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Counting Problems
Example: P = [−1

2 ,
1
2 ]× [−1

2 ,
1
2 ] ⊆ R2.

Define c(t) = #{tP ∩ Z2}, for t ∈ Z+.

c(t) =

{
(t + 1)2, for t even
t2, for t odd

=
(

2
⌊ t

2

⌋
+ 1
)2

.
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Counting Problems

Define c(s, t) by∑
s,t

c(s, t)zsw t =
1

(1− zw)(1− z2w)(1− z)(1− w)
..

Is there a “nice” formula for c(s, t)?
This talk will focus on finding one.



An Example

∑
t

c(t)z t =
1

(1− z)3
= (1 + z + · · · )(1 + z + · · · )(1 + z + · · · )

Let’s compute c(t).

c(t) = #{a, b, c ∈ Z : a, b, c ≥ 0, a + b + c = t}
= #{a, b ∈ Z : a, b ≥ 0, a + b ≤ t}
= #(Pt ∩ Z2),

for some polytope Pt .
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An Example

Idea:

I For fixed t, look at ∑
(a,b)∈Pt∩Z2

xayb.

I Plug in x = y = 1.

I Investigate what happens as t changes.



An Example

c(t) = #{a, b ∈ Z : a, b ≥ 0, a + b ≤ t}.

Example: t = 2.

c(2) = x0y0 + x1y0 + x2y0 + x0y1 + x1y1 + x0y2
∣∣∣
x=y=1

= 6.



An Example

What happens
when t changes?

This is Brion’s Theorem.

Note: t only appears in exponents of numerators!
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(1 + x + x2 + · · · )

·(1+y +y2+· · · )

=
1

(1− x)(1− y)

This is Brion’s Theorem.

Note: t only appears in exponents of numerators!
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An Example

1

(1− x)(1− y)
− x t+1

(1− x)(1− x−1y)
+

x−1y t+2

(1− x−1y)(1− y)
.

We’ve found the generating function. Now plug in x = 1, then
y = 1.

But x = 1 is a pole of the first term!

When summed, poles must cancel.
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An Example

For each term f , need to find a0.

f = a−1(x − 1)−1 + a0 + a1(x − 1) + · · ·
(x − 1)f = a−1 + a0(x − 1) + a1(x − 1)2 + · · ·

∂

∂x
(x − 1)f = a0 + 2a1(x − 1) + · · ·

∂

∂x
(x − 1)f

∣∣∣
x=1

= a0
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An Example

2nd term:

f = − x t+1

(1− x)(1− x−1y)

(x − 1)f =
x t+1

1− x−1y

∂

∂x
(x − 1)f =

(t + 1)x t · (1− x−1y)− x−2y · x t+1

(1− x−1y)2

∂

∂x
(x − 1)f

∣∣∣
x=1

=
(t + 1)(1− y)− y

(1− y)2
.

Taking the derivative creates polynomials in t.
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An Example

Putting the three terms together, we have

(t + 1)(1− y) + y − y t+2

(1− y)2
.

Plugging in y = 1 as well, the final answer is

(t + 1)(t + 2)

2
.



An Example

Recap:

I Find the generating function. Exponentials in numerator are
linear functions of t. Everything else is constant with t.

I Plug in x = y = 1. Taking derivatives creates a polynomial in
t.

This works in general.
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Lie 1

Not all cones have such nice generating functions, only unimodular
cones do.

Barvinok: Any cone can be written as a sum and difference of
unimodular cones (in polynomial time).
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Lie 2
The vertices of the polytopes are not always integral.

1

(1− z)(1− z2)2
.

t = 1

t = 1

t = 2 t = 3

vertex of red cone is
(⌊

t+2
2

⌋
, 0
)
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Lie 3

With more than one parameter, vertices may disappear.∑
s,t

c(s, t)zsw t =
1

(1− zw)(1− z2w)(1− z)(1− w)
.

Corresponding polytope is

{a, b ∈ Z : a ≥ 0, b ≥ 0, 2b − a ≤ 2t − s, a− b ≤ s − t}.

t ≤ s ≤ 2t

0 ≤ 2t ≤ s 0 ≤ s ≤ t
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Lie 3

End up with

c(s, t) =


s2

2 − b
s
2cs + s

2 + b s2c
2 + b s2c+ 1 if t ≤ s ≤ 2t

st − b s2cs −
t2

2 + t
2 + b s2c

2 + b s2c+ 1 if 0 ≤ 2t ≤ s
t2

2 + 3t
2 + 1 if 0 ≤ s ≤ t

.

Example courtesy of Sven Verdoolaege’s barvinok.



Two Sides of the Same Coin

Heads: The nimble a Rational Generating Function∑
s,t

c(s, t)zsw t

Tails: The concrete “piecewise step-polynomial”.

You don’t have to choose your favorite representation.
You can translate back and forth in polynomial time.
[Verdoolaege, W]



Thank You!



Two Sides of the Same Coin

Heads: a Rational Generating Function.

A function in the form

f (z) =
∑
i∈I

αi
zpi

(1− zbi1)(1− zbi2) · · · (1− zbiki )
,

where z ∈ Cn, I is a finite set, αi ∈ Q, pi ∈ Zn, and bij ∈ Zn \ {0}.



Two Sides of the Same Coin

Tails: a Piecewise Step-polynomial.

Defined piecewise on polyhedral regions Qi :

c(s) = ci (s), for s ∈ Qi , where

ci (s) =
m∑

j=1

αij

dij∏
k=1

bpijk(s)c

with αij ∈ Q and pijk are degree one polynomials over Q.



Two Sides of the Same Coin

I Rational generating functions are nimble.

I Piecewise Step-polynomials are concrete.



Two Sides of the Same Coin

Theorem
Fix d and k. There is a polynomial time algorithm that:

I Given a rational generating function f (x) in d variables, with
at most k binomials in each denominator, computes the
piecewise step polynomial c(s) such that

f (x) =
∑

s

c(s)xs.

I Given a piecewise step-polynomial c : Zd → Z of degree at
most k, computes the rational generating function f .



Two Sides of the Same Coin

Given a rational generating function,

f (z) =
∑
i∈I

αi
zpi

(1− zbi1)(1− zbi2) · · · (1− zbiki )
,

I Each term is a vector partition function. Compute each, and
combine at the end.

I Divide parameter space into pieces, based on the vertices of
the corresponding polytope, and compute it for each piece.

I Brion: Break up into cones. The vertex of each cone is the
floor of a linear function.

I Barvinok: Decompose each cone into unimodular cones.

I Plug in x = 1. Taking derivatives to do this will create
step-polynomials.
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Two Sides of the Same Coin

Note: This proof

I Shows that c(s) is a piecewise quasi-polynomial.

I Gives an explicit formula for c(s).

I Computes a concise formula quickly (in polynomial time).



Two Sides of the Same Coin

Conversely, given a piecewise step-polynomial,

I For each step-monomial, create a polytope P ⊆ Rd ×Rk such
that

c(s) = #{a ∈ Zk : (s, a) ∈ P}.

I Find the rational generating function

f (z, x) =
∑

(s,a)∈P∩Zd+k

zsxa.

I Compute

f (z, 1) =
∑

s

c(s)zs.
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