \\
(x-1) f & =\frac{x^{t+1}}{1-x^{-1} y} \\
\frac{\partial}{\partial x}(x-1) f & =\frac{(t+1) x^{t} \cdot\left(1-x^{-1} y\right)-x^{-2} y \cdot x^{t+1}}{\left(1-x^{-1} y\right)^{2}} \\
\left.\frac{\partial}{\partial x}(x-1) f\right|_{x=1} & =\frac{(t+1)(1-y)-y}{(1-y)^{2}} .
\end{aligned}
$$

An Example

2nd term:

$$
\begin{aligned}
f & =-\frac{x^{t+1}}{(1-x)\left(1-x^{-1} y\right)} \\
(x-1) f & =\frac{x^{t+1}}{1-x^{-1} y} \\
\frac{\partial}{\partial x}(x-1) f & =\frac{(t+1) x^{t} \cdot\left(1-x^{-1} y\right)-x^{-2} y \cdot x^{t+1}}{\left(1-x^{-1} y\right)^{2}} \\
\left.\frac{\partial}{\partial x}(x-1) f\right|_{x=1} & =\frac{(t+1)(1-y)-y}{(1-y)^{2}} .
\end{aligned}
$$

An Example

2nd term:

$$
\begin{aligned}
f & =-\frac{x^{t+1}}{(1-x)\left(1-x^{-1} y\right)} \\
(x-1) f & =\frac{x^{t+1}}{1-x^{-1} y} \\
\frac{\partial}{\partial x}(x-1) f & =\frac{(t+1) x^{t} \cdot\left(1-x^{-1} y\right)-x^{-2} y \cdot x^{t+1}}{\left(1-x^{-1} y\right)^{2}} \\
\left.\frac{\partial}{\partial x}(x-1) f\right|_{x=1} & =\frac{(t+1)(1-y)-y}{(1-y)^{2}} .
\end{aligned}
$$

An Example

2nd term:

$$
\begin{aligned}
f & =-\frac{x^{t+1}}{(1-x)\left(1-x^{-1} y\right)} \\
(x-1) f & =\frac{x^{t+1}}{1-x^{-1} y} \\
\frac{\partial}{\partial x}(x-1) f & =\frac{(t+1) x^{t} \cdot\left(1-x^{-1} y\right)-x^{-2} y \cdot x^{t+1}}{\left(1-x^{-1} y\right)^{2}} \\
\left.\frac{\partial}{\partial x}(x-1) f\right|_{x=1} & =\frac{(t+1)(1-y)-y}{(1-y)^{2}} .
\end{aligned}
$$

Taking the derivative creates polynomials in t.

An Example

Putting the three terms together, we have

$$
\frac{(t+1)(1-y)+y-y^{t+2}}{(1-y)^{2}}
$$

Plugging in $y=1$ as well, the final answer is

$$
\frac{(t+1)(t+2)}{2}
$$

An Example

Recap:

- Find the generating function. Exponentials in numerator are linear functions of t. Everything else is constant with t.
- Plug in $x=y=1$. Taking derivatives creates a polynomial in t.

An Example

Recap:

- Find the generating function. Exponentials in numerator are linear functions of t. Everything else is constant with t.
- Plug in $x=y=1$. Taking derivatives creates a polynomial in t.

This works in general.

Liar!

Liar!

This example is misleadingly simple.

Lie 1

Not all cones have such nice generating functions, only unimodular cones do.

Lie 1

Not all cones have such nice generating functions, only unimodular cones do.

Barvinok: Any cone can be written as a sum and difference of unimodular cones (in polynomial time).

Lie 1

Not all cones have such nice generating functions, only unimodular cones do.

Barvinok: Any cone can be written as a sum and difference of unimodular cones (in polynomial time).

Lie 1

Not all cones have such nice generating functions, only unimodular cones do.

Barvinok: Any cone can be written as a sum and difference of unimodular cones (in polynomial time).

Lie 1

Not all cones have such nice generating functions, only unimodular cones do.

Barvinok: Any cone can be written as a sum and difference of unimodular cones (in polynomial time).

Lie 2

The vertices of the polytopes are not always integral.

Lie 2

The vertices of the polytopes are not always integral.

Lie 2

The vertices of the polytopes are not always integral.

Lie 2

The vertices of the polytopes are not always integral.

vertex of red cone is $\left(\left\lfloor\frac{t+2}{2}\right\rfloor, 0\right)$.

Lie 3

With more than one parameter, vertices may disappear.

$$
\sum_{s, t} c(s, t) z^{s} w^{t}=\frac{1}{(1-z w)\left(1-z^{2} w\right)(1-z)(1-w)}
$$

Corresponding polytope is

$$
\{a, b \in \mathbb{Z}: a \geq 0, b \geq 0,2 b-a \leq 2 t-s, a-b \leq s-t\} .
$$

Lie 3

With more than one parameter, vertices may disappear.

$$
\sum_{s, t} c(s, t) z^{s} w^{t}=\frac{1}{(1-z w)\left(1-z^{2} w\right)(1-z)(1-w)}
$$

Corresponding polytope is

$$
\{a, b \in \mathbb{Z}: a \geq 0, b \geq 0,2 b-a \leq 2 t-s, a-b \leq s-t\} .
$$

Lie 3

With more than one parameter, vertices may disappear.

$$
\sum_{s, t} c(s, t) z^{s} w^{t}=\frac{1}{(1-z w)\left(1-z^{2} w\right)(1-z)(1-w)}
$$

Corresponding polytope is

$$
\{a, b \in \mathbb{Z}: a \geq 0, b \geq 0,2 b-a \leq 2 t-s, a-b \leq s-t\} .
$$

Lie 3

End up with

$$
c(s, t)= \begin{cases}\frac{s^{2}}{2}-\left\lfloor\frac{s}{2}\right\rfloor s+\frac{s}{2}+\left\lfloor\frac{s}{2}\right\rfloor 2+\left\lfloor\frac{s}{2}\right\rfloor+1 & \text { if } t \leq s \leq 2 t \\ s t-\left\lfloor\frac{s}{2}\right\rfloor s-\frac{t^{2}}{2}+\frac{t}{2}+\left\lfloor\frac{s}{2}\right\rfloor^{2}+\left\lfloor\frac{s}{2}\right\rfloor+1 & \text { if } 0 \leq 2 t \leq s \\ \frac{t^{2}}{2}+\frac{3 t}{2}+1 & \text { if } 0 \leq s \leq t\end{cases}
$$

Example courtesy of Sven Verdoolaege's barvinok.

Two Sides of the Same Coin

Heads: The nimble a Rational Generating Function

$$
\sum_{s, t} c(s, t) z^{s} w^{t}
$$

Tails: The concrete "piecewise step-polynomial".
You don't have to choose your favorite representation. You can translate back and forth in polynomial time. [Verdoolaege, W]

Thank You!

Two Sides of the Same Coin

Heads: a Rational Generating Function.
A function in the form

$$
f(\mathbf{z})=\sum_{i \in I} \alpha_{i} \frac{\mathbf{z}^{\mathbf{p}_{\mathbf{i}}}}{\left(1-\mathbf{z}^{\mathbf{b}_{\mathbf{i}_{1}}}\right)\left(1-\mathbf{z}^{\mathbf{b}_{\mathbf{i}}}\right) \cdots\left(1-\mathbf{z}^{\mathbf{b}_{\mathbf{k}_{\mathbf{i}}}}\right)},
$$

where $\mathbf{z} \in \mathbb{C}^{n}, l$ is a finite set, $\alpha_{i} \in \mathbb{Q}, \mathbf{p}_{\mathbf{i}} \in \mathbb{Z}^{\mathbf{n}}$, and $\mathbf{b}_{\mathbf{i j}} \in \mathbb{Z}^{\mathbf{n}} \backslash\{\mathbf{0}\}$.

Two Sides of the Same Coin

Tails: a Piecewise Step-polynomial.

Defined piecewise on polyhedral regions Q_{i} :
$c(\mathbf{s})=c_{i}(\mathbf{s})$, for $\mathbf{s} \in Q_{i}$, where

$$
c_{i}(\mathbf{s})=\sum_{j=1}^{m} \alpha_{i j} \prod_{k=1}^{d_{i j}}\left\lfloor p_{i j k}(\mathbf{s})\right\rfloor
$$

with $\alpha_{i j} \in \mathbb{Q}$ and $p_{i j k}$ are degree one polynomials over \mathbb{Q}.

Two Sides of the Same Coin

- Rational generating functions are nimble.
- Piecewise Step-polynomials are concrete.

Two Sides of the Same Coin

Theorem
Fix d and k. There is a polynomial time algorithm that:

- Given a rational generating function $f(\mathbf{x})$ in d variables, with at most k binomials in each denominator, computes the piecewise step polynomial c(s) such that

$$
f(\mathbf{x})=\sum_{\mathbf{s}} c(\mathbf{s}) \mathbf{x}^{\mathbf{s}} .
$$

- Given a piecewise step-polynomial $c: \mathbb{Z}^{d} \rightarrow \mathbb{Z}$ of degree at most k, computes the rational generating function f.

Two Sides of the Same Coin

Given a rational generating function,

$$
f(\mathbf{z})=\sum_{i \in I} \alpha_{i} \frac{\mathbf{z}^{\mathbf{p}_{\mathbf{i}}}}{\left(1-\mathbf{z}^{\mathbf{b}_{\mathbf{i}}}\right)\left(1-\mathbf{z}^{\mathbf{b}_{\mathbf{i}}}\right) \cdots\left(1-\mathbf{z}^{\mathbf{b}_{\mathbf{i}_{\mathbf{i}}}}\right)}
$$

- Each term is a vector partition function. Compute each, and combine at the end.
- Divide parameter space into pieces, based on the vertices of the corresponding polytope, and compute it for each piece.
- Brion: Break up into cones. The vertex of each cone is the floor of a linear function.
- Barvinok: Decompose each cone into unimodular cones.
- Plug in $\mathbf{x}=\mathbf{1}$. Taking derivatives to do this will create step-polynomials.

Two Sides of the Same Coin

Given a rational generating function,

$$
f(\mathbf{z})=\sum_{i \in I} \alpha_{i} \frac{\mathbf{z}^{\mathbf{p}_{\mathbf{i}}}}{\left(1-\mathbf{z}^{\mathbf{b}_{\mathbf{i}}}\right)\left(1-\mathbf{z}^{\mathbf{b}_{\mathbf{i}}}\right) \cdots\left(1-\mathbf{z}^{\mathbf{b}_{\mathbf{i k}_{\mathbf{i}}}}\right)}
$$

- Each term is a vector partition function. Compute each, and combine at the end.
- Divide parameter space into pieces, based on the vertices of the corresponding polytope, and compute it for each piece.
- Brion: Break up into cones. The vertex of each cone is the floor of a linear function.
- Barvinok: Decompose each cone into unimodular cones.
- Plug in $\mathbf{x}=\mathbf{1}$. Taking derivatives to do this will create step-polynomials.

Two Sides of the Same Coin

Given a rational generating function,

$$
f(\mathbf{z})=\sum_{i \in I} \alpha_{i} \frac{\mathbf{z}^{\mathbf{p}_{\mathbf{i}}}}{\left(1-\mathbf{z}^{\mathbf{b}_{\mathbf{i}}}\right)\left(1-\mathbf{z}^{\mathbf{b}_{\mathbf{i}}}\right) \cdots\left(1-\mathbf{z}^{\mathbf{b}_{\mathbf{i k}_{\mathbf{i}}}}\right)}
$$

- Each term is a vector partition function. Compute each, and combine at the end.
- Divide parameter space into pieces, based on the vertices of the corresponding polytope, and compute it for each piece.
- Brion: Break up into cones. The vertex of each cone is the floor of a linear function.
- Barvinok: Decompose each cone into unimodular cones.
- Plug in $\mathbf{x}=\mathbf{1}$. Taking derivatives to do this will create step-polynomials.

Two Sides of the Same Coin

Given a rational generating function,

$$
f(\mathbf{z})=\sum_{i \in I} \alpha_{i} \frac{\mathbf{z}^{\mathbf{p}_{\mathbf{i}}}}{\left(1-\mathbf{z}^{\mathbf{b}_{\mathbf{i}}}\right)\left(1-\mathbf{z}^{\mathbf{b}_{\mathbf{i}}}\right) \cdots\left(1-\mathbf{z}^{\mathbf{b}_{\mathbf{i}_{\mathbf{i}}}}\right)}
$$

- Each term is a vector partition function. Compute each, and combine at the end.
- Divide parameter space into pieces, based on the vertices of the corresponding polytope, and compute it for each piece.
- Brion: Break up into cones. The vertex of each cone is the floor of a linear function.
- Barvinok: Decompose each cone into unimodular cones.
- Plug in $\mathbf{x}=\mathbf{1}$. Taking derivatives to do this will create step-polynomials.

Two Sides of the Same Coin

Given a rational generating function,

$$
f(\mathbf{z})=\sum_{i \in I} \alpha_{i} \frac{\mathbf{z}^{\mathbf{p}_{\mathbf{i}}}}{\left(1-\mathbf{z}^{\mathbf{b}_{\mathbf{i}}}\right)\left(1-\mathbf{z}^{\mathbf{b}_{\mathbf{i}}}\right) \cdots\left(1-\mathbf{z}^{\mathbf{b}_{\mathbf{i}_{\mathbf{i}}}}\right)}
$$

- Each term is a vector partition function. Compute each, and combine at the end.
- Divide parameter space into pieces, based on the vertices of the corresponding polytope, and compute it for each piece.
- Brion: Break up into cones. The vertex of each cone is the floor of a linear function.
- Barvinok: Decompose each cone into unimodular cones.
- Plug in $\mathbf{x}=\mathbf{1}$. Taking derivatives to do this will create step-polynomials.

Two Sides of the Same Coin

Note: This proof

- Shows that $c(s)$ is a piecewise quasi-polynomial.
- Gives an explicit formula for $c(s)$.
- Computes a concise formula quickly (in polynomial time).

Two Sides of the Same Coin

Conversely, given a piecewise step-polynomial,

- For each step-monomial, create a polytope $P \subseteq \mathbb{R}^{d} \times \mathbb{R}^{k}$ such that

$$
c(\mathbf{s})=\#\left\{\mathbf{a} \in \mathbb{Z}^{k}:(\mathbf{s}, \mathbf{a}) \in P\right\}
$$

- Find the rational generating function

$$
f(\mathbf{z}, \mathbf{x})=\sum_{(\mathbf{s}, \mathbf{a}) \in P \cap \mathbb{Z}^{d+k}} \mathbf{z}^{\mathbf{s}} \mathbf{x}^{\mathbf{a}} .
$$

- Compute

$$
f(\mathbf{z}, \mathbf{1})=\sum_{\mathbf{s}} c(\mathbf{s}) \mathbf{z}^{\mathbf{s}}
$$

Two Sides of the Same Coin

Conversely, given a piecewise step-polynomial,

- For each step-monomial, create a polytope $P \subseteq \mathbb{R}^{d} \times \mathbb{R}^{k}$ such that

$$
c(\mathbf{s})=\#\left\{\mathbf{a} \in \mathbb{Z}^{k}:(\mathbf{s}, \mathbf{a}) \in P\right\}
$$

- Find the rational generating function

$$
f(\mathbf{z}, \mathbf{x})=\sum_{(\mathrm{s}, \mathrm{a}) \in P \cap \mathbb{Z}^{d+k}} z^{\mathrm{s}} x^{\mathrm{a}} .
$$

- Compute

$$
f(\mathbf{z}, \mathbf{1})=\sum_{\mathbf{s}} c(\mathbf{s}) \mathbf{z}^{\mathbf{s}}
$$

Two Sides of the Same Coin

Conversely, given a piecewise step-polynomial,

- For each step-monomial, create a polytope $P \subseteq \mathbb{R}^{d} \times \mathbb{R}^{k}$ such that

$$
c(\mathbf{s})=\#\left\{\mathbf{a} \in \mathbb{Z}^{k}:(\mathbf{s}, \mathbf{a}) \in P\right\}
$$

- Find the rational generating function

$$
f(\mathbf{z}, \mathbf{x})=\sum_{(\mathbf{s}, \mathbf{a}) \in P \cap \mathbb{Z}^{d+k}} \mathbf{z}^{\mathbf{s}} \mathbf{x}^{\mathbf{a}} .
$$

- Compute

$$
f(\mathbf{z}, \mathbf{1})=\sum_{\mathbf{s}} c(\mathbf{s}) \mathbf{z}^{\mathbf{s}}
$$

Thank You!

